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Program

Thursday, October 8, 2020
15.00 Coffee
16.30 Opening
16.40–17.10 M. Multerer (Lugano)

Shape uncertainties in electrocardiology
17.10–17.40 J. Dölz (Bonn)

A higher order perturbation approach for electromagnetic scattering
problems on random domains

17.40–18.00 Break
18.00–18.30 C. Özdemir (Graz)

A stochastic boundary element method for the wave equation in 3D
18.30 Dinner

Friday, October 9, 2020
8.00–9.00 Breakfast
9.00–9.30 M. Zank (Wien)

Space–time variational formulations and their discretisations for the
wave equation

9.30–10.00 C. Urzúa–Torres (Delft)
A new approach to time domain boundary integral equations for the
wave equation

10.00–10.15 Break
10.15–10.45 R. Watschinger (Graz)

A parallel FMM for space–time boundary element methods for the
heat equation: Concept and first results

10.45–11.15 M. Merta, J. Zapletal
Implementation of boundary element integration schemes for the heat
equation in 3D

11.15–11.30 Break
11.30–12.00 P. Marchand (Bath)

Applying GMRES to Helmholtz boundary integral equations: how do
the number of iterations depend on the frequency in the presence of
strong trapping

12.00–12.30 M. Averseng (Zürich)
Preconditioners for integral equations on screens

12.30 Lunch
15.30 Coffee
16.00–16.30 G. Of (Graz)

A finite element approximation of non-local electrostatics
16.30–17.00 R. Brügger (Basel)

On the solution of a time–dependent inverse shape identification
problem for the heat equation

17.00–17.15 Break
17.15–17.45 H. Yang

A space–time finite element method for the inverse estimates of the
initial condition for the heat equation

17.45–18.15 P. Panchal (Zürich)
Adaptive shape representation

18.30 Dinner



Saturday, October 10, 2020
8.00–9.00 Breakfast
9.00–9.30 W. L. Wendland (Stuttgart)

Boundary integral equations for scattering by a perfect electrical
conductor

9.30–10.00 M. Kirchhart (Aachen)
Div–curl problems and stream functions in 3D Lipschitz domains

10.00–10.15 Break
10.15–10.45 H. Gimperlein (Edinburgh)

High order TDBEM for the Lame equation
10.45–11.15 I. Labarca (Zürich)

Acoustic scattering with convolution quadrature and the method
of fundamental solutions

11.15–11.30 Break
11.30–12.00 J. Tibaut (Graz)

Fast boundary–domain integral method with the H2–matrix for
numerical analysis

12.00–12.30 G. Unger (Graz)
Convergence analysis of coupled finite and boundary element methods
for electromagnetic scattering–resonance problems

12.30 Lunch
13.30–18.00 Hiking Tour
18.30 Dinner

Sunday, October 11, 2020
8.00–9.00 Breakfast
9.00–9.30 H. Harbrecht (Basel)

A wavelet–based approach for the optimal control of non–local
operator equations

9.30–10.00 O. Steinbach (Graz)
Boundary integral equations for the heat equation revisited

10.00–10.30 Coffee
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Preconditioners for integral equations on screens

M. Averseng1, F. Alouges2

1ETH Zürich, Switzerland, 2Ecole Polytechnique, Palaiseau, France

This work is concerned with the integral equations arising from the resolution of the Helmholtz
scattering problems by a thin screen in 2D with Dirichlet or Neumann conditions, namely the
single-layer and hypersingular integral equations

V λ = f in H1/2(Γ), Wµ = g in H−1/2(Γ).

We focus on the case where Γ is a smooth Jordan curve in R
2 (in particular, not a Lipschitz

domain). The singularity of the geometry raises two main issues.
Singularity of the solutions:

The solutions λ and µ have edge singularities, making them unsuited to approximation by piecewise
polynomials. In fact, if f and g are smooth, it is known that there exist smooth functions α and
β such that

λ =
α

ω
, µ = ωβ

where ω(x) =
√

d(x, ∂Γ) is the square root of the distance to the edges of Γ. It is well-known that

choosing a uniform mesh in the Galerkin method results in O(
√
h) convergence rate only.

