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Söllerhaus, 17.–20.10.2021

U. Langer, M. Schanz, O. Steinbach, W. L. Wendland (eds.)

Berichte aus dem
Institut für Angewandte Mathematik

Book of Abstracts 2021/15





Technische Universität Graz

19. Workshop on

Fast Boundary Element Methods in
Industrial Applications
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Program

Sunday, October 17, 2021
15.00 Coffee
16.30–17.00 Opening
17.00–17.30 S. Chandler–Wilde (Reading)

On the convergence of Galerkin BEM for classical 2nd kind boundary integral
equations in Lipschitz domains

17.30–18.00 M. Zank (Wien)
Coercive space-time single layer operator of the wave equation for flat objects

18.00–18.30 C. Urzua–Torres (Delft)
Calderon preconditioning for the heat equation over triangular meshes

18.30 Dinner
Monday, October 18, 2021

8.00–9.00 Breakfast
9.00–9.30 W. Wendland (Stuttgart)

Propagation of acoustic waves in a thermo-electro-magneto-elastic solid
9.30–10.00 M. Kohr (Cluj)

Layer potentials for the anisotropic Stokes system and applications
10.00–10.30 E. Spence (Bath)

Coercive second-kind boundary integral equations for the Laplace Dirichlet
problem on Lipschitz domains

10.30–11.00 Break
11.00–11.30 C. Schwab (Zürich)

Deep neural network BEM
11.30–12.00 M. Multerer (Lugano)

Data compression with samplets
12.00–12.30 R. von Rickenbach (Basel)

Isogeometric shape optimisation for scaffold structures
12.30 Lunch
15.00 Coffee
15.30–16.00 H. Gimperlein (Edinburgh)

Coupled finite and boundary elements for strongly nonlinear transmission
problems

16.00–16.30 G. Unger (Graz)
Coupled finite and boundary element methods for electromagnetic
scattering-resonance problems

16.30–17.00 M. Feischl (Wien)
Optimality of adaptive FEM-BEM coupling

17.00–17.30 Break
17.30–18.00 A. Buchau (Stuttgart)

Series expansions of spherical harmonics and their application to electric and
magnetic field problems

18.00–18.30 G. Di Credico (Parma)
ACA based acceleration of the energetic Galerkin BEM for 2D acoustic and
elastic wave propagation problems

18.30 Dinner



Tuesday, October 19, 2021
8.00–9.00 Breakfast
9.00–9.30 V. Nistor (Metz)

A Green function method for parabolic equations
9.30–10.00 G. Gantner (Amsterdam)

Adaptive space-time BEM for the heat equation
10.00–10.30 R. Watschinger (Graz)

A proof of an integration by parts formula for the bilinear form of the
hypersingular operator of the heat equation

10.30–11.00 Break
11.00–11.30 M. Merta (Ostrava)

Parallel implementation of the fast multipole method for the heat equation
11.30–12.00 P. Marchand (Bath)

High-frequency estimates on boundary integral operators for the Helmholtz
exterior Neumann problems

12.00–12.30 E. Schulz (Zürich)
First-kind boundary integral equations for Hodge-Dirac operators and the
trace de Rham complex

12.30 Lunch
13.30–18.00 Hiking Tour
18.30 Dinner

Wednesday, October 20, 2021
8.00–9.00 Breakfast
9.00–9.30 R. Hiptmair (Zürich)

Spurious quasi-resonances
9.30–10.00 H. Harbrecht (Basel)

Isogeometric multilevel quadrature for forward and inverse random
acoustic scattering

10.00–10.30 U. Langer (Linz)
Adaptive space-time finite element methods for parabolic optimal control
problems

10.30–11.00 O. Steinbach (Graz)
The Hilbert transformation
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Series expansions of spherical harmonics and their application to electric and
magnetic field problems

