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Abstract

In this note, we discuss the ellipticity of the single layer boundary integral operator
for the wave equation in one space dimension. This result not only generalizes the
well-known ellipticity of the energetic boundary integral formulation in L2, but it
also turns out to be a particular case of a recent result on the inf-sup stability of
boundary integral operators for the wave equation. Instead of the time derivative
in the energetic formulation, we use a modified Hilbert transformation, which allows
us to stay in Sobolev spaces of the same order. This results in the applicability
of standard boundary element error estimates, which are confirmed by numerical
results.

1 Introduction

Time-domain boundary integral equations and boundary element methods for the wave
equation are well established in the literature; we mention the groundbraking works of
Bamberger and Ha Duong [2], Aimi et al. [1], and the review article [4] by Costabel and
Sayas. Other works include [5, 7, 8, 9, 10, 11], to mention a few.

The main difficulties in the numerical analysis of these formulations are in the so-called
norm gap, coming from continuity and coercivity estimates in different space-time Sobolev
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norms. When using the energetic boundary element method, a complete stability and error
analysis can be done in L2(Σ), see [8], where Σ is the lateral boundary of the space-time
domain Q := Ω× (0, T ).

Using a generalized inf-sup stable variational formulation [17] for the wave equation, in
[13] we derived inf-sup stability conditions for all boundary integral operators in related
trace spaces. In fact, this work was motivated by our previous result [18] on the spatially
one-dimensional case. When replacing the time derivative in the energetic boundary inte-
gral formulation by a modified Hilbert transformation [15], the resulting composition with
the single layer boundary integral operator becomes elliptic in the natural energy space
[H

1/2
,0 (Σ)]′, similarly to what is known for boundary integral operators for second-order

elliptic partial differential equations. Note that H
1/2
,0 (Σ) := [H1

,0(Σ), L2(Σ)]1/2 is defined
by interpolation, with H1

,0(Σ) = {v ∈ H1(Σ) : v(T ) = 0}. Analogously, H1
0,(Σ) covers zero

initial conditions, i.e., v(0) = 0.
In this paper, we present a detailed derivation of this new approach, and we discuss the

corresponding numerical analysis of a related new boundary element method. In Section 2,
we recall the energetic space-time boundary integral formulation [1, 8], and we provide a
simplified proof of the ellipticity result in L2(Σ). In particular, we obtain that the single
layer boundary integral operator V : L2(Σ) → H1

0,(Σ) is an isomorphism. Using duality
arguments, we obtain that V : [H1

,0(Σ)]′ → L2(Σ) is also an isomorphism. Finally, by an

interpolation argument, we conclude that V : [H
1/2
,0 (Σ)]′ → H

1/2
0, (Σ) is an isomorphism

as well. While this implies an inf-sup stability estimate, as also discussed in [13], in

Section 3 we introduce a modified Hilbert transformation HT : H
1/2
0, (Σ) → H

1/2
,0 (Σ), see

[15], to establish ellipticity of HTV in [H
1/2
,0 (Σ)]′ in Section 4. Although the main result, as

given in Lemma 4.1, still involves some unknown constant, Proposition 4.2 gives numerical
evidence on the behavior of the ellipticity constant, which agrees with the constant known
from the energetic formulation. In Section 5, we present some numerical results which
confirm the a priori error estimates, as given in Section 4. In Section 6, we finally draw
some conclusions for future work.

2 Energetic space-time boundary integral equation

As in [1], we consider the Dirichlet boundary value problem for the homogeneous wave
equation in the one-dimensional spatial domain Ω = (0, L) with zero initial conditions,
and for a given time horizon T > 0,

∂ttu(x, t)− ∂xxu(x, t) = 0 for (x, t) ∈ Q := (0, L)× (0, T ),

u(x, 0) = ∂tu(x, t)|t=0 = 0 for x ∈ (0, L),

u(0, t) = g0(t) for t ∈ (0, T ),

u(L, t) = gL(t) for t ∈ (0, T ).

 (2.1)
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In the one-dimensional case, the fundamental solution of the wave equation is the Heaviside
function

U∗(x, t) =
1

2
H(t− |x|),

and we can represent the solution u of (2.1) by using the single layer potential

u(x, t) = (Ṽ w)(x, t) =
1

2

∫ t−|x|

0

w0(s) ds+
1

2

∫ t−|x−L|

0

wL(s) ds for (x, t) ∈ Q

with the density functions w = (w0, wL). Note that for any function z : (0, T )→ R, we set
z(t) = 0 for t < 0 or t > T in the remainder of this work. To determine the yet unknown
density functions (w0, wL), we consider the boundary integral equations for x→ 0,

(V0w)(t) :=
1

2

∫ t

0

w0(s) ds+
1

2

∫ t−L

0

wL(s) ds = g0(t) for t ∈ (0, T ), (2.2)

and for x→ L,

(VLw)(t) :=
1

2

∫ t−L

0

w0(s) ds+
1

2

∫ t

0

wL(s) ds = gL(t) for t ∈ (0, T ). (2.3)

