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ABSTRACT
The Hilbert transform H is a useful tool in the mathematical analysis of time-
dependent partial differential equations in order to prove coercivity estimates in
anisotropic Sobolev spaces in case of a bounded spatial domain Ω, but an infinite
time interval (0,∞). Instead, a modified Hilbert transform HT can be used if we
consider a finite time interval (0, T ). In this note we prove that the classical and the
modified Hilbert transformations differ by a compact perturbation, when a suitable
extension of a function defined on a bounded time interval (0, T ) onto R is used. This
result is important when we deal with space-time variational formulations of time-
dependent partial differential equations, and for the implementation of related space-
time finite and boundary element methods for the numerical solution of parabolic
and hyperbolic equations with the heat and wave equations as model problems,
respectively.

KEYWORDS
Hilbert transform; modified Hilbert transform; compact perturbation

Dedicated to Wolfgang L. Wendland on the occasion of his 85th birthday.

1. Introduction

The Hilbert transform H, see, e.g., [6] for an introduction, has many applications not
only in signal processing [5], but also for the solution of singular integral equations
and of Riemann–Hilbert problems [10]. There is also a strong relationship between the
Hilbert transform and the definition of fractional derivatives, see [2] and the references
given therein.

Despite of the above mentioned applications, more recently, the Hilbert transform
became a useful tool in the analysis of time-dependent partial differential equations.
In his doctoral thesis [4], M. Fontes used the Hilbert transform to analyse parabolic
evolution equations, e.g., the heat equation ∂tu − ∆xu = f with zero initial and
Dirichlet boundary conditions, in anisotropic Sobolev spaces with respect to a bounded
spatial domain Ω ⊂ Rn, n = 1, 2, 3, but an infinite time interval (0,∞). The numerical
analysis of a related discretization scheme using wavelets was then considered in [7],
where an appropriate cut off of the infinite time interval has been included. In fact,
using the Hilbert transformH one can prove boundedness and coercivity in anisotropic
Sobolev spaces H1,1/2(Ω× R+), when considering the space-time bilinear form which
is related to the transformed operator (I + δH)(∂t −∆x), δ > 0. For a more general
setting, see also [1].
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In [12], and for a finite time interval (0, T ), we have introduced a modified Hilbert
transform HT . Its original definition was using the conjugate of a Fourier series with
respect to the eigenfunctions of the one-dimensional Laplace operator with mixed
Dirichlet and Neumann boundary conditions. The duality pairing of the first order time
derivative with this modified Hilbert transform then results in a norm representation
〈∂tv,HT v〉(0,T ) = ‖v‖2H1/2(0,T ) for functions v ∈ H1/2(0, T ) which are zero at the origin,

v(0) = 0. With this we were able to analyse space-time finite element methods for the

heat equation in anisotropic Sobolev spaces H
1,1/2
0;0, (Q) in the case of a bounded space-

time domain Q := Ω × (0, T ) with zero initial and Dirichlet boundary conditions. In
particular, we have considered the transformed operator H−1T (∂t−∆x) in the case of a
finite time interval (0, T ). A comparison with the infinite time interval (0,∞) indicates
a relation H−1T ∼ I+δH which should also include some suitable extension from (0, T )
onto R.

Surprisingly, the modified Hilbert transformHT can also be used for the formulation
of space-time finite element methods for the numerical solution of the wave equation
with the D’Alembert operator � := ∂tt − ∆x. It turns out that the related bilinear
form

a(v, v) = 〈HT∂tv, ∂tv〉L2(Q) + 〈∇xv,HT∇xv〉L2(Q)

is positive in H1,1
0;0,(Q), i.e., zero initial and Dirichlet boundary conditions; see [8] for

first numerical results. In the case of the spatially one-dimensional wave equation, the
composition of the modified Hilbert transform HT and the wave single layer boundary
integral operator becomes elliptic in the natural Sobolev trace space H−1/2(Σ), where
Σ is the lateral boundary of the space-time domain Q, see [11]. On the other hand,
recent work of M. Costabel and M. Zank shows coercivity of the wave single layer
boundary integral operator on screens, composed with the classical Hilbert transform
I −H in the infinite time interval, see [3].

The aim of this note is to provide a relation of the modified Hilbert transform HT
with the classical Hilbert transform H in order to be able to identify both in the
mathematical and numerical analysis of time-dependent problems in bounded time
intervals, where HT seems to be more appropriate. However, for a practical realisation,
the classical Hilbert transform H is probably simpler to implement. It turns out that
the classical and the modified Hilbert transformations differ by a compact perturbation
when extending a function defined on the bounded time interval (0, T ) onto R in a
suitable way. Note that in [9] we already used, in a naive way, an intermediate result,
namely H∞ instead of HT , to solve the heat equation in a finite time interval.