Ill-conditioned linear systems:

The first-kind integral equations notoriously lead to ill-conditioned linear systems. For non-Lipschitz
geometries, the popular Calderón preconditioning technique is no longer optimal due to the duality
mismatch (H1/2(Γ))′ 6= H−1/2(Γ).
Here we present an approach that overcomes both difficulties (convergence and conditioning) at
the same time. As in the work of Bruno and Lintner we consider weighted versions of the layer
potentials, namely

Vω : ϕ 7→ V
(ϕ

ω

)

, Wω : ϕ 7→ W (ωϕ).

Those weighted layer potentials are known to satisfy a Calderón-type identity, generalizing the
situation that occurs in smooth geometries, so that optimal preconditioning can be achieved in this
setting by simply composing the two operators. Here, we propose an alternative approach, which
generalizes the analytical preconditioning method of Darbas and Antoine by introducing a symbolic
calculus on the screen and creating parametrices for the layer potentials. We obtain ”quasi-sparse”
preconditioners. We provide numerical results illustrating the efficiency of the preconditioners.
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On the Solution of a Time-dependent Inverse Shape Identification Problem for the

Heat Equation

Rahel Brügger

Universität Basel, Switzerland

In the talk, we treat the solution of a time-dependent shape identification problem. We specifi-
cally consider a heat-type equation on a domain, which contains a star-shaped inclusion of zero
temperature. We aim at detecting this time-dependent inclusion by measuring the heat flux on
the exterior boundary of the domain. Reformulation by using a Neumann data tracking functio-
nal leads to a time-dependent shape optimization problem, for which a gradient based method is
considered. Numerical examples will be discussed. This is joint work with Helmut Harbrecht and
Johannes Tausch.
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A higher order perturbation approach for electromagnetic scattering problems on

random domains

Jürgen Dölz

We consider time-harmonic electromagnetic scattering problems on perfectly conducting scatterers
with uncertain shape. Thus, the scattered field will also be uncertain. Based on the knowledge of
the two-point correlation of the domain boundary variations around a reference domain, we derive
a perturbation analysis for the mean of the scattered field. Therefore, we compute the second shape
derivative of the scattering problem for a single perturbation. Taking the mean, this leads to an at
least third order accurate approximation with respect to the perturbation amplitude of the domain
variations. To compute the required second order correction term, a tensor product equation on
the domain boundary has to be solved. We discuss its discretization and efficient solution using
boundary integral equations. Numerical experiments in three dimensions are presented.
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High-order TDBEM for the Lame equation

H. Gimperlein

Heriot-Watt University, Edinburgh, UK

We present h, p and hp-versions of the time domain boundary element method for the time
dependent Lame equation. We particularly discuss problems in polygonal domains or outside an
open curve, where the solution exhibits singularities at the corners. For the h-version, graded
meshes are shown to lead to optimal approximation rates for the numerical solution. For an open
curve the p-version converges at twice the rate of the h-version. The hp-version exhibits exponential
convergence. Numerical experiments illustrate the theory in 2d. (joint with A. Aimi, G. Di Credico,
C. Guardasoni and E. P. Stephan)
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A wavelet-based approach for the optimal control of non-local operator equations

Helmut Harbrecht

Universität Basel, Switzerland

The purpose of this study is to propose a wavelet-based approach for the optimal control of a class
of non-local equations. Namely, we consider a quadratic cost functional where the state equation
involves the fractional Laplace operator in integral form. When discretizing this non-local operator
with standard finite element basis functions, one arrives at a densely populated system matrix.
This imposes serious obstructions to the efficient numerical treatment of such problems. Therefore,
we use a wavelet basis for discretizing the state equation and apply wavelet matrix compression to
arrive at a solver that has linear complexity. In particular, we show how to include box constraints
to the optimal control.
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Div-Curl Problems and Stream Functions in 3D Lipschitz Domains

Matthias Kirchhart1, Erick Schulz2

1RWTH Aachen, Germany, 2ETH Zürich, Switzerland

We consider the following problem: given a bounded Lipschitz domain Ω ⊂ R
3 and given a vorticity

field F, find the velocity U ∈ L2(Ω) such that:

{

curlU = F,

divU = 0.