We write the boundary integral equations (2.2) and (2.3) in compact form, for w = (w0, wL),
as

(V w)(t) =

(
(V0w)(t)
(VLw)(t)

)
=

(
V00 V0L

VL0 VLL

)(
w0

wL

)
(t) =

(
g0(t)
gL(t)

)
= g(t), t ∈ (0, T ). (2.4)

In the energetic boundary element method [1], instead of (2.4), the time derivative of (2.4)
is considered,

∂t(V w)(t) = ∂tg(t) for t ∈ (0, T ). (2.5)

We introduce the related energetic bilinear form

a(w, v) := 〈v, ∂tV w〉L2(Σ)

=
1

2

∫ T

0

v0(t)
d

dt

∫ t

0

w0(s) ds dt+
1

2

∫ T

0

v0(t)
d

dt

∫ t−L

0

wL(s) ds dt

+
1

2

∫ T

0

vL(t)
d

dt

∫ t−L

0

w0(s) ds dt+
1

2

∫ T

0

vL(t)
d

dt

∫ t

0

wL(s) ds dt

=
1

2

∫ T

0

v0(t)w0(t) dt+
1

2

∫ T

0

v0(t)wL(t− L) dt

+
1

2

∫ T

0

vL(t)w0(t− L) dt+
1

2

∫ T

0

vL(t)wL(t) dt .
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When using both the Cauchy–Schwarz and Hölder inequality, we conclude

|a(w, v)| ≤ 1

2
‖v0‖L2(0,T )‖w0‖L2(0,T ) +

1

2
‖v0‖L2(0,T )‖wL‖L2(0,T−L)

+
1

2
‖vL‖L2(0,T )‖w0‖L2(0,T−L) +

1

2
‖vL‖L2(0,T )‖wL‖L2(0,T )

≤ 1

2
‖v0‖L2(0,T )

[
‖w0‖L2(0,T ) + ‖wL‖L2(0,T )

]
+

1

2
‖vL‖L2(0,T )

[
‖w0‖L2(0,T ) + ‖wL‖L2(0,T )

]
=

1

2

[
‖v0‖L2(0,T ) + ‖vL‖L2(0,T )

][
‖w0‖L2(0,T ) + ‖wL‖L2(0,T )

]
≤

√
‖v0‖2

L2(0,T ) + ‖vL‖2
L2(0,T )

√
‖w0‖2

L2(0,T ) + ‖wL‖2
L2(0,T )

= ‖v‖L2(Σ)‖w‖L2(Σ)

for all v = (v0, vL), w = (w0, wL) ∈ L2(Σ) := L2(0, T )× L2(0, T ), where

‖z‖L2(Σ) :=
(
‖z0‖2

L2(0,T ) + ‖zL‖2
L2(0,T )

)1/2

for z = (z0, zL) ∈ L2(Σ).

Moreover, the energetic bilinear form a(·, ·) is also L2(Σ)-elliptic, see [1, Theorem 2.1]. For
later reference, we will give a simplified proof of this result. For this, we introduce

n := min
{
m ∈ N : T ≤ mL

}
, (2.6)

which is the number of time slices Tj := ((j− 1)L, jL) for j = 1, . . . , n in the case T = nL.
In the case T < nL, we define the last time slice as Tn := ((n−1)L, T ), while all the others
remain unchanged.

Theorem 2.1 [1, Theorem 2.1] For all w ∈ L2(Σ), there holds the ellipticity estimate

a(w,w) = 〈w, ∂tV w〉L2(Σ) ≥ sin2 π

2(n+ 1)
‖w‖2

L2(Σ), (2.7)

where the number n ∈ N of time slices is defined in (2.6).

Proof. For w = (w0, wL) ∈ L2(Σ), we write

2 a(w,w)

=

∫ T

0

[w0(t)]2 dt+

∫ T

0

w0(t)wL(t− L) dt+

∫ T

0

wL(t)w0(t− L) dt+

∫ T

0

[wL(t)]2 dt

=
n∑
j=1

[
‖w0‖2

L2(Tj)
+

∫
Tj

w0(t)wL(t− L) dt+

∫
Tj

wL(t)w0(t− L) dt+ ‖wL‖2
L2(Tj)

]
.
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For t ∈ T1, we have t − L < 0, and therefore w0(t − L) = wL(t − L) = 0 follows. For
j = 2, . . . , n− 1, we have, using the Cauchy–Schwarz inequality,

∫
Tj

w0(t)wL(t− L) dt ≤

(∫
Tj

[w0(t)]2 dt

)1/2(∫
Tj

[wL(t− L)]2 dt

)1/2

≤

(∫
Tj

[w0(t)]2 dt

)1/2(∫
Tj−1

[wL(t)]2 dt

)1/2

= ‖w0‖L2(Tj)‖wL‖L2(Tj−1) .

