Magnetic Schrödinger operators with electric δ-potentials

Markus Holzmann

Graz University of Technology
Schrödinger operators and boundary value problems, Graz, April 24, 2017

Outline

1. Motivation
2. Magnetic Schrödinger operators with δ-potentials

- The magnetic Schrödinger operator without potential
- Magnetic Sobolev spaces
- Definition of the δ-operator

3. Approximation by Hamiltonians with squeezed potentials
4. Exner-Ichinose for homogeneous magnetic fields
5. A quasi boundary triple
6. Outlook

Outline

1. Motivation

2. Magnetic Schrödinger operators with δ-potentials

- The magnetic Schrödinger operator without potential
- Magnetic Sobolev spaces
- Definition of the δ-operator

3. Approximation by Hamiltonians with squeezed potentials
4. Exner-Ichinose for homogeneous magnetic fields
5. A quasi boundary triple
6. Outlook

Schrödinger operator with magnetic fields

- Goal: describe motion of a particle under the influence of an electric field $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and an magnetic field $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

Schrödinger operator with magnetic fields

- Goal: describe motion of a particle under the influence of an electric field $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and an magnetic field $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
- Corresponding Schrödinger equation:

$$
\left(i \partial_{t}-\left(-i \nabla_{x}-A\right)^{2}+V\right) \psi(t, x)=0 \quad+\quad \text { i. c. }
$$

where $B=\nabla \times A$, i. e. $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

Schrödinger operator with magnetic fields

- Goal: describe motion of a particle under the influence of an electric field $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and an magnetic field $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
- Corresponding Schrödinger equation:

$$
\left(i \partial_{t}-\left(-i \nabla_{x}-A\right)^{2}+V\right) \psi(t, x)=0 \quad+\quad \text { i. c. },
$$

where $B=\nabla \times A$, i. e. $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

- Corresponding Schrödinger operator: $H:=\left(-i \nabla_{x}-A\right)^{2}-V$

Schrödinger operator with magnetic fields

- Goal: describe motion of a particle under the influence of an electric field $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and an magnetic field $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
- Corresponding Schrödinger equation:

$$
\left(i \partial_{t}-\left(-i \nabla_{x}-A\right)^{2}+V\right) \psi(t, x)=0 \quad+\quad \text { i. c. },
$$

where $B=\nabla \times A$, i. e. $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

- Corresponding Schrödinger operator: $H:=\left(-i \nabla_{x}-A\right)^{2}-V$
- Spectral properties of H lead to solutions (spectral theorem)

Schrödinger operator with magnetic fields

- Goal: describe motion of a particle under the influence of an electric field $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and an magnetic field $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
- Corresponding Schrödinger equation:

$$
\left(i \partial_{t}-\left(-i \nabla_{x}-A\right)^{2}+V\right) \psi(t, x)=0 \quad+\quad \text { i. c. },
$$

where $B=\nabla \times A$, i. e. $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

- Corresponding Schrödinger operator: $H:=\left(-i \nabla_{x}-A\right)^{2}-V$
- Spectral properties of H lead to solutions (spectral theorem)
- Note: for $A_{1} \neq A_{2}$ with $\nabla \times A_{1}=\nabla \times A_{2}$: different Hamiltonians, but same physics

Schrödinger operator with magnetic fields

- Goal: describe motion of a particle under the influence of an electric field $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and an magnetic field $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
- Corresponding Schrödinger equation:

$$
\left(i \partial_{t}-\left(-i \nabla_{x}-A\right)^{2}+V\right) \psi(t, x)=0 \quad+\quad \text { i. c. },
$$

where $B=\nabla \times A$, i. e. $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

- Corresponding Schrödinger operator: $H:=\left(-i \nabla_{x}-A\right)^{2}-V$
- Spectral properties of H lead to solutions (spectral theorem)
- Note: for $A_{1} \neq A_{2}$ with $\nabla \times A_{1}=\nabla \times A_{2}$: different Hamiltonians, but same physics \Rightarrow gauge invariance

Schrödinger operator with magnetic fields

- Goal: describe motion of a particle under the influence of an electric field $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and an magnetic field $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
- Corresponding Schrödinger equation:

$$
\left(i \partial_{t}-\left(-i \nabla_{x}-A\right)^{2}+V\right) \psi(t, x)=0 \quad+\quad \text { i. c. },
$$

where $B=\nabla \times A$, i. e. $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