Moreover, to enforce the divergence constraint exactly, it would be desirable to represent the
solution in terms of a vector potential (or stream function) A as U = curlA.
This problem naturally arises when studying the incompressible Navier–Stokes equations in their
vorticity formulation and is of great practical interest in so-called vortex methods.
Last year preliminary results on this problem were presented. Important questions, however, had
to be left open:

• What are the correct spaces and boundary conditions?

• What exact conditions does F need to fulfil?

• How to construct a stream function A of maximum regularity, given only F and boundary
data?

In this talk we present complete answers to the first two ¡questions. Our solution for the third
problem can be efficiently implemented on computers and relies on boundary integral formulations.
It yields stream functions of higher regularity than the previous approaches. Except for certain
special cases, these functions have the highest possible regularity.
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Acoustic Scattering with Convolution Quadrature and the Method of Fundamental

Solutions

I. Labarca

Seminar für Angewandte Mathematik, ETH Zürich, Switzerland

Time-domain acoustic scattering problems in two dimensions are studied. The numerical scheme
relies on the use of the Convolution Quadrature (CQ) method to reduce the time domain pro-
blem to the solution of frequency domain Helmholtz equations with complex wavenumbers. These
equations are solved with the method of fundamental solutions (MFS), which approximates the
solution by a linear combination of fundamental solutions defined at source points inside (outside)
the scatterer for exterior (interior) problems. Numerical results show that the coupling of both
methods works efficiently and accurately for multistep and multistage based CQ.
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Applying GMRES to Helmholtz boundary integral equations: how do the number of

iterations depend on the frequency in the presence of strong trapping?

P. Marchand, A. Spence, E. A. Spence

Department of Mathematical Sciences, University of Bath, UK

We are interested in solving scattering problems with strong trapping using the Combined Field
Integral Equation (CFIE) and the Generalized Minimal Residual method (GMRes). In this talk,
we show a new understanding of how the number of GMRes iterations depends on frequency in
this situation.
The non-normal nature of CFIE makes GMRes the iterative method of choice for solving linear
systems stemming from its discretisation. GMRes has the advantage of being able to solve any
non-singular linear system, in particular non-normal. But the convergence analysis becomes less
straightforward in this case, because it requires more information than just the spectrum. Bounds
for GMRes applied to non-normal matrices can be derived using condition number of eigenvalues,
numerical range or pseudo-spectrum [2, 3].
But in the case of trapping, an additional difficulty comes from the solution operator whose norm
grows exponentially through a sequence of frequencies tending to infinity, with the density of these
“bad” frequencies increasing as the frequency increases. In this case, the spectrum of the associated
matrix has the form of a cluster with outliers near the origin. Following [1] where matrices with
similar spectra are studied, we provide a new analysis of the GMRes convergence taking into
account this particular distribution.

[1] S. L. Campbell, I. C. F. Ipsen, C. T. Kelley, C. D. Meyer: GMRES and the minimal poly-
nomial. Oxford University Computing Laboratory, 1999.

[2] M. Embree: How descriptive are GMRES convergence bounds? BIT Numerical Mathematics,
1996.

[3] J. Liesen, P. Tichý: Convergence analysis of Krylov subspace methods. GAMM Mitteilungen,
2004.
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Implementation of boundary element integration schemes

for the heat equation in 3D

G. Of1, M. Merta2, R. Watschinger1, J. Zapletal2

1TU Graz, Austria, 2TU VSB Ostrava, Czech Republic

Space-time methods have attracted a lot of attention in the last couple of years. Similarly as in
the case of stationary problems, the space-time boundary element method (BEM) reduces the
dimensionality of the problem at the cost of dealing with singular integral operators. In the talk
we focus on one of the approaches to assemble boundary element matrices stemming from the
discretisation of boundary integral equations for the heat equation in three spatial dimensions.
Namely, we concentrate on a semi-analytic scheme for tensor product meshes, where the temporal
integrals are treated analytically, and the remaining singularities are treated by the standard
numerical scheme known from stationary BEM. We conclude the talk with numerical experiments
and shortly comment on alternative regularization techniques.
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Shape uncertainties in electrocardiography