Correspondingly, for j = n and Tn = ((j − 1)L, T ), T ≤ nL, we have∫
Tn

w0(t)wL(t− L) dt ≤
(∫

Tn

[w0(t)]2 dt

)1/2(∫ T

(n−1)L

[wL(t− L)]2 dt

)1/2

=

(∫
Tn

[w0(t)]2 dt

)1/2(∫ T−L

(n−2)L

[wL(t)]2 dt

)1/2

≤
(∫

Tn

[w0(t)]2 dt

)1/2(∫
Tn−1

[wL(t)]2 dt

)1/2

= ‖w0‖L2(Tn)‖wL‖L2(Tn−1) .

Hence, we conclude

2 a(w,w) ≥
n∑
j=1

[
‖w0‖2

L2(Tj)
+ ‖wL‖2

L2(Tj)

]
−

n∑
j=2

[
‖w0‖L2(Tj)‖wL‖L2(Tj−1) + ‖wL‖L2(Tj)‖w0‖L2(Tj−1)

]

=




1 − 1

2
− 1

2
1 − 1

2
− 1

2
1 − 1

2
− 1

2
1 − 1

2

. . .
. . .

. . .

− 1
2

1 − 1
2

− 1
2

1




‖w0‖L2(T1)

‖wL‖L2(T2)

‖w0‖L2(T3)

‖wL‖L2(T4)

.

..
‖w0‖L2(Tn−1)

‖wL‖L2(Tn)

 ,


‖w0‖L2(T1)

‖wL‖L2(T2)

‖w0‖L2(T3)

‖wL‖L2(T4)

.

..
‖w0‖L2(Tn−1)

‖wL‖L2(Tn)





+




1 − 1

2
− 1

2
1 − 1

2
− 1

2
1 − 1

2
− 1

2
1 − 1

2

. . .
. . .

. . .

− 1
2

1 − 1
2

− 1
2

1




‖wL‖L2(T1)

‖w0‖L2(T2)

‖wL‖L2(T3)

‖w0‖L2(T4)

...
‖wL‖L2(Tn−1)

‖w0‖L2(Tn)

 ,


‖wL‖L2(T1)

‖w0‖L2(T2)

‖wL‖L2(T3)

‖w0‖L2(T4)

...
‖wL‖L2(Tn−1)

‖w0‖L2(Tn)




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and further,

a(w,w) ≥ λmin

2






‖w0‖L2(T1)

‖wL‖L2(T2)

‖w0‖L2(T3)

‖wL‖L2(T4)

...
‖w0‖L2(Tn−1)

‖wL‖L2(Tn)

 ,


‖w0‖L2(T1)

‖wL‖L2(T2)

‖w0‖L2(T3)

‖wL‖L2(T4)

...
‖w0‖L2(Tn−1)

‖wL‖L2(Tn)



+




‖wL‖L2(T1)

‖w0‖L2(T2)

‖wL‖L2(T3)

‖w0‖L2(T4)

...
‖wL‖L2(Tn−1)

‖w0‖L2(Tn)

 ,


‖wL‖L2(T1)

‖w0‖L2(T2)

‖wL‖L2(T3)

‖w0‖L2(T4)

...
‖wL‖L2(Tn−1)

‖w0‖L2(Tn)






=
λmin

2

[
‖w0‖2

L2(0,T ) + ‖wL‖2
L2(0,T )

]
,

where
λmin = 2 sin2 π

2(n+ 1)

is the minimal eigenvalue of the involved matrix, which is related to the finite difference
approximation of the Laplacian in one dimension.

From the above properties, we conclude that

∂tV : L2(Σ)→ L2(Σ)

defines an isomorphism. Since the time derivative

∂t : H1
0,(Σ)→ L2(Σ)

is also an isomorphism, e.g., [15, Sect. 2.1], so is

V : L2(Σ)→ H1
0,(Σ) . (2.8)

Note that, for u = (u0, uL) ∈ H1
0,(Σ) := H1

0,(0, T )×H1
0,(0, T ), we have

‖u‖2
H1

0,(Σ) := ‖∂tu0‖2
L2(0,T ) + ‖∂tuL‖2

L2(0,T ).

For ∂t : H1
0,(0, T )→ L2(0, T ), the inverse is given by

u(t) = (∂−1
t f)(t) =

∫ t

0

f(s) ds, t ∈ (0, T ),

with f ∈ L2(0, T ), u ∈ H1
0,(0, T ). Analogously, for ∂t : H1

,0(0, T ) → L2(0, T ), we find the
inverse as

u(t) = (∂
−1

t f)(t) = −
∫ T

t

f(s) ds, t ∈ (0, T ).