- Corresponding Schrödinger operator: $H:=\left(-i \nabla_{x}-A\right)^{2}-V$
- Spectral properties of H lead to solutions (spectral theorem)
- Note: for $A_{1} \neq A_{2}$ with $\nabla \times A_{1}=\nabla \times A_{2}$: different Hamiltonians, but same physics \Rightarrow gauge invariance
- We consider H in $L^{2}\left(\mathbb{R}^{d}\right)$ for any $d \geq 2$ (physical meaning for $d=2,3$)

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Main application: leaky quantum graphs

- Description of motion of quantum particle on network of wires in the presence of a magnetic field

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Main application: leaky quantum graphs

- Description of motion of quantum particle on network of wires in the presence of a magnetic field
- $\alpha>0 \Rightarrow$ motion of particle is confined to Σ

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Main application: leaky quantum graphs

- Description of motion of quantum particle on network of wires in the presence of a magnetic field
- $\alpha>0 \Rightarrow$ motion of particle is confined to Σ
- Quantum tunneling effects are allowed

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Main application: leaky quantum graphs

- Description of motion of quantum particle on network of wires in the presence of a magnetic field
- $\alpha>0 \Rightarrow$ motion of particle is confined to Σ
- Quantum tunneling effects are allowed

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
- $d=2$: Existence of bound states

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
- $d=2$: Existence of bound states
- Asymptotics of the smallest eigenvalue

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
- $d=2$: Existence of bound states
- Asymptotics of the smallest eigenvalue
- Isoperimetric inequalities

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
- $d=2$: Existence of bound states
- Asymptotics of the smallest eigenvalue
- Isoperimetric inequalities
- Question: Do these effects also occur in the presence of a magnetic field?

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
- $d=2$: Existence of bound states
- Asymptotics of the smallest eigenvalue
- Isoperimetric inequalities
- Question: Do these effects also occur in the presence of a magnetic field?

Conjectures:

- For homogeneous magnetic fields ($B=$ const.): same behavior

Hamiltonians with δ-potentials

For a zero-set $\Sigma \subset \mathbb{R}^{d}$ and $\alpha: \Sigma \rightarrow \mathbb{R}$ consider

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
- $d=2$: Existence of bound states
- Asymptotics of the smallest eigenvalue
- Isoperimetric inequalities
- Question: Do these effects also occur in the presence of a magnetic field?

Conjectures:

- For homogeneous magnetic fields ($B=$ const.): same behavior
- For non-homogeneous fields: bound states disappear

What is known

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} " \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

What is known

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} \text { " in } L^{2}\left(\mathbb{R}^{d}\right)
$$

- Studies on Hamiltonians with point interactions

What is known

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} \text { " in } L^{2}\left(\mathbb{R}^{d}\right)
$$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
- $d=2, \Sigma$ is a closed compact curve, $\alpha=$ const.

What is known

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} \text { " in } L^{2}\left(\mathbb{R}^{d}\right)
$$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
- $d=2, \Sigma$ is a closed compact curve, $\alpha=$ const.
- Asymptotics of the lowest eigenvalue, as $\alpha \rightarrow \infty$

What is known

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} \text { " in } L^{2}\left(\mathbb{R}^{d}\right)
$$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
- $d=2, \Sigma$ is a closed compact curve, $\alpha=$ const.
- Asymptotics of the lowest eigenvalue, as $\alpha \rightarrow \infty$
- Ožanová '06:
- $d=2, \alpha \delta_{\Sigma}$ belongs to generalized Kato class

What is known

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} \text { " in } L^{2}\left(\mathbb{R}^{d}\right)
$$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
- $d=2, \Sigma$ is a closed compact curve, $\alpha=$ const.
- Asymptotics of the lowest eigenvalue, as $\alpha \rightarrow \infty$
- Ožanová '06:
- $d=2, \alpha \delta_{\Sigma}$ belongs to generalized Kato class
- Brasche-Exner-Kuperin-Šeba type analysis