A. Buchau

Universität Stuttgart

Spherical harmonics and series expansions based on spherical harmonics are well-known functions
in physics and engineering disciplines. E.g. they are the solution of Schrödinger’s equation of the
hydrogen atom. Hence, especially in quantum mechanics, properties of these functions have been
studied and transformations of spherical harmonics due to a change of the coordinate system have
been developed. This has been lead among other things to the development of the Clebsch-Gordan
coefficients and the Wigner 3j-symbol. Another classical application of spherical harmonics is the
solution of boundary value problems described using the Poisson equation and a separation ap-
proach in spherical coordinates. Then, Green’s function of 3d Poisson’s equation is approximated
by a truncated series expansion based on spherical harmonics. In the case of static electric field
problems, the coefficients of this series expansion can be interpreted as multipoles. A combination
of series expansions of spherical harmonics and the transformations that have been introduced in
quantum mechanics results in the fast multipole method which is an established matrix compressi-
on technique for the boundary element method. Interestingly, spherical harmonics are a standard
tool to model magnetic fields in the context of the shimming of magnets for magnetic nuclear
resonance spectroscopy applications, too. There, spherical harmonics are used not in dependency
of spherical coordinates but directly in Cartesian coordinates.
Here, the historical development of spherical harmonics is revisited. Then, I put the focus on
some properties of the series expansions of spherical harmonics, especially I show numerically that
the terms of the series expansion of spherical harmonics depend on spherical coordinates but the
described function depends on Cartesian coordinates. For low order terms, I will show simple
closed-form expressions in Cartesian coordinates which are e. g. used for many years in magnet
shimming applications. Furthermore, a systematic error analysis of transformations of spherical
harmonics is shown exemplarily for the reversed multipole algorithm. Finally, I will summarize the
properties of spherical harmonics and will give an outlook to further applications of these powerful
functions for applications in electrical engineering.
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On the convergence of Galerkin BEM for classical 2nd kind boundary integral
equations in Lipschitz domains

S. Chandler-Wilde1, E. Spence2

1University of Reading, UK, 2University of Bath, UK

The classical second kind integral equations for problems in potential theory can be written in
operator form as Aφ = g or as A∗ψ = h, where A = 1

2I ± D, I is the identity operator, D
is the classical double-layer potential operator on the boundary Γ of the domain, and A∗ is the
L2(Γ) adjoint of A. Thanks to O. Steinbach and W. L. Wendland (J. Math. Anal. Appl., 2001)
D has essential norm < 1

2 as an operator on H1/2(Γ), which implies that Galerkin methods in

H1/2(Γ) and in H−1/2(Γ) converge for Aφ = g and A∗ψ = h, respectively. Long-standing open
questions (e.g., W. L. Wendland, ‘On the Double Layer Potential’, in Analysis, Partial Differential
Equations and Applications, Springer, 2009) are whether, at least in 2d, D has essential norm < 1

2
as an operator on L2(Γ), or whether, at any rate, the weaker property holds that A and A∗ are
the sum of coercive and compact operators as operators on L2(Γ). Summarising recent work by
the authors (arXiv:2105.11383, 2021) we present examples that show that this is not the case.
Precisely, we present examples, in 2d and 3d, of Lipschitz domains with Lipschitz constant one for
which, as an operator on L2(Γ), ‖D‖ess ≥ 1/2, and examples with Lipschitz constant two for which
D is not coercive plus compact. We also exhibit counterexamples that are starshaped polyhedra.
We show that this implies, for all these counterexamples, that there exist L2(Γ) Galerkin BEMs
that are not convergent.
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ACA based acceleration of the Energetic Galerkin BEM for 2D acoustic and elastic
wave propagation problems

A. Aimi, L. Desiderio, G. Di Credico

University of Parma, Italy

We consider acustic and elastic wave propagation problems in 2D unbounded domains, re-formulated
in terms of space-time Boundary Integral Equations (BIEs). For their numerical resolution, we em-
ploy a weak formulation depending on the energy of the system and we solve the related discretized
problem by a Galerkin Boundary Element Method (BEM). This approach founds its best applica-
tion in the study of external diffusion phenomena and is useful to overcome the instabilities rising
from the discretization of the standard weak formulation applied to this kind of integral problems
[1,2]. However, it is necessary to take into account that, when standard Lagrangian basis functions
are considered, the BEM matrices have time blocks that become in general fully populated, and
the overall memory cost of the energetic BEM is O(M2N), M and N being the number of grid
points chosen on the domain boundary and the total number of time steps performed, respectively.
This drawback prevents the application of such method to large scale realistic problems.
For this reason, our purpose is to provide a fast technique, based on the Adaptive Cross Appro-
ximation (ACA) [3], with which we get a low rank approximation of sufficiently large time blocks
of the energetic boundary element matrix, reducing drastically the number of the original entries
to be evaluated. This leads to a drop in the assembly time and in the memory storage require-
ments, which are generally relevant. Moreover, the consequent acceleration of the matrix/vector
multiplication together with a marching on time procedure, leads remarkable reduction of the
computational solution time. The effectiveness of the proposed method is theoretically proved and
several numerical results are presented and discussed.