For w, v ∈ L2(Σ) and u = V w = (u0, uL) ∈ H1
0,(Σ), we therefore obtain

〈∂−1

t V w, v〉L2(Σ) = −
∫ T

0

∫ T

t

u0(s) ds v0(t) dt−
∫ T

0

∫ T

t

uL(s) ds vL(t) dt .
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For ∗ ∈ {0, L} we compute

−
∫ T

0

∫ T

t

u∗(s) ds v∗(t) dt = −
∫ T

0

∫ T

t

u∗(s) ds ∂t

∫ t

0

v∗(s) ds dt

= −
∫ T

t

u∗(s) ds

∫ t

0

v∗(s) ds

∣∣∣∣T
0

+

∫ T

0

∂t

∫ T

t

u∗(s) ds

∫ t

0

v∗(s) ds dt

=−
∫ T

0

u∗(t)

∫ t

0

v∗(s) ds ,

i.e.,

〈∂−1

t V w, v〉L2(Σ) = −〈V w, ∂−1
t v〉L2(Σ) .

On the other hand, for z0 = ∂−1
t w0 we have w0 = ∂tz0, and hence∫ t

0

w0(s) ds =

∫ t

0

∂sz0(s) ds = z0(t) = ∂t

∫ t

0

z0(s) ds.

With this, we conclude

〈∂−1

t V w, v〉L2(Σ) = −〈V ∂t∂−1
t w, ∂−1

t v〉L2(Σ) = −〈∂tV ∂−1
t w, ∂−1

t v〉L2(Σ) = −a(∂−1
t w, ∂−1

t v),

and, in particular for v = w, Theorem 2.1 gives

−〈∂−1

t V w,w〉L2(Σ) = 〈∂tV ∂−1
t w, ∂−1

t w〉L2(Σ) ≥ sin2 π

2(n+ 1)
‖∂−1

t w‖2
L2(Σ).

For ∗ ∈ {0, L}, we define

z∗(t) = (∂−1
t w∗)(t) =

∫ t

0

w∗(s) ds, t ∈ (0, T ),

to compute

‖∂−1
t w∗‖2

L2(0,T ) = ‖z∗‖2
L2(0,T ) =

∫ T

0

z∗(t) z∗(t) dt = −
∫ T

0

∂t

∫ T

t

z∗(s) ds z∗(t) dt

= −
∫ T

t

z∗(s) ds z∗(t)

∣∣∣∣T
0

+

∫ T

0

∫ T

t

z∗(s) ds ∂tz∗(t) dt

=

∫ T

0

v∗(t)w∗(t) dt,

where

v∗(t) =

∫ T

t

z∗(s) ds for t ∈ (0, T ), ∂tv∗ = −z∗, v∗ ∈ H1
,0(0, T ).

From this, we conclude

‖∂−1
t w∗‖L2(0,T ) =

|〈w∗, v∗〉(0,T )|
‖∂tv∗‖L2(0,T )

≤ sup
06=φ∈H1

,0(0,T )

|〈w∗, φ〉(0,T )|
‖∂tφ‖L2(0,T )

= ‖w∗‖[H1
,0(0,T )]′ .
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Indeed, we have
‖∂−1

t w∗‖L2(0,T ) = ‖w∗‖[H1
,0(0,T )]′ ,

and therefore,

−〈∂−1

t V w,w〉L2(Σ) ≥ sin2 π

2(n+ 1)
‖w‖2

[H1
,0(Σ)]′ . (2.9)

In fact, by the density of L2(Σ) in [H1
,0(Σ)]′, the operator

−∂−1

t V : [H1
,0(Σ)]′ → H1

,0(Σ)

defines an isomorphism, and so does

V : [H1
,0(Σ)]′ → L2(Σ). (2.10)

For the single layer boundary integral operator V , we have obtained the mapping properties
(2.8) and (2.10), respectively. When applying an interpolation argument, this gives that

V : [H
1/2
,0 (Σ)]′ → H

1/2
0, (Σ)

is an isomorphism as well, where the Sobolev space H
1/2
0, (Σ) = H

1/2
0, (0, T ) ×H1/2

0, (0, T ) is
endowed with the Hilbertian norm

‖z‖
H

1/2
0, (Σ)

:=

(
‖z0‖2

H
1/2
0, (0,T )

+ ‖zL‖2

H
1/2
0, (0,T )

)1/2

for z = (z0, zL) ∈ H1/2
0, (Σ)

and analogously, the Sobolev space H
1/2
,0 (Σ) is introduced. Hence, we conclude the inf-sup

stability condition

cS ‖w‖[H
1/2
,0 (Σ)]′

≤ sup
06=v∈[H

1/2
0, (Σ)]′

|〈V w, v〉Σ|
‖v‖

[H
1/2
0, (Σ)]′

for all w ∈ [H
1/2
,0 (Σ)]′ (2.11)

with a constant cS > 0. In fact, (2.11) corresponds to the inf-sup condition in [13, Theorem
5.7], where the test space is slightly larger than used in (2.11). But we will show that V :

[H
1/2
,0 (Σ)]′ → H

1/2
0, (Σ) in combination with a modified Hilbert transformation [15, 16, 19]

even satisfies an ellipticity estimate similar as in (2.7).