The remainder of this note is organised as follows: the definitions of the classical
Hilbert transform H and the modified Hilbert transform HT and some of their prop-
erties are summarized in Sections 2 and 3, respectively. The main results are given
in Section 4, where we first present an alternative representation of HT combining H
with a suitable extension from (0, T ) onto R, and a perturbation which turns out to
be compact. Finally we give some conclusions and comment on ongoing work.
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2. Hilbert transform

For a sufficient regular density function ϕ, the Hilbert transformH is defined as Cauchy
principal value integral

(Hϕ)(t) =
1

π
p.v.

∫
R

ϕ(s)

t− s
ds for t ∈ R. (1)

It is well known that the Hilbert transform (1) commutes with the (fractional) deriva-
tive, i.e.,

Dα(Hϕ)(t) = H(Dαϕ)(t), (2)

see, e.g., [2, Lemma 2.4] in the case α = k ∈ N, and [2, Folgerung 5.21] in the case
α ∈ [n, n+ 1), n ∈ N for the Riemann–Liouville partial derivative [2, p. 26]

(Dαϕ)(t) =
1

Γ(n+ 1− α)

dn+1

dtn+1

∫ t

−∞
(t− s)n−αϕ(s) ds .

In particular for ϕ ∈ L2(R) we also have [2, Lemma 2.3]

(H(Hϕ))(t) = −ϕ(t) for t ∈ R almost everywhere.

When introducing the Fourier transform as

F [ϕ](η) =
1√
2π

∫ ∞
−∞

ϕ(t) e−iηt dt,

there holds the signum rule

F [Hϕ](η) = (−i sgn η)F [ϕ](η) .

This relation is not only important to prove (2), but also in the proof of the coercivity
estimate of the wave single layer boundary integral operator as discussed in [3].

While we can easily consider (1) for functions ϕ with ϕ(s) = 0 for s < 0, we still
have to assume a suitable decay condition for ϕ(s) as s→∞. From a computational
point of view, one is therefore interested in the realisation of the Hilbert transform H
in a finite time interval (0, T ) for a continuous function ϕ when assuming ϕ(0) = 0,
but ϕ(T ) 6= 0. While we can define a continuous zero extension of ϕ for s < 0, this is
not obvious for s > T . However, in Section 4 we will describe a suitable extension of
ϕ from (0, T ) onto R, first by reflecting ϕ with respect to the final time T , and then
skew-reflecting the previous result with respect to the origin.
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3. A modified Hilbert transform

In [12], and for a finite time interval (0, T ), we have introduced a modified Hilbert
transform HT for ϕ ∈ L2(0, T ) as conjugate of the Fourier series

ϕ(t) =

∞∑
k=0

uk sin

((π
2

+ kπ
) t

T

)
, uk =

2

T

∫ T

0
ϕ(s) sin

((π
2

+ kπ
) t

T

)
ds, (3)

i.e.,

(HTϕ)(t) :=

∞∑
k=0

uk cos

((π
2

+ kπ
) t

T

)
, t ∈ (0, T ). (4)

Note that

ϕk(t) = sin

((π
2

+ kπ
) t

T

)
are the eigenfunctions of the one-dimensional Laplacian eigenvalue problem

−∂ttϕ(t) = λϕ(t) for t ∈ (0, T ), ϕ(0) = 0, ∂tϕ(t)|t=0 = 0.

For ϕ ∈ H1/2
0, (0, T ) :=

{
v ∈ H1/2(0, T ), v(0) = 0

}
we now conclude [12, Lemma 2.3]

∂tHTϕ = −H−1T ∂tϕ, (5)

which can be seen as the counterpart of (2). Moreover, the operator

−∂tHT : H
1/2
0, (0, T )→ [H

1/2
,0 (0, T )]′

is self-adjoint and elliptic, inducing an equivalent norm in H
1/2
0, (0, T ).

As discussed in [12], see also [13], we can conclude from (4) the closed representation

(HTϕ)(t) =
1

2T
p.v.

∫ T

0

[
1

sin
(
π
2
s−t
T

) +
1

sin
(
π
2
s+t
T

)] ϕ(s) ds for t ∈ (0, T ). (6)

In particular for T →∞, and assuming ϕ̃ ∈ L2(R+), this gives

(H∞ϕ̃)(t) =
1

π
p.v.

∫ ∞
0

ϕ̃(s)

s− t
2s

s+ t
ds for t ∈ (0,∞), (7)

which obviously shows a connection with the Hilbert transform (1). This relation will
be discussed in more detail in the next section.
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4. A relation between modified and classical Hilbert transformations

For a given ϕ ∈ L2(0, T ), let ϕ̃ be some extension on (0,∞) to be specified. Using

2s

(s− t)(s+ t)
=

1

s− t
+

1

s+ t

we can write (7) as

(H∞ϕ̃)(t) =
1

π
p.v.