Michael Multerer
Universita della Svizzera italiana, Lugano, Switzerland

joint work with Lia Gander, Rolf Krause, and Simone Pezzuto

Electrocardiographic recordings on the body surface are a direct consequence of the electric ac-
tivity of the heart. In the forward problem of electrocardiography, the electric potential on the
chest is uniquely determined from the pericardial potential, the torso anatomy and the electric
conductivity. Conversely, in the inverse problem, or ECG imaging, the pericardial potential is
recovered from a dense body surface map and an accurate description of the torso anatomy. The
solution of both problems varies depending on the shape of the heart, which is typically segmented
from images and therefore subject to uncertainty. In this talk, we present a model for this shape
uncertainty and study its effect, both in space and time, on the forward and inverse problem of
electrocardiography. To this end, the problem is first recast into the boundary integral formulati-
on and then discretized by the collocation method. The space-time uncertainty in the potential is
assessed by computing expectation and variance using an anisotropic sparse quadrature method.
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A finite element approximation of non-local electrostatics

H. Egger1, G. Of2

1TU Darmstadt, Germany, 2TU Graz, Austria

We consider the non-local material response of a medium to applied electric fields in the form

D(x) = (ε ∗ E)(x) = ε0E(x) +

∫

Ω

ε1(x, y)E(y)dy.

In the presence of charges with density q, the dielectric displacement field D is given by the
Gauß-law of electrostatics

divD = q in Ω.

Due to absence of alternating magnetic fields, the electric field can be expressed by

E = −∇φ.

This results in the following boundary value problem for an integro-partial differential equation

−div (ε ∗ ∇φ) = q in Ω,

∂n,εφ+ αφ = 0 on ∂Ω,

We discuss a related finite element approximation and a data-sparse approximation of the volume
integral operator.
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A stochastic boundary element method for the wave equation in 3D

H. Gimperlein, F. Meyer, C. Özdemir

TU Gaz, Austria

We consider the wave equation in an unbounded domain in 3D, where the boundary condition
depends on a probability. We begin the talk by reviewing the wave equation with a space-time
boundary condition. We derive a variational formulation and use a tensor product ansatz. Then
we solve the resulting system with the marching-on-in time (MOT) scheme. Based on this idea, we
derive a variational formulation for stochastic boundary conditions via a polynomial chaos ansatz.
We present the resulting system in the stochastic space-time dimension and end the talk with
numerical experiments in 3D.
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Adaptive shape representation

P. Panchal

Seminar für Angewandte Mathematik, ETH Zürich, Switzerland

In this work we explore an adaptive method for approximation of shapes in regard to evaluation of
scalar valued shape functionals. The shapes are described by parameterizations and their closeness
is induced by a Hilbert space structure on the parameter domain. We justify a heuristic for finding
the best low-dimensional parameter subspace for uniformly approximating a given shape functional
around a reference shape. We also propose an adaptive algorithm to find an appropriate subspace
for achieving a prescribed approximation error.
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Boundary integral equations for the heat equation revisited

O. Steinbach

TU Graz, Austria

The numerical analysis of boundary integral equations and boundary element methods for the heat
equation is well established, see, e.g., [1] and [2] for an overview. In fact, the heat single layer boun-
dary integral operator V turns out to be elliptic in the anisotropic Sobolev space H−1/2,−1/4(Σ)
with Σ := ∂Ω× (0, T ) being the lateral boundary of the space time domain Q := Ω× (0, T ). While
in the case of the Laplace equation the ellipticity of the single layer boundary integral operator is
related to the ellipticity of the interior and exterior Dirichlet forms, this relation with a domain
variational formulation as used in finite element methods for the heat equation is not obvious.
This is of particular interest when considering the non–symmetric coupling of finite and boundary
element methods for the heat equation, see, e.g., [3,4] for a free space transmission problem for
the Poisson equation.

References

[1] M. Costabel: Boundary Integral Operators for the Heat Equation. Integral Equations and
Operator Theory 13 (1990) 498–552.

[2] S. Dohr, K. Niino, O. Steinbach: Space–time boundary element methods for the heat equa-
tion. In: Space–Time Methods. Applications to Partial Differential Equations, (U. Langer,
O. Steinbach eds.), Radon Series on Computational and Applied Mathematics, vol. 25, de
Gruyter, Berlin, pp. 1–60, 2019.