3 A modified Hilbert transformation

For u ∈ L2(0, T ), we consider the Fourier series

u(t) =
∞∑
k=0

uk sin

((π
2

+ kπ
) t

T

)
, uk =

2

T

∫ T

0

u(t) sin

((π
2

+ kπ
) t

T

)
dt,

8



u(t) =
∞∑
k=0

uk cos

((π
2

+ kπ
) t

T

)
, uk =

2

T

∫ T

0

u(t) cos

((π
2

+ kπ
) t

T

)
dt.

From [15, Lemma 2.1], we have

‖u‖2

[H
1/2
,0 (0,T )]′

=
T 2

2

∞∑
k=0

(π
2

+ kπ
)−1

u2
k .

As in [15], we introduce the transformation operator HT : L2(0, T )→ L2(0, T ) as

HTu(t) :=
∞∑
k=0

uk cos

((π
2

+ kπ
) t

T

)
, t ∈ (0, T ), (3.1)

which is norm preserving and bijective. By construction, we have that the transformation
operator HT : H

1/2
0, (0, T )→ H

1/2
,0 (0, T ) is also an isometric isomorphism, and

〈∂tu,HTu〉(0,T ) = ‖u‖2

H
1/2
0, (0,T )

for all u ∈ H1/2
0, (0, T ).

Note that H
1/2
0, (0, T ) := [H1

0,(0, T ), L2(0, T )]1/2 is constructed by interpolation, where

H1
0,(0, T ) := {v ∈ H1(0, T ) : v(0) = 0}. In the same way, we define H

1/2
,0 (0, T ) but

with zero condition at the final time t = T . It is easy to see that

|〈∂tu,HT z〉(0,T )| ≤ ‖u‖H1/2
0, (0,T )

‖z‖
H

1/2
0, (0,T )

for all u, z ∈ H1/2
0, (0, T ). (3.2)

The transformation operatorHT , as defined in (3.1), allows a closed representation, see [15,
Lemma 2.8], which generalizes the well-known Hilbert transformation, e.g., [3]. Moreover,
following [16, Eqn. (2.5)] we conclude the following representation for u, z ∈ H1

0,(0, T ),

〈∂tu,HT z〉(0,T ) = − 1

π

∫ T

0

∂tu(t)

∫ T

0

ln

[
tan

π(s+ t)

4T
tan

π|t− s|
4T

]
∂sz(s) ds dt .

This representation also allows for an efficient evaluation of the bilinear form 〈∂tu,HT z〉(0,T )

by using hierarchical matrices, see [16] for a more detailed discussion.

4 A space-time approach in energy spaces

Instead of the boundary integral equation (2.5), we may replace the application of the

time derivative by the modified Hilbert transformation HT : H
1/2
0, (Σ) → H

1/2
,0 (Σ), i.e., we

consider the boundary integral equation to find w ∈ [H
1/2
,0 (Σ)]′ such that

HTV w = HTg in [H
1/2
,0 (Σ)]′,

9



where g ∈ H1/2
0, (Σ) is a given Dirichlet datum. The related bilinear form is given as

aHT (w, v) := 〈v,HTV w〉Σ for all v, w ∈ [H
1/2
,0 (Σ)]′.

Recall that for u = (u0, uL) ∈ H1/2
0, (Σ), we have

∂tu = (∂tu0, ∂tuL) = (v0, vL) =: v ∈ [H
1/2
,0 (Σ)]′ ,

satisfying
‖u‖

H
1/2
0, (Σ)

= ‖v‖
[H

1/2
,0 (Σ)]′

.

For v = ∂tu, w = ∂tz with u, z ∈ H1
0,(Σ), we can write

aHT (w, v) =
1

2

∫ T

0

v0(t)HT

(∫ t

0

w0(s) ds+

∫ t−L

0

wL(s) ds

)
dt

+
1

2

∫ T

0

vL(t)HT

(∫ t−L

0

w0(s) ds+

∫ t

0

wL(s) ds

)
dt

=
1

2

[
〈∂tu0,HT (z0 + zL(· − L))〉(0,T ) + 〈∂tuL,HT (z0(· − L) + zL)〉(0,T )

]
.

When using (3.2), we obtain

|aHT (w, v)|

≤ 1

2

[
‖u0‖H1/2

0, (0,T )
‖z0 + zL(· − L)‖

H
1/2
0, (0,T )

+ ‖uL‖H1/2
0, (0,T )

‖z0(· − L) + zL‖H1/2
0, (0,T )

]
≤ 1

2

[
‖u0‖H1/2

0, (0,T )
+ ‖uL‖H1/2

0, (0,T )

][
‖z0‖H1/2

0, (0,T )
+ ‖zL‖H1/2

0, (0,T )

]
≤
√
‖u0‖2

H
1/2
0, (0,T )

+ ‖uL‖2

H
1/2
0, (0,T )

√
‖z0‖2

H
1/2
0, (0,T )

+ ‖zL‖2

H
1/2
0, (0,T )

= ‖u‖
H

1/2
0, (Σ)

‖z‖
H

1/2
0, (Σ)

= ‖v‖
[H

1/2
,0 (Σ)]′

‖w‖
[H

1/2
,0 (Σ)]′

for all v, w ∈ L2(Σ), i.e., the density of L2(Σ) in [H
1/2
,0 (Σ)]′ yields the boundedness of the

bilinear form aHT (·, ·).