What is known

$$
H_{\alpha}:="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} \text { " in } L^{2}\left(\mathbb{R}^{d}\right)
$$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
- $d=2, \Sigma$ is a closed compact curve, $\alpha=$ const.
- Asymptotics of the lowest eigenvalue, as $\alpha \rightarrow \infty$
- Ožanová '06:
- $d=2, \alpha \delta_{\Sigma}$ belongs to generalized Kato class
- Brasche-Exner-Kuperin-Šeba type analysis
- Approximation by Hamiltonians with point interactions

Outline

1. Motivation
2. Magnetic Schrödinger operators with δ-potentials

- The magnetic Schrödinger operator without potential
- Magnetic Sobolev spaces
- Definition of the δ-operator

3. Approximation by Hamiltonians with squeezed potentials
4. Exner-Ichinose for homogeneous magnetic fields
5. A quasi boundary triple
6. Outlook

The magnetic Schrödinger operator without electric potential

- General assumption:

$$
A \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)
$$

The magnetic Schrödinger operator without electric potential

- General assumption:

$$
A \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)
$$

- Define the sequilinear form

$$
\begin{aligned}
& \mathfrak{h}_{0}[f, g]:=((-i \nabla-A) f,(-i \nabla-A) g), \\
& \operatorname{dom} \mathfrak{h}_{0}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right):=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right):(-i \nabla-A) f \in L^{2}\left(\mathbb{R}^{d}\right)\right\}
\end{aligned}
$$

The magnetic Schrödinger operator without electric potential

- General assumption:

$$
A \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)
$$

- Define the sequilinear form

$$
\begin{aligned}
& \mathfrak{h}_{0}[f, g]:=((-i \nabla-A) f,(-i \nabla-A) g), \\
& \operatorname{dom} \mathfrak{h}_{0}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right):=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right):(-i \nabla-A) f \in L^{2}\left(\mathbb{R}^{d}\right)\right\}
\end{aligned}
$$

- \mathfrak{h}_{0} is densely defined, closed, and $\mathfrak{h}_{0} \geq 0$

The magnetic Schrödinger operator without electric potential

- General assumption:

$$
A \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)
$$

- Define the sequilinear form

$$
\begin{aligned}
& \mathfrak{h}_{0}[f, g]:=((-i \nabla-A) f,(-i \nabla-A) g), \\
& \operatorname{dom} \mathfrak{h}_{0}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right):=\left\{f \in L^{2}\left(\mathbb{R}^{d}\right):(-i \nabla-A) f \in L^{2}\left(\mathbb{R}^{d}\right)\right\}
\end{aligned}
$$

- \mathfrak{h}_{0} is densely defined, closed, and $\mathfrak{h}_{0} \geq 0$
- associated self-adjoint operator

$$
H_{0}:=(-i \nabla-A)^{2}
$$

Definition of magnetic Sobolev spaces

- Problem: for $A \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ we have in general $f \in H^{1}\left(\mathbb{R}^{d}\right) \nRightarrow f \in \mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$

Definition of magnetic Sobolev spaces

- Problem: for $A \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ we have in general $f \in H^{1}\left(\mathbb{R}^{d}\right) \nRightarrow f \in \mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$
- Define for $s \geq 0$ the magnetic Sobolev spaces

$$
\mathcal{H}_{A}^{s}\left(\mathbb{R}^{d}\right):=\operatorname{dom} H_{0}^{s / 2}
$$

Definition of magnetic Sobolev spaces

- Problem: for $A \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ we have in general $f \in H^{1}\left(\mathbb{R}^{d}\right) \nRightarrow f \in \mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$
- Define for $s \geq 0$ the magnetic Sobolev spaces

$$
\mathcal{H}_{A}^{s}\left(\mathbb{R}^{d}\right):=\operatorname{dom} H_{0}^{s / 2}
$$

- For an open $\Omega \subset \mathbb{R}^{d}$ define

$$
\mathcal{H}_{A}^{s}(\Omega):=\left\{\left.f\right|_{\Omega}: f \in \mathcal{H}_{A}^{s}\left(\mathbb{R}^{d}\right)\right\}
$$

Definition of magnetic Sobolev spaces

- Problem: for $A \in C^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ we have in general $f \in H^{1}\left(\mathbb{R}^{d}\right) \nRightarrow f \in \mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$
- Define for $s \geq 0$ the magnetic Sobolev spaces

$$
\mathcal{H}_{A}^{s}\left(\mathbb{R}^{d}\right):=\operatorname{dom} H_{0}^{s / 2}
$$