[3] F.-J. Sayas: The validity of Johnson–Nédélec’s BEM-FEM coupling on polygonal interfaces.
SIAM J. Numer. Anal. 47 (2009) 3451–3463.

[4] O. Steinbach: A note on the stable one–equation coupling of finite and boundary elements.
SIAM J. Numer. Anal. 49 (2011) 1521–1531.
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Fast boundary-domain integral method with the H2-matrix for numerical analysis

J. Ravnik1, M. Schanz2, J. Tibaut2

1Faculty of Mechanical Engineering, University of Maribor, Slovenia
2Institut für Baumechanik, TU Graz, Austria

The Boundary Element Method (BEM) can be employed as an alternative numerical method for
FEM and FVM. BEM is based on the Green’s second identity. However, the method can only be
employed when the fundamental solution of the partial differential equation is known. For partial
differential equations that have a source or a convective part the fundamental solution is mostly
not known. Thus, the Boundary-Domain Integral Method (BDIM) is employed. Portillo [1] showed
a diffusion equation for inhomogeneous media with the BDIM. Verhnjak et al. [4] presented a novel
two-way coupled model for the Euler-Lagrange simulation of a multiphase fluid flow. The BDIM
has a computational complexity of O(N2). Sellountos [2] used the FMM and Tibaut and Ravnik
[3] the ACA, to solve the incompressible fluid flow with the BDIM. We approximate the kernel
with the H2-matrix formulation and observe the influence of the approximation on the solution of
the modified Helmholtz equation.

References

[1] C. Fresneda-Portillo: Boundary-domain integral equations for the diffusion equation in in-
homogeneous media based on a new family of parametrices. Complex Variables and Elliptic
Equations 65 (2019) 558–572.

[2] E. J. Sellountos: A single domain velocity-vorticity Fast Multipole Boundary Domain Ele-
ment Method for three dimensional incompressible fluid flow problems, part II. Engineering
Analysis with Boundary Elements 114 (2020) 74–93.

[3] J. Tibaut, J. Ravnik: Fast boundary-domain integral method for heat transfer simulations.
Engineering Analysis with Boundary Elements 99 (2019) 222–232.

[4] O. Verhnjak, M. Hriberšek, P. Steinmann, J. Ravnik: A novel two-way coupling model for
Euler-Lagrange simulations of multiphase flow. Engineering Analysis with Boundary Ele-
ments 119 (2020) 119–132.
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Convergence analysis of coupled finite and boundary element methods for

electromagnetic scattering-resonance problems

G. Unger

TU Graz, Austria

In this talk we present a convergence analysis of coupled finite and boundary element methods for
electromagnetic scattering-resonance problems. We consider a so-called symmetric formulation of
the resonance problem which is based on a coupling of a weak formulation of Maxwell’s equations
inside the scatterer with the Calderón projector for Maxwell’s equations outside the scatterer. For
the related source problem this kind of formulation and its discretization was already analyzed
in [1]. It was shown that for positive frequencies and positive material parameters this kind of
formulation for the source problem is weakly T-coercive and that a discretization with Nedelec
elements inside the scatterer together with Raviart-Thomas boundary elements on the surface
of the scatterer yields quasi-optimal convergence. We extend these results with respect to the
weak T-coercivity to complex-valued frequencies and to complex-valued material parameters by
introducing a frequency and material dependent operator T. The convergence of the Galerkin
approximation of the resonance problem is shown by combing recent results on the regular ap-
proximation of weakly T-coercive operators [2, 5] with classical results on the approximation of
eigenvalue problems for holomorphic Fredholm operator-valued functions [3, 4].

References

[1] R. Hiptmair: Coupling of finite and boundary elements in electromagnetic scattering. SIAM
J. Numer. Anal. 41 (2003) 919–944.

[2] M. Halla: Analysis of radial complex scaling methods for scalar resonance problems in open
systems. PhD thesis, TU Vienna, 2019.

[3] O. Karma: Approximation in eigenvalue problems for holomorphic Fredholm operator func-
tions. I. Numer. Funct. Anal. Optim. 17 (1996) 365–387.

[4] O. Karma: Approximation in eigenvalue problems for holomorphic Fredholm operator func-
tions. II. Numer. Funct. Anal. Optim. 17 (1996) 389–408.