Lemma 4.1 For w ∈ [H
1/2
,0 (Σ)]′, there holds

aHT (w,w) = 〈HTV w,w〉Σ ≥
1

2

(
1− 1

2
sup
m∈N

√
λmax(Cm)

)
‖w‖2

[H
1/2
,0 (Σ)]′

, (4.1)

where λmax(Cm) is the maximal eigenvalue of a symmetric matrix Cm ∈ R(m+1)×(m+1). In
the case of T ≤ L, the matrix Cm is the zero matrix, i.e., λmax(Cm) = 0. However, in the
case T > L, the matrix Cm is defined by the entries

c`i =
∞∑
k=0

bk`bki for `, i = 0, . . . ,m,
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bkk = 2

(
1− L

T

)
cos

((π
2

+ kπ
) L
T

)
for k ∈ N0,

bk` =
4

π

√
2k + 1

√
2`+ 1

(k + `+ 1)(k − `)
cos

(
(k + `+ 1)

π

2

L

T

)
sin

(
(`− k)

π

2

L

T

)
for k, ` ∈ N0, k − ` = 2j 6= 0, j ∈ Z, and bk` = 0 else.

Proof. For w = (w0, wL) ∈ L2(Σ), we consider the Fourier series

w0(t) =
∞∑
k=0

w0,k cos

((π
2

+ kπ
) t

T

)
, w0,k =

2

T

∫ T

0

w0(t) cos

((π
2

+ kπ
) t

T

)
dt,

wL(t) =
∞∑
k=0

wL,k cos

((π
2

+ kπ
) t

T

)
, wL,k =

2

T

∫ T

0

wL(t) cos

((π
2

+ kπ
) t

T

)
dt.

In the case T ≤ L, we explicitly compute

〈HTV w,w〉L2(Σ) =
T 2

2

∞∑
k=0

w2
0,k + w2

L,k

(2k + 1)π
=

1

2

(
‖w0‖2

[H
1/2
,0 (0,T )]′

+ ‖wL‖2

[H
1/2
,0 (0,T )]′

)
,

since there are no coupling terms.
In the case T > L, we have the representation

〈HTV w,w〉L2(Σ)

=
T 2

2

∞∑
k=0

w2
0,k + w2

L,k

(2k + 1)π
+
T 2

2

∞∑
k=0

w0,kwL,k
2

(2k + 1)π

(
1− L

T

)
cos

((π
2

+ kπ
) L
T

)
+
T 2

2

∑
k−`=2j 6=0

w0,`wL,k
4

π2

1

(k + `+ 1)(k − `)
cos

(
(k + `+ 1)

π

2

L

T

)
sin

(
(`− k)

π

2

L

T

)

=
T 2

2

∞∑
k=0

[
ŵ2

0,k + ŵ2
L,k

]
+
T 2

2

∞∑
k=0

2ŵ0,kŵL,k

(
1− L

T

)
cos

((π
2

+ kπ
) L
T

)
+
T 2

2

∑
k−`=2j 6=0

ŵ0,`ŵL,k
4

π

√
2k + 1

√
2`+ 1

(k + `+ 1)(k − `)
cos

(
(k + `+ 1)

π

2

L

T

)
sin

(
(`− k)

π

2

L

T

)
,

where

ŵ0,k =
w0,k√

(2k + 1)π
, ŵL,k =

wL,k√
(2k + 1)π

.

When using the coefficients bk`, we write the above result as

〈HTV w,w〉L2(Σ) =
T 2

2

(
∞∑
k=0

[
ŵ2

0,` + ŵ2
L,k

]
+
∞∑
k=0

∞∑
`=0

bk`ŵ0,`ŵL,k

)
.
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Following [6, Chapter VIII], we consider the forms

B(ŵ0, ŵL) :=
∞∑
k=0

∞∑
`=0

bk`ŵ0,`ŵL,k, Bm(ŵ0, ŵL) :=
m∑
k=0

m∑
`=0

bk`ŵ0,`ŵL,k ,

and for the latter we estimate

∣∣∣Bm(ŵ0, ŵL)
∣∣∣ =

∣∣∣∣∣
m∑
k=0

m∑
`=0

bk`ŵ0,`ŵL,k

∣∣∣∣∣ ≤
[

m∑
k=0

ŵ2
L,k

]1/2
 m∑
k=0

(
m∑
`=0

bk`ŵ0,`

)2
1/2

≤

[
m∑
k=0

ŵ2
L,k

]1/2
 ∞∑
k=0

(
m∑
`=0

bk`ŵ0,`

)2
1/2

.