- For an open $\Omega \subset \mathbb{R}^{d}$ define

$$
\mathcal{H}_{A}^{s}(\Omega):=\left\{\left.f\right|_{\Omega}: f \in \mathcal{H}_{A}^{s}\left(\mathbb{R}^{d}\right)\right\}
$$

- $\mathcal{H}_{A}^{s}(\Omega)$, equipped with the natural norm, is a Hilbert space

The diamagnetic inequality

Theorem

Let $t>0$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$. Then:

$$
\left|e^{-t H_{0}} f\right| \leq e^{-t(-\Delta)}|f| .
$$

The diamagnetic inequality

Theorem

Let $t>0$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$. Then:

$$
\left|e^{-t H_{0}} f\right| \leq e^{-t(-\Delta)}|f| .
$$

Consequences:

- It holds for $s>0, r \geq 0$, and $\lambda<0$

$$
(r-\lambda)^{-s}=\frac{1}{\Gamma(-\lambda)} \int_{0}^{\infty} t^{s-1} e^{-t(r-\lambda)} \mathrm{d} t
$$

The diamagnetic inequality

Theorem

Let $t>0$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$. Then:

$$
\left|e^{-t H_{0}} f\right| \leq e^{-t(-\Delta)}|f| .
$$

Consequences:

- It holds for $s>0, r \geq 0$, and $\lambda<0$

$$
(r-\lambda)^{-s}=\frac{1}{\Gamma(-\lambda)} \int_{0}^{\infty} t^{s-1} e^{-t(r-\lambda)} \mathrm{d} t
$$

- $\left(H_{0}-\lambda\right)^{-s} \leq(-\Delta-\lambda)^{-s}$ for all $s>0$

The diamagnetic inequality

Theorem

Let $t>0$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$. Then:

$$
\left|e^{-t H_{0}} f\right| \leq e^{-t(-\Delta)}|f| .
$$

Consequences:

- It holds for $s>0, r \geq 0$, and $\lambda<0$

$$
(r-\lambda)^{-s}=\frac{1}{\Gamma(-\lambda)} \int_{0}^{\infty} t^{s-1} e^{-t(r-\lambda)} \mathrm{d} t
$$

- $\left(H_{0}-\lambda\right)^{-s} \leq(-\Delta-\lambda)^{-s}$ for all $s>0$
- $(-\Delta-\lambda)^{s} \leq\left(H_{0}-\lambda\right)^{s}$ for all $s>0$

The diamagnetic inequality

Theorem

Let $t>0$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$. Then:

$$
\left|e^{-t H_{0}} f\right| \leq e^{-t(-\Delta)}|f| .
$$

Consequences:

- It holds for $s>0, r \geq 0$, and $\lambda<0$

$$
(r-\lambda)^{-s}=\frac{1}{\Gamma(-\lambda)} \int_{0}^{\infty} t^{s-1} e^{-t(r-\lambda)} \mathrm{d} t
$$

- $\left(H_{0}-\lambda\right)^{-s} \leq(-\Delta-\lambda)^{-s}$ for all $s>0$
- $(-\Delta-\lambda)^{s} \leq\left(H_{0}-\lambda\right)^{s}$ for all $s>0$

Corollary

$\mathcal{H}_{A}^{s}\left(\mathbb{R}^{d}\right) \subset H^{s}\left(\mathbb{R}^{d}\right)$ for all $s \geq 0$.

Definition of the δ-operator - preparations

- Let $\left\{\Sigma_{j}\right\}_{j=1}^{N}$ be a family of smooth hypersurfaces with $\sigma\left(\Sigma_{k} \cap \Sigma_{l}\right)=0, k \neq 1$

Definition of the δ-operator - preparations

- Let $\left\{\Sigma_{j}\right\}_{j=1}^{N}$ be a family of smooth hypersurfaces with $\sigma\left(\Sigma_{k} \cap \Sigma_{I}\right)=0, k \neq 1$
- Set $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\int_{\Sigma} f \mathrm{~d} \sigma:=\sum_{j=1}^{N} \int_{\Sigma_{j}} f \mid \Sigma_{j} \mathrm{~d} \sigma$