References

[1] A. Aimi et al.: An energy approach to space-time Galerkin BEM for wave propagation
problems, IJNME 80 (2009) 1196–1240.

[2] A. Aimi et al.: Application of Energetic BEM to 2D Elastodynamic Soft Scattering Problems,
CAIM 10 (2019) 182–198.

[3] M. Bebendorf: Approximation of boundary element matrices, Numer. Math. 86 (2000) 565–
589.

5



Optimality of adaptive FEM-BEM coupling

M. Feischl

TU Wien, Austria

We propose a generalization of quasi-orthogonality which follows directly from the inf-sup stability
of the underlying problem. This completely removes a central technical difficulty in modern proofs
of optimal convergence of adaptive mesh refinement algorithms and leads to a simple optimality
proof of a finite-element/boundary-element discretization of an unbounded transmission problem.
The main technical tools are new stability bounds for the LU-factorization of matrices together
with a recently established connection between quasi-orthogonality and matrix factorization.
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Adaptive space-time BEM for the heat equation

G. Gantner, R. van Venetië

University of Amsterdam, The Netherlands

In this talk, which is based on our recent work [1], we consider the space-time boundary element
method [2,3] for the heat equation with prescribed initial and Dirichlet data. One often mentioned
advantage of simultaneous space-time methods is their potential for fully adaptive refinement
to resolve singularities local in both space and time. To this end, we propose a residual-type a
posteriori error estimator similar to [4,5] that is a lower bound and, up to weighted L2-norms of
the residual, also an upper bound for the unknown BEM error. The possibly locally refined meshes
are assumed to be prismatic, i.e., their elements are tensor-products J ×K of elements in time J
and space K. While the results do not depend on the local aspect ratio between time and space,
assuming the scaling |J | ' diam(K)2 for all elements and using Galerkin BEM, the estimator is
shown to be efficient and reliable without the a dditional L2-terms. In the considered numerical
experiments on two-dimensional domains in space, the estimator seems to be equivalent to the
error, independently of these assumptions. In particular for adaptive anisotropic refinement, both
converge with the best possible convergence rate.

References

[1] G. Gantner, R. van Venetië: Adaptive space-time BEM for the heat equation.
arXiv:2108.03055, 2021.

[2] D. N. Arnold, P. J. Noon: Boundary integral equations of the first kind for the heat equation.
In: Boundary elements IX, vol. 3, pp. 213–229, Springer, 1987.

[3] M. Costabel: Boundary integral operators for the heat equation. Integral Equations Operator
Theory 13 (1990) 498–552.

[4] B. Faermann: Localization of the Aronszajn-Slobodeckij norm and application to adaptive
boundary elements methods. Part I. The two-dimensional case. IMA J. Numer. Anal. 20
(2000) 203–234.

[5] B. Faermann: Localization of the Aronszajn-Slobodeckij norm and application to adaptive
boundary element methods. Part II. The three-dimensional case. Numer. Math. 92 (2002)
467–499.
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Coupled finite and boundary elements for strongly nonlinear transmission problems

H. Gimperlein1, M. Maischak2, E. P. Stephan3

1Heriot-Watt University, Edinburgh, UK
2Brunel University, Uxbridge, UK

3Leibniz Universität Hannover, Germany

This talk discusses the well-posedness and error analysis of coupled finite and boundary elements
for transmission or contact problems. Nonlinear operators like the scalar p-Laplacian or nonlinear
Hencky materials with an unbounded stress-strain relation arise in the modelling of ice sheets, non-
Newtonian fluids or porous media. We consider interface problems which couple such operators to
the linear Laplace equation, resp. linear elasticity, in the exterior. The exterior problem is redu-
ced to the boundary using a symmetric coupling formulation for the Poincare-Steklov operator.
We present a functional analytic framework for the numerical analysis of the resulting bounda-
ry/domain variational problem. A priori and a posteriori error estimates are obtained for Galerkin
approximations. Numerical experiments underline the theoretical results.
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Isogeometric multilevel quadrature for forward and inverse random acoustic
scattering