Hence, it remains to consider

∞∑
k=0

(
m∑
`=0

bk`ŵ0,`

)2

=
m∑
`=0

m∑
j=0

(
∞∑
k=0

bk`bkj

)
ŵ0,`ŵ0,j

=
m∑
`=0

m∑
j=0

c`jŵ0,`ŵ0,j ≤ λmax(Cm)
m∑
`=0

ŵ2
0,` .

From this, we conclude

∣∣∣Bm(ŵ0, ŵL)
∣∣∣ ≤√λmax(Cm)

[
m∑
k=0

ŵ2
L,k

]1/2 [ m∑
`=0

ŵ2
0,`

]1/2

≤ sup
m∈N

√
λmax(Cm)

[
∞∑
k=0

ŵ2
L,k

]1/2 [ ∞∑
`=0

ŵ2
0,`

]1/2

≤ 1

2
sup
m∈N

√
λmax(Cm)

(
∞∑
k=0

ŵ2
L,k +

∞∑
`=0

ŵ2
0,`

)

for all m ∈ N, and therefore

∣∣∣B(ŵ0, ŵL)
∣∣∣ ≤ 1

2
sup
m∈N

√
λmax(Cm)

(
∞∑
k=0

ŵ2
L,k +

∞∑
`=0

ŵ2
0,`

)
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follows. With this, we finally obtain

〈HTV w,w〉L2(Σ) ≥
T 2

2

(
1− 1

2
sup
m∈N

√
λmax(Cm)

) ∞∑
k=0

[
ŵ2

0,k + ŵ2
L,k

]
=
T 2

2

(
1− 1

2
sup
m∈N

√
λmax(Cm)

) ∞∑
k=0

w2
0,k + w2

L,k

(2k + 1)π

=
T 2

4

(
1− 1

2
sup
m∈N

√
λmax(Cm)

) ∞∑
k=0

w2
0,k + w2

L,k
π
2

+ kπ

=
1

2

(
1− 1

2
sup
m∈N

√
λmax(Cm)

)(
‖w0‖2

[H
1/2
,0 (0,T )]′

+ ‖wL‖2

[H
1/2
,0 (0,T )]′

)
,

as stated. In both cases T ≤ L or T > L, the density of L2(Σ) in [H
1/2
,0 (Σ)]′ yields the

assertion.

Proposition 4.2 Numerical results indicate that

sup
m∈N

√
λmax(Cm) = 2− 4 sin2

(
π

2(n+ 1)

)
,

where n is given in (2.6). Indeed, for L = 1, T ∈ [1, 20] and m = 20000, the related results
are given in Figure 1. Then, the ellipticity estimate (4.1) becomes

aHT (w,w) = 〈HTV w,w〉Σ ≥ sin2

(
π

2(n+ 1)

)
‖w‖2

[H
1/2
,0 (Σ)]′

for all w ∈ [H
1/2
,0 (Σ)]′, (4.2)

where the ellipticity constant is the same as in (2.7), and in (2.9), respectively. Hence, we
can think of (4.2) being an interpolation of the ellipticity estimates (2.7) and (2.9).

With the above results, we conclude unique solvability of the variational formulation
to find w ∈ [H

1/2
,0 (Σ)]′ such that

〈v,HTV w〉Σ = 〈v,HTg〉Σ for all v ∈ [H
1/2
,0 (Σ)]′, (4.3)

where g ∈ H
1/2
0, (Σ) is a given Dirichlet datum. Let Wh ⊂ [H

1/2
,0 (Σ)]′ be some boundary

element space, e.g., of piecewise constant basis functions, which are defined with respect to
some decomposition of the lateral boundaries {0} × (0, T ) and {L} × (0, T ), respectively.
The space-time Galerkin boundary element formulation of (4.3) is: Find wh ∈ Wh such
that

〈vh,HTV wh〉Σ = 〈vh,HTg〉Σ for all vh ∈ Wh.

When assuming w ∈ Hs(Σ) for some s ∈ [0, 1] and using standard arguments, e.g., [12],
we derive an a priori error estimate in the energy norm,

‖w − wh‖[H
1/2
,0 (Σ)]′

≤ c hs+
1
2 ‖w‖Hs(Σ).

Moreover, using an inverse inequality, we also obtain an error estimate in L2(Σ),

‖w − wh‖L2(Σ) ≤ c hs ‖w‖Hs(Σ). (4.4)
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)

Figure 1: Numerical evaluation of
√
λmax(Cm) for L = 1, T ∈ [1, 20], m = 20000.

5 Numerical results

Instead of the boundary integral equation (2.4) of the indirect approach, we consider, as
in [14], the boundary integral equation of the direct approach

V w = (
1

2
I +K)g on Σ, (5.1)

including the double layer boundary integral operator K on the right hand side. In this
case, the unknown w is the spatial normal derivative ∂nxu of the solution u of (2.1).