∫ ∞
0

ϕ̃(s)

s− t
ds+

1

π
p.v.

∫ ∞
0

ϕ̃(s)

s+ t
ds for t ∈ (0,∞).

In the second integral we use the transformation s = −σ to obtain

1

π
p.v.

∫ ∞
0

ϕ̃(s)

s+ t
ds = − 1

π
p.v.

∫ 0

−∞

ϕ̃(−σ)

σ − t
dσ ,

and hence,

(H∞ϕ̃)(t) =
1

π
p.v.

∫ ∞
0

ϕ̃(s)

s− t
ds+

1

π
p.v.

∫ 0

−∞

−ϕ̃(−s)
s− t

ds = −(Hϕ)(t) (8)

follows, where we have used (1) for

ϕ(s) :=

{
ϕ̃(s) for s ∈ [0,∞),

−ϕ̃(−s) for s ∈ (−∞, 0).
(9)

For ϕ ∈ L2(0, T ) we now define

ϕ̃(s) :=


ϕ(s) for s ∈ (0, T ),

ϕ(2T − s) for s ∈ (T, 2T ),

0 for s ∈ (2T,∞),

(10)

and we consider

(H∞ϕ̃)(t) =
1

π
p.v.

∫ ∞
0

ϕ̃(s)

s− t
2s

s+ t
ds

=
1

π
p.v.

∫ T

0

ϕ(s)

s− t
2s

s+ t
ds+

1

π
p.v.

∫ 2T

T

ϕ(2T − s)
s− t

2s

s+ t
ds .

With the transformation σ = 2T − s, i.e., s = 2T − σ, we obtain

1

π
p.v.

∫ 2T

T

ϕ(2T − s)
s− t

2s

s+ t
ds =

1

π
p.v.

∫ T

0

ϕ(σ)

2T − σ − t
2(2T − σ)

2T − σ + t
dσ,
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and therefore,

(H∞ϕ̃)(t) =
1

π
p.v.

∫ T

0
ϕ(s)

[
1

s− t
2s

s+ t
+

1

2T − s− t
2(2T − s)
2T − s+ t

]
ds

=
1

π
p.v.

∫ T

0
ϕ(s)

[
1

s− t
+

1

s+ t
+

1

2T − s− t
+

1

2T − s+ t

]
ds

=
1

π
p.v.

∫ T

0
ϕ(s)

[
2T

(s− t)(2T − (s− t))
+

2T

(s+ t)(2T − (s+ t))

]
ds

follows. Hence we obtain

(Bϕ)(t) := (HTϕ)(t)− (H∞ϕ̃)(t) =

∫ T

0

[
k1(s, t) + k2(s, t)

]
ϕ(s) ds (11)

with the kernel functions, for s, t ∈ (0, T ),

k1(s, t) :=
1

2T

1

sin
(
π
2
s−t
T

) − 1

π

2T

(s− t)(2T − (s− t))
,

k2(s, t) :=
1

2T

1

sin
(
π
2
s+t
T

) − 1

π

2T

(s+ t)(2T − (s+ t))
.

Summarizing the above, we have shown the following result.

Lemma 4.1. For ϕ ∈ L2(0, T ) we find the alternative representation

(HTϕ)(t) = −(Hϕ)(t) + (Bϕ)(t), t ∈ (0, T ), (12)

of the modified Hilbert transform (6) when using (1) and (11), as well as

ϕ(s) :=



ϕ(s) for s ∈ (0, T ),

ϕ(2T − s) for s ∈ (T, 2T ),

−ϕ(−s) for s ∈ (−T, 0),

−ϕ(2T + s) for s ∈ (−2T,−T ),

0 else .

(13)

It remains to state some mapping properties of B when assuming ϕ ∈ L2(0, T ).

Lemma 4.2. For the operator B as defined in (11) there hold the bounds

‖Bϕ‖L2(0,T ) ≤
1

2
‖ϕ‖L2(0,T ), ‖∂tBϕ‖L2(0,T ) ≤

1

T

[
23

36

1

π
+

π

24

]
‖ϕ‖L2(0,T ) (14)

for all ϕ ∈ L2(0, T ).

Proof. Using the transformation x := (s− t)/T ∈ (−1, 1) for s, t ∈ (0, T ) we obtain

k1(s, t) =
1

πT

[
π
2

sin
(
π
2x
) − 2

x(2− x)

]
=:

1

πT
f(x), x ∈ (−1.1).
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With the transformation y := (s+ t)/T ∈ (0, 2) for s, t ∈ (0, T ) we also conclude

k2(s, t) :=
1

πT

[
π
2

sin
(
π
2 y
) − 2

y(2− y)

]
=

1

πT
f(y) .