Definition of the δ-operator - preparations

- Let $\left\{\Sigma_{j}\right\}_{j=1}^{N}$ be a family of smooth hypersurfaces with $\sigma\left(\Sigma_{k} \cap \Sigma_{l}\right)=0, k \neq 1$
- Set $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\int_{\Sigma} f \mathrm{~d} \sigma:=\left.\sum_{j=1}^{N} \int_{\Sigma_{j}} f\right|_{\Sigma_{j}} \mathrm{~d} \sigma$
- Since $\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right) \subset H^{1}\left(\mathbb{R}^{d}\right)$, the trace $\left.f\right|_{\Sigma} \in L^{2}(\Sigma)$ for $f \in \mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$

Definition of the δ-operator - preparations

- Let $\left\{\Sigma_{j}\right\}_{j=1}^{N}$ be a family of smooth hypersurfaces with $\sigma\left(\Sigma_{k} \cap \Sigma_{l}\right)=0, k \neq 1$
- Set $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\int_{\Sigma} f \mathrm{~d} \sigma:=\left.\sum_{j=1}^{N} \int_{\Sigma_{j}} f\right|_{\Sigma_{j}} \mathrm{~d} \sigma$
- Since $\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right) \subset H^{1}\left(\mathbb{R}^{d}\right)$, the trace $\left.f\right|_{\Sigma} \in L^{2}(\Sigma)$ for $f \in \mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$

Corollary

For any $\alpha \in L^{\infty}(\Sigma ; \mathbb{R})$ the form $\mathfrak{h}_{\Sigma}[f, g]:=\int_{\Sigma} \alpha f \bar{g} d \sigma$, $\operatorname{dom} \mathfrak{h}_{\Sigma}:=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$, is form bounded w.r.t. \mathfrak{h}_{0} with bound zero.

Definition of the δ-operator - preparations

- Let $\left\{\Sigma_{j}\right\}_{j=1}^{N}$ be a family of smooth hypersurfaces with $\sigma\left(\Sigma_{k} \cap \Sigma_{l}\right)=0, k \neq 1$
- Set $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\int_{\Sigma} f \mathrm{~d} \sigma:=\left.\sum_{j=1}^{N} \int_{\Sigma_{j}} f\right|_{\Sigma_{j}} \mathrm{~d} \sigma$
- Since $\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right) \subset H^{1}\left(\mathbb{R}^{d}\right)$, the trace $\left.f\right|_{\Sigma} \in L^{2}(\Sigma)$ for $f \in \mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$

Corollary

For any $\alpha \in L^{\infty}(\Sigma ; \mathbb{R})$ the form $\mathfrak{h}_{\Sigma}[f, g]:=\int_{\Sigma} \alpha f \bar{g} d \sigma$, $\operatorname{dom} \mathfrak{h}_{\Sigma}:=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$, is form bounded w.r.t. \mathfrak{h}_{0} with bound zero.

$$
\begin{aligned}
& \text { Proof: } \forall a>0 \exists b>0: \\
& \qquad \mathfrak{h}_{\Sigma}[f] \leq a\|\nabla f\|^{2}+b\|f\|^{2}
\end{aligned}
$$

Definition of the δ-operator - preparations

- Let $\left\{\Sigma_{j}\right\}_{j=1}^{N}$ be a family of smooth hypersurfaces with $\sigma\left(\Sigma_{k} \cap \Sigma_{l}\right)=0, k \neq 1$
- Set $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\int_{\Sigma} f \mathrm{~d} \sigma:=\left.\sum_{j=1}^{N} \int_{\Sigma_{j}} f\right|_{\Sigma_{j}} \mathrm{~d} \sigma$
- Since $\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right) \subset H^{1}\left(\mathbb{R}^{d}\right)$, the trace $\left.f\right|_{\Sigma} \in L^{2}(\Sigma)$ for $f \in \mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$

Corollary

For any $\alpha \in L^{\infty}(\Sigma ; \mathbb{R})$ the form $\mathfrak{h}_{\Sigma}[f, g]:=\int_{\Sigma} \alpha f \bar{g} d \sigma$, $\operatorname{dom} \mathfrak{h}_{\Sigma}:=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$, is form bounded w.r.t. \mathfrak{h}_{0} with bound zero.

Proof: $\forall a>0 \exists b>0$:

$$
\mathfrak{h}_{\Sigma}[f] \leq a\|\nabla f\|^{2}+b\|f\|^{2} \leq a \mathfrak{h}_{0}[f]+b\|f\|^{2}
$$

(diamagnetic inequality)

Definition of the δ-operator

- Let $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\alpha \in L^{\infty}(\Sigma ; \mathbb{R})$.