For a boundary element approximation, consider a decomposition of the lateral bound-
ary

Σ =

N0+NL⋃
i=1

τ i

into N0 + NL boundary elements τi with maximal mesh size h = maxi |τi|. Here, N0 is
the number of boundary elements for the boundary {0} × (0, T ) and NL is the number
of boundary elements for the boundary {L} × (0, T ). The conforming ansatz space of
piecewise constant functions

S0
h(Σ) := S0

h0
(0, T )× S0

hL
(0, T ) ⊂ [H

1/2
,0 (Σ)]′

is used to define an approximate solution wh ∈ S0
h(Σ). Then, the Galerkin discretization
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of (5.1) to find wh ∈ S0
h(Σ) such that

〈vh,HTV wh〉L2(Σ) = 〈vh,HT (
1

2
I +K)Qhg〉L2(Σ) for all vh ∈ S0

h(Σ) (5.2)

is equivalent to the global linear system

Vhw = g (5.3)

with the related system matrix Vh ∈ R(N0+NL)×(N0+NL), the right-hand side g ∈ RN0+NL

and the vector of unknown coefficients w ∈ RN0+NL of wh ∈ S0
h(Σ). Here, for an easier

implementation, we approximate the right-hand side g ∈ H1/2
0, (Σ) by Qhg, where Qh is the

L2 projection on the space of piecewise linear, continuous functions fulfilling homogeneous
initial conditions for t = 0. The assembling of the matrix Vh ∈ R(N0+NL)×(N0+NL) and
the right-hand side g ∈ RN0+NL , i.e., the realization of HT , is done as proposed in [19,
Subsection 2.2]. The integrals for computing the projection Qhg are calculated by using
high-order quadrature rules. The global linear system (5.3) is solved by a direct solver.

In the numerical examples, we consider the spatial domain Ω = (0, 3), i.e., L = 3, and
the time interval (0, 6), i.e., T = 6. The lateral boundaries {0} × (0, T ) and {L} × (0, T )
are discretized uniformly into N0 = NL = 2`+1 boundary elements each, ` = 3, 4, 5, . . . , 12.

In the first example, we consider the smooth solution

u1(x, t) =

{ 1
2

(t− x− 2)3(x− t)3 for x ≤ t ≤ 2 + x,

0 otherwise.

Due to w1 = ∂nxu1 ∈ H1(Σ) and using the error estimate (4.4), we expect a linear order
of convergence, as confirmed by the numerical results given in Table 1.

` N0 +NL ‖w1 − w1,h‖L2(Σ) eoc
3 32 4.48 –1
4 64 2.11 –1 1.09
5 128 1.04 –1 1.02
6 256 5.18 –2 1.01
7 512 2.59 –2 1.00
8 1024 1.29 –2 1.00
9 2048 6.47 –3 1.00

10 4096 3.23 –3 1.00
11 8192 1.62 –3 1.00
12 16384 8.09 –4 1.00

Table 1: Numerical results for the boundary element method (5.2) in the case w1 ∈ H1(Σ).

As a second example, we consider the singular solution

u2(x, t) =

{ 1

2
| sin(π(x− t))| for x ≤ t,

0 otherwise,

15



where we have w2 ∈ Hs(Σ) for s < 1
2
. Hence, using (4.4), we expect the reduced order 1

2

of convergence when considering the error in L2(Σ). This is confirmed by the numerical
results as given in Table 2.

` N0 +NL ‖w2 − w2,h‖L2(Σ) eoc
3 32 2.59 +0 0.34
4 64 1.75 +0 0.56
5 128 1.21 +0 0.53
6 256 8.45 –1 0.52
7 512 5.93 –1 0.51
8 1024 4.18 –1 0.51
9 2048 2.95 –1 0.50

10 4096 2.08 –1 0.50
11 8192 1.47 –1 0.50
12 16384 1.04 –1 0.50

Table 2: Numerical results for the boundary element method (5.2) in the case w2 ∈ Hs(Σ),
s < 1

2
.

6 Conclusions

In this note, we have shown that the single layer boundary integral operator of the wave
equation in one space dimension is elliptic in the energy space [H

1/2
,0 (Σ)]′, when composed

with some modified Hilbert transformation. This result corresponds to the well-known
ellipticity results for boundary integral operators related to second-order elliptic partial
differential equations. While this particular result is at this time restricted to the spatially
one-dimensional case, in the general case we were already able to establish a related inf-sup
stability condition [13] instead. Although this is already sufficient to do a numerical analysis
of related boundary element methods, it remains open whether we can prove ellipticity
also in the multi-dimensional case. It is obvious that we can extend this approach also to
the hypersingular boundary integral operator, and to the double layer boundary integral
operator. Ellipticity of boundary integral operators is an important ingredient in the a
priori and a posteriori error analysis of boundary element methods, in the construction
of appropriate preconditioners, and in the coupling with finite element methods. It goes
without saying that this proposed new approach requires more work in the numerical
analysis, and in the implementation of the proposed scheme, including the composition of
the single layer boundary integral operator and the modified Hilbert transformation, which
are both non-local. Nevertheless, this work may give some more insight into the numerical
analysis of existing boundary element methods for the wave equation, and it presents an
alternative approach for a reliable and efficient numerical solution of the wave equation.
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