Figure 1. Graphs of f(x) =
π
2

sin(π2 x)
− 2
x(2−x) (left) and g(x) = π

4

cos(π2 x)
sin2(π2 x)

+ 4
π

x−1
x2(2−x)2 (right).

From the behavior of the function f(x) for x ∈ (−1, 2), see the left graph in Fig. 1, we
then obtain

|k1(s, t)| ≤
1

π T

(
π

2
− 2

3

)
, |k2(s, t)| ≤

1

2π T
for (s, t) ∈ (0, T ),

i.e.,

|k1(s, t) + k2(s, t)| ≤
1

π T

[
π

2
− 1

6

]
≤ 1

2T
for (s, t) ∈ (0, T ).

With this,

|(Bϕ)(t)| ≤ 1

2T

∫ T

0
|ϕ(s)| ds ≤ 1

2
√
T
‖ϕ‖L2(0,T ),

i.e.,

|(Bϕ)(t)|2 ≤ 1

4T
‖ϕ‖2L2(0,T )

follows. Integration over t ∈ (0, T ) finally gives

‖Bϕ‖2L2(0,T ) ≤
1

4
‖ϕ‖2L2(0,T ).
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Moreover, we also consider

∂

∂t
k1(s, t) =

π

4T 2

cos
(
π
2
s−t
T

)
sin2

(
π
2
s−t
T

) +
2T

π

2(s− t)− 2T

(s− t)2(2T − (s− t))2

=
1

T 2

[
π

4

cos
(
π
2x
)

sin2
(
π
2x
) +

4

π

x− 1

x2(2− x)2

]
=:

1

T 2
g(x), x ∈ (−1, 1),

as well as

∂

∂t
k2(s, t) = − π

4T 2

cos
(
π
2
s+t
T

)
sin2

(
π
2
s+t
T

) − 2T

π

2(s+ t)− 2T

(s+ t)2(2T − (s+ t))2

= − 1

T 2

[
π

4

cos
(
π
2 y
)

sin2
(
π
2 y
) +

4

π

y − 1

y2(2− y)2

]
= − 1

T 2
g(y), y ∈ (0, 2).

From the behavior of the function g(x) for x ∈ (−1, 2), see the right plot in Fig. 1, we
then obtain

|∂tk1(s, t)| ≤
8

9πT 2
, |∂tk2(s, t)| ≤

1

T 2

(
π

24
− 1

4π

)
, s, t ∈ (0, T ),

i.e.,

|∂tk1(s, t) + ∂tk2(s, t)| ≤
1

T 2

[
23

36

1

π
+

π

24

]
, (s, t) ∈ (0, T ).

With this,

|∂t(Bϕ)(t)| ≤ 1

T 2

[
23

36

1

π
+

π

24

] ∫ T

0
|ϕ(s)| ds ≤ 1

T 3/2

[
23

36

1

π
+

π

24

]
‖ϕ‖L2(0,T ),

i.e.,

|∂t(Bϕ)(t)|2 ≤ 1

T 3

[
23

36

1

π
+

π

24

]2
‖ϕ‖2L2(0,T )

follows. Integration over t ∈ (0, T ) finally gives

‖∂tBϕ‖2L2(0,T ) ≤
1

T 2

[
23

36

1

π
+

π

24

]2
‖ϕ‖2L2(0,T ).

From (14) we immediately obtain that B : L2(0, T )→ H1(0, T ) is bounded, and since
H1(0, T ) is compactly embedded in L2(0, T ) we conclude that B : L2(0, T )→ L2(0, T )
is compact. With this we are now in a position to formulate the main result of this
note.
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Theorem 4.3. The modified Hilbert transform HT as given in (6) is a compact pertur-
bation of the Hilbert transform (1) applied to the reflection (13), i.e., for ϕ ∈ L2(0, T )
we have HTϕ = −Hϕ+Bϕ in L2(0, T ) .

5. Conclusions

The relation between the classical and the modified Hilbert transformations H and
HT provides a link between the coercivity results for the wave single layer boundary
integral operator as considered in [3] in the case of an unbounded time interval (0,∞),
and in [11] for a bounded time interval (0, T ). More general, this result may be help-
ful to prove coercivity estimates for time-dependent parabolic and hyperbolic partial
differential equations in bounded and unbounded time intervals, both for related do-
main bilinear forms and boundary integral operators. But also from a computational
point of view this result will be important. Following [9], we may replace the modified
Hilbert transform HT by the classical Hilbert transform H taking into account the
extension (13), since the latter is probably simpler to implement which is important
when considering completely unstructured simplicial meshes in space-time finite and
boundary element methods. Finally, and following [2], one may generalize the relations
and representations of the classical Hilbert transform and the fractional derivative to
the modified Hilbert transform, in particular when considering problems in finite time
intervals.
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