H. Harbrecht

Universität Basel, Switzerland

We study the numerical solution of forward and inverse acoustic scattering problems by randomly
shaped obstacles in three-dimensional space using a fast isogeometric boundary element method.
Within the isogeometric framework, realizations of the random scatterer can efficiently be com-
puted by simply up- dating the NURBS mappings which represent the scatterer. This way, we
end up with a random deformation field. In particular, we show that the knowledge of the de-
formation field’s expectation and covariance at the surface of the scatterer are already sufficient
to model the surface Karhunen-Loève expansion. Leveraging on the isogeometric framework, we
utilize multilevel quadrature methods for the efficient approximation of quantities of interest, such
as the scattered wave’s expectation and variance. Computing the wave’s Cauchy data at an artifi-
cial, fixed interface enclosing the random obstacle, we can also directly infer quantities of interest
in free space. Adopting the Bayesian paradigm, we finally compute the expected shape and the
variance of the scatterer from noisy measurements of the scattered wave at the artificial interface.
Numerical results for the forward and inverse problem are given to demonstrate the feasibility of
the proposed approach.
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Spurious quasi-resonances

R. Hiptmair1, A. Moiola2, E. A. Spence3

1ETH Zürich, Switzerland, 2University of Pavia, Italy, 3University of Bath, UK

We consider the Helmholtz transmission problem with piecewise-constant material coefficients,
and the standard associated direct boundary integral equations. For certain coefficients and geo-
metries, the norms of the inverses of the boundary integral operators grow rapidly through an
increasing sequence of frequencies, even though this is not the case for the solution operator of
the transmission problem; we call this phenomenon that of spurious quasi-resonances. We give
a rigorous explanation of why and when spurious quasi-resonances occur, and propose modified
boundary integral equations that are not affected by them.
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Layer potentials for the anisotropic Stokes system and applications

M. Kohr

The aim of this talk is to describe a layer potential theory in L2-based weighted Sobolev spaces
on Lipschitz bounded and exterior domains of Rn, n ≥ 3, for the anisotropic Stokes system with
L∞ elliptic viscosity tensor coefficient satisfying an ellipticity condition for symmetric matrices
with zero matrix trace. We explore equivalent mixed variational formulations and prove the well-
posedness of some transmission problems for the anisotropic Stokes system in Lipschitz domains
of Rn, with the given data in L2-based weighted Sobolev spaces. These results are used to define
the volume (Newtonian) and layer potentials and to obtain their properties. Then we analyze the
well-posedness of the exterior Dirichlet and Neumann problems for the anisotropic Stokes system
by representing their solutions in terms of the obtained volume and layer potentials. Boundary
value problems for the anisotropic Navier-Stokes system will be also discussed.
Joint work with Sergey E. Mikhailov (Brunel University London) and Wolfgang L. Wendland
(Stuttgart University).
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Adaptive space-time finite element methods for parabolic optimal control problems

U. Langer1, A. Schafelner1, O. Steinbach2, F. Tröltzsch3, H. Yang1

1Johannes Kepler Universität Linz, Austria, 2TU Graz, Austria, 3TU Berlin, Germany

We consider tracking-type optimal control problems constrained by linear parabolic partial dif-
ferential equations with distributed source control. Here, space-time finite element methods on
unstructured simplicial meshes are especially suited, since the reduced optimality system couples
two parabolic equations for the state and adjoint state that are forward and backward in time,
respectively. The analysis of the reduced optimality system and discretization error estimates are
based on Banach-Nec̆as-Babus̆ka-Aziz’s theorems. In contrast to time-stepping methods, one has
to solve one large-scale linear algebraic system of finite element equations the solution of which
provides continuous finite element approximations to the state and adjoint state in the whole space-
time cylinder at once. Full space-time adaptivity, parallelization, and matrix-free implementations
are very important techniques to overcome the increased memory requirement of space-time finite
element methods. Fast parallel solvers are another important ingredient of efficient space-time me-
thods. We first consider the standard L2 regularization, and then compare it with sparse optimal
control techniques and a new energy regularization. The numerical results confirm the conver-
gence rate estimates in the case of uniform refinement, the efficiency of the adaptivity procedure
proposed, and they clearly show the effects of different regularization techniques.
The space-time approach proposed in the talk can be extended to other optimal control problems
like partial control, boundary control, initial date control, partial observation, terminal observation,
but also to non-linear parabolic state equations and box constraints imposed on the control.
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High-frequency estimates on boundary integral operators for the
Helmholtz exterior Neumann problem