[5] G. Unger: Convergence analysis of a Galerkin boundary element method for electromagnetic
resonance problems. Submitted, 2020.
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A New Approach to Time Domain Boundary Integral Equations for the Wave

Equation

Carolina Urzúa-Torres1, Olaf Steinbach2

1Delft Institute of Applied Mathematics, Delft University of Technology, Netherlands
2Institute of Applied Mathematics, Graz University of Technology, Austria

Different strategies have been used to derive variational methods for time domain boundary in-
tegral equations for the wave equation. The more established and succesful ones include weak
formulations based on the Laplace transform, and also time-space energetic variational formulati-
ons. However, their corresponding numerical analyses are still incomplete and present difficulties
that are hard to overcome, if possible at all.
In this talk, we present a new approach to formulate the boundary integral equations for the
wave equation. Moreover, we discuss new results that pave the way for developing the missing
mathematical analysis for space-time boundary element methods.
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A parallel FMM for space-time boundary element methods for the heat equation:

Concept and first results

M. Merta1, G. Of2, R. Watschinger2

1VŠB TU Ostrava, Czech Republic, 2TU Graz, Austria

Space-time methods deal with the numerical solution of time-dependent partial differential equa-
tions in space and time as a whole. While this increases the computational effort it allows in
particular for parallelism in space and time. In this talk we present a strategy for the paralleliza-
tion of fast space-time boundary element methods for the heat equation.
The considered fast method (FMM) relies on a hierarchical approximation of the boundary ele-
ment system matrix based on a clustering of the space-time boundary into axis-parallel space-time
clusters. We collect clusters sharing the same temporal component and use this grouping in ti-
me to distribute the work among computational nodes. The hierarchical approximation enforces
a somewhat sequential execution order of the FMM operations. Nonetheless, we can efficiently
parallelize it by considering a task-based execution strategy where operations are executed when
their dependencies are satisfied.
The parallelization concept is presented by means of a simple 1D model problem, which comprises
the main ideas of the actual 3+1D case. In addition, first results of the solution of initial boundary
value problems of the heat equation in 3+1D are shown.
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Boundary integral equations for scattering by a perfect electrical conductor

G. C. Hsiao1, W. L. Wendland2
1University of Delaware, USA, 2Universität Stuttgart, Germany

This is a lecture on the existence proof of the ”EFIE” by Buffa, Costabel, Schwab and Buffa,
Hiptmaier, Petersdorff, Schwab.
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A space-time finite element method for inverse estimates of the initial condition for

the heat equation

O. Steinbach1, H. Yang2

1TU Graz, Austria, 2RICAM, Linz, Austria

In this talk, we will present some numerical results for the inverse estimates of the initial data for
the heat equation. This kind of inverse problems are formulated as optimal control of parabolic
equations in the space-time domain. In this setting, the control is taken as initial condition and
the observed data as target. The objective is a standard terminal observation functional including
the Tikhonov regularization.
For such space-time optimal control problems, we then derive the first order necessary optimality
system including the state and co-state as unknowns. This system is then discretized by a Galerkin-
Petrov space-time finite element method proposed by O. Steinbach, 2015.
In real applications, the target at the observation time T usually contains certain noise, measured
by the so-called noise level δ. Under such circumstances, we can only fit the terminal data in a
chosen norm up to such a level δ at the best. Therefore, depending on the noise level, one needs
to evaluate the optimal regularization parameter ̺. This evaluation requires solving a nonlinear
equation by Newton’s method.
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Space-time variational formulations and their discretisations for the wave equation

M. Zank

Universität Wien, Austria

For the discretisation of time-dependent partial differential equations, the standard approaches
are explicit or implicit time stepping schemes together with finite element methods in space.
An alternative approach is the usage of space-time methods, where the space-time domain is
discretised and the resulting global linear system is solved at once. In any case, CFL conditions
play a decisive role for stability. In this talk, the model problem is the scalar wave equation.
First, a brief overview of known results for the wave equation is presented. Second, space-time
formulations are motivated and discussed. Additionally, numerical examples for a one-dimensional
spatial domain and a two-dimensional spatial domain are presented.
The talk is based on joint work with O. Steinbach (TU Graz).
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