Definition of the δ-operator

- Let $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\alpha \in L^{\infty}(\Sigma ; \mathbb{R})$.
- Define

$$
\begin{aligned}
\mathfrak{h}_{\alpha}[f, g] & :=((-i \nabla-A) f,(-i \nabla-A) g)-\left.\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma, \\
\operatorname{dom} \mathfrak{h}_{\alpha} & =\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

Definition of the δ-operator

- Let $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\alpha \in L^{\infty}(\Sigma ; \mathbb{R})$.
- Define

$$
\begin{aligned}
& \mathfrak{h}_{\alpha}[f, g]:=((-i \nabla-A) f,(-i \nabla-A) g)-\left.\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma \\
& \operatorname{dom} \mathfrak{h}_{\alpha}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

- KLMN-Theorem: \mathfrak{h}_{α} is densely defined, closed and bounded from below

Definition of the δ-operator

- Let $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\alpha \in L^{\infty}(\Sigma ; \mathbb{R})$.
- Define

$$
\begin{aligned}
\mathfrak{h}_{\alpha}[f, g] & :=((-i \nabla-A) f,(-i \nabla-A) g)-\left.\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma \\
\operatorname{dom} \mathfrak{h}_{\alpha} & =\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

- KLMN-Theorem: \mathfrak{h}_{α} is densely defined, closed and bounded from below
- Associated self-adjoint operator H_{α} :

$$
H_{\alpha}="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} "
$$

Definition of the δ-operator

- Let $\Sigma:=\bigcup_{j=1}^{N} \Sigma_{j}$ and $\alpha \in L^{\infty}(\Sigma ; \mathbb{R})$.
- Define

$$
\begin{aligned}
\mathfrak{h}_{\alpha}[f, g] & :=((-i \nabla-A) f,(-i \nabla-A) g)-\left.\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma \\
\operatorname{dom} \mathfrak{h}_{\alpha} & =\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

- KLMN-Theorem: \mathfrak{h}_{α} is densely defined, closed and bounded from below
- Associated self-adjoint operator H_{α} :

$$
H_{\alpha}="(-i \nabla-A)^{2}-\alpha \delta_{\Sigma} "
$$

- Remark: One can add a form bounded potential Q with relative bound < 1

Outline

1. Motivation
2. Magnetic Schrödinger operators with δ-potentials

- The magnetic Schrödinger operator without potential
- Magnetic Sobolev spaces
- Definition of the δ-operator

3. Approximation by Hamiltonians with squeezed potentials
4. Exner-Ichinose for homogeneous magnetic fields
5. A quasi boundary triple
6. Outlook

Approximation by Hamiltonians with squeezed potentials - the problem

Our operator:

$$
H_{\alpha}:=(-i \nabla-A)^{2}-\alpha \delta_{\Sigma}
$$

Approximation by Hamiltonians with squeezed potentials - the problem

Our operator:

$$
H_{\alpha}:=(-i \nabla-A)^{2}-\alpha \delta_{\Sigma}
$$

Problem:

- H_{α} is used to find approximately the spectral properties of

$$
H=(-i \nabla-A)^{2}-V,
$$

where V is large around Σ and small else

Approximation by Hamiltonians with squeezed potentials - the problem

Our operator:

$$
H_{\alpha}:=(-i \nabla-A)^{2}-\alpha \delta_{\Sigma}
$$

Problem:

- H_{α} is used to find approximately the spectral properties of

$$
H=(-i \nabla-A)^{2}-V
$$

where V is large around Σ and small else

- Is this really the case?

Approximation by Hamiltonians with squeezed potentials - the problem

Our operator:

$$
H_{\alpha}:=(-i \nabla-A)^{2}-\alpha \delta_{\Sigma}
$$

Problem:

- H_{α} is used to find approximately the spectral properties of

$$
H=(-i \nabla-A)^{2}-V
$$

where V is large around Σ and small else

- Is this really the case?

Justification for the usage of H_{α} :

- Construct potentials V_{ε} such that $(-i \nabla-A)^{2}-V_{\varepsilon} \rightarrow H_{\alpha}$

Approximation by Hamiltonians with