J. Galkowski1, P. Marchand2, E. A. Spence2

1University College London, UK, 2University of Bath, UK

We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz
exterior Neumann problem at high frequency, namely the Regularized Combined Field Integral
Equation (RCFIE) introduced in [1]. Writing Γ for the boundary of the obstacle, this integral
operator map L2(Γ) to itself, contrary to its non-regularized version.
We prove new frequency-explicit bounds on the norms of both the RCFIE and its inverse. The
bounds on the norm are valid for piecewise-smooth Γ and are sharp, and the bounds on the norm
of the inverse are valid for smooth Γ and are observed to be sharp at least when Γ is curved.
Together, these results give bounds on the condition number of the operator on L2(Γ); this is the
first time L2(Γ) condition-number bounds have been proved for this operator for obstacles other
than balls [2].

References

[1] O. Bruno, T. Elling, C. Turc: Regularized integral equations and fast high-order solvers
for sound-hard acoustic scattering problems. Internat. J. Numer. Methods Engrg. 91 (2012)
1045–1072.

[2] Y. Boubendir, C. Turc: Wave-number estimates for regularized combined field boundary
integral operators in acoustic scattering problems with Neumann boundary conditions. IMA
J. Numer. Anal. 33 (2013) 1176–1225.
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Parallel implementation of the fast multipole method for the heat equation

M. Merta1, G. Of2, R. Watschinger2, J. Zapletal1

1 TU VSB Ostrava, Czech Republic, 2TU Graz, Austria

In this talk we present a novel approach to the parallelization of the fast multipole method (FMM)
for a space-time boundary element method for the heat equation in three spatial dimensions. Our
approach employs a scheduler for the MPI-based distributed memory parallelization which takes
into account the special temporal structure of the involved operators. The original space-time
FMM is associated with a 1D temporal tree that is distributed among computing processes and
allows to group actual FMM operations in time. Moreover, a task-based shared memory paralle-
lization and SIMD vectorization is applied to fully leverage the computational power of modern
supercomputers. The presented numerical experiments demonstrate a high parallel efficiency of
the code up to hundreds of compute nodes.
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Data compression with samplets

M. Multerer

Universita della Svizzera italiana, Lugano, Switzerland

In this talk, we introduce the concept of samplets by transferring the construction of Tausch-
White wavelets to the realm of data. This way we obtain a multilevel representation of discrete
data which directly enables data compression, detection of singularities and adaptivity. Applying
samplets to represent kernel matrices, as they arise in kernel based learning or Gaussian process
regression, we end up with quasi-sparse matrices. By thresholding small entries, these matrices are
compressible to O(N logN) relevant entries, where N is the number of data points. This feature
allows for the use of fill-in reducing reorderings to obtain sparse factorizations of the compressed
matrices. Besides the introduction of samplets and the discussion of their properties, we present
numerical studies to benchmark the approach.
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A Green function method for parabolic equations

V. Nistor

Institut Élie Cartan de Lorraine, Metz, France

We propose a method to approximate the fundamental solution of a uniformly parabolic PDE on
euclidean space. We show how this approximation can be used for the approximation of the Initial
Value Problem for such a PDE. Joint work with Mazzucato.
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Isogeometric shape optimisation for scaffold structures

R. von Rickenbach

Universität Basel, Switzerland

The development of materials with specific structural properties is of huge practical interest, for
example, for medical applications or for the development of lightweight structures in aeronautics.
In this article, we combine shape optimisation and homogenisation for the optimal design of the
microstructure in scaffolds. Given the current microstructure, we apply the isogeometric boundary
element method to compute the effective tensor and to update the microstructure by using the
shape gradient in order to match the desired effective tensor. The deformation basis is constructed
via the Karhunen-Loève expansion of a covariance kernel, for instance, a Matérn kernel. Extensive
numerical studies are presented to demonstrate the applicability and feasibility of the approach.
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First-kind boundary integral equations for Hodge–Dirac operators and the trace de
Rham complex

E. Schulz

ETH Zürich, Switzerland

We develop novel first-kind boundary integral equations for Hodge–Dirac operators in Lipschitz
domains comprising square-integrable potentials and involving only weakly singular kernels. Ge-
neralized Garding inequalities are derived and we establish that the obtained boundary integral
operators are Fredholm of index zero. Their finite dimensional kernels are characterized and we
show that their dimension is equal to the number of topological invariants of the domain’s bounda-
ry, in other words to the sum of its Betti numbers. This is explained by the fundamental discovery
that the associated bilinear forms agree with those induced by surface Dirac operators for H−1/2

surface (de Rham) Hilbert complexes whose underlying inner-products are the non-local inner
products defined through the classical single-layer boundary integral operators for the Laplacian.
Decay conditions for well-posedness in natural energy spaces of the Dirac system in unbounded
exterior domains are also presented.
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Deep neural network BEM

C. Schwab

ETH Zürich, Switzerland

We introduce a Neural Network (NN for short) approximation architecture for the numerical
solution of BIEs. We adopt a Galerkin formulation with 1st kind BIEs on polygonal domains with
a finite number of straight sides. Trial spaces used in the Galerkin discretization of the BIEs are
built by using NNs that, in turn, employ the so-called Rectified Linear Units (ReLU).
The ReLU-NNs used to approximate the solutions to the BIEs depend nonlinearly on the para-
meters characterizing the NNs themselves. The computation of a numerical solution to a BIE by
means of ReLU-NNs boils down to a fine tuning of these parameters, in network training.
We argue that by using ReLU-NNs with various combinations of width and depth as Galerkin
trial spaces, one essentially recovers well-known approximation results for the standard Galerkin
Boundary Element Method (BEM). We propose to employ well-known a posteriori error estimators
to build local and efficiently computable loss functions to train the ReLU-NNs for the numerical
approximation of BIEs.
Exploratory numerical experiments validate our theoretical findings and indicate the viability of
the proposed ReLU-NN Galerkin BEM approach.
Joint work with F. Henriquez (EPFL) and R. Aylwin (UAI, Chile).
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Coercive second-kind boundary integral equations for the Laplace Dirichlet problem
on Lipschitz domains

S. Chandler-Wilde1, E. Spence2

12University of Reading, UK, 2University of Bath, UK

Recent work by the authors (arXiv:2105.11383, 2021), recapped in the talk by Simon Chandler-
Wilde, has show that there exists star-shaped Lipschitz polyhedra for which the boundary-integral
operators ± 1

2I+D and ± 1
2I+D′ (where D is the Laplace double-layer operator and D′ its adjoint)

cannot be written as the sum of a coercive operator and a compact operator in L2(Γ) (where Γ
is the boundary). This implies that, for these domains and operators, there exist non-convergent
Galerkin BEMs in L2(Γ).
A natural question is then: do there exist second-kind boundary-integral formulations in L2(Γ)
of Laplace’s equation where, with Γ only assumed to be Lipschitz, the operators are continuous,
invertible, and can be written as the sum of a coercive operator and a compact operator?
This talk answers this question in the affirmative for the Laplace interior and exterior Dirichlet
problems. We present new BIE formulations that are continuous and coercive (i.e., not just the
sum of a coercive and a compact operator) in L2(Γ), with Γ only assumed to be Lipschitz; thus
the Galerkin method in L2(Γ) converges for every asymptotically-dense sequence of subspaces.
Furthermore, the strong property of coercivity allows us to prove that if the Galerkin matrices are
preconditioned by a specified diagonal matrix, then the number of GMRES iterations required to
solve the associated linear systems to a prescribed accuracy does not increase as the discretisation
is refined and N increases; i.e., the new formulations exhibit the same conditioning properties as
the standard second-kind BIEs on L2(Γ) when Γ is C1.
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The Hilbert transformation

O. Steinbach

TU Graz, Austria

In [6,7] we have introduced a modified Hilbert transformation HT such that

〈∂tv,HT v〉(0,T ) = ‖v‖2
H

1/2
0, (0,T )

defines a norm for v ∈ H1/2(0, T ) with v(0) = 0. Using this modified Hilbert transformation we
were able to derive coercive space-time variational formulations not only for the heat equation
[6], but also for the wave equation [1,4,5,8]. While the application of the modified Hilbert trans-
formation may be replaced by the classical Hilbert transformation H [2], we will show that the
modified Hilbert transformation can be written as the classical one including a suitable extension
from (0, T ) onto R, with a compact perturbation [3].

References
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Coupled finite and boundary element methods for electromagnetic
scattering-resonance problems

G. Unger

TU Graz, Austria

In this talk we study the convergence of coupled finite and boundary element methods for electro-
magnetic scattering-resonance problems for dielectric and plasmonic scatterers and show numerical
results of the implementation using the open-source MATLAB toolbox Gypsilab [1].
We consider a so-called symmetric formulation of the resonance problem which is based on a coup-
ling of a weak formulation of Maxwell’s equations inside the scatterer with the Calderón projector
for Maxwell’s equations outside the scatterer. For the related source problem this kind of formulati-
on and its discretization was already analyzed in [2]. It was shown that for positive frequencies and
positive material parameters this kind of formulation for the source problem is weakly T-coercive
and that a discretization with Nedelec elements inside the scatterer together with Raviart-Thomas
boundary elements on the surface of the scatterer yields quasi-optimal convergence. We extend
these results with respect to the weak T-coercivity to complex-valued frequencies and to complex-
valued material parameters by introducing a frequency and material dependent operator T. The
convergence of the Galerkin approximation of the resonance problem is shown by combing recent
results on the regular approximation of weakly T-coercive operators [3,6] with classical results
on the approximation of eigenvalue problems for holomorphic Fredholm operator-valued functi-
ons [4,5]. Numerical experiments confirms the theoretical results.
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Calderón preconditioning for the heat equation over triangular meshes

C. Urzúa-Torres, D. Hoonhout

Delft University of Technology, Netherlands

In this talk, we report on two computational aspects of space-time boundary element methods
for the heat equation over triangular meshes. First, under certain assumptions over the mesh,
we compute the boundary element matrices using a semi-analytic integration scheme where the
temporal integrals are treated analytically, similarly to what is done when using tensor product
meshes. Then, we present Calderón preconditioning using the discretization proposed by Stevenson
and van Veneẗıe [1], instead of the classical primal-dual mesh approach. This offers the advan-
tage of having a duality coupling matrix which is diagonal and thus better suited for space-time
parallelization.
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A proof of an integration by parts formula for the bilinear form of the hypersingular
operator of the heat equation

R. Watschinger, G. Of

TU Graz, Austria

When considering the hypersingular boundary integral operator D in applications, one has to find
a way to evaluate the occurring integrals despite the strong singularity of the involved integral
kernel. In case of Galerkin methods there exist integration by parts formulas for a wide class of
PDEs which allow to represent the bilinear form induced by D by some weakly singular bilinear
forms. Also for the transient heat equation in three spatial and one temporal dimensions such
a formula is given in the literature, but a proof seemed to be missing. Moreover, the available
integration by parts formula contains an integral term involving the temporal derivative of the
fundamental solution of the heat equation, which is not integrable in the considered integration
domain. To fill these gaps, we provided a rigorous proof of the integration by parts formula and an
alternative representation of the mentioned integral term in [1]. In this talk we present the main
ideas of the proof and shortly discuss the new representation.
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Propagation of acoustic waves in a thermo-electro-magneto-elastic solid

G. C. Hsiao1, W. L. Wendland2

1University of Delaware, USA, 2Universität Stuttgart, Germany

We are concerned with a time–dependent transmission problem for a thermo–electric–magneto–
elastic solid immersed in an inviscid and compressible fluid. This problem can be treated by
a boundary–field equation method, provided an appropriate scaling factor is employed. Based
on estimates of variational solutions in the Laplace–transformed domain we obtain with explicit
inversions of the variational solution a convolutional form in the Laplace–transformed domain and
also the time–dependent representation.
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Coercive space-time single layer operator of the wave equation for flat objects

M. Costabel1, M. Zank2

1Université de Rennes 1, France, 2Universität Wien, Austria

The solution of the wave equation can be described by a single layer representation. First, an
overview of known results for this single layer representation and the boundary integral equations
for the wave equation is given. Second, in the case of a flat screen, a new approach is introduced.
For this purpose, we apply the Fourier transformation to the single layer operator with respect
to space and time. This leads to a Fourier representation of the single layer operator. Further,
this Fourier representation motivates to apply the (classical) Hilbert transformation to the single
layer operator. Summing up both components and introducing new space-time Sobolev spaces,
this approach leads to a coercive and continuous single layer operator. Finally, properties of these
new space-time Sobolev spaces and the single layer operator in these spaces are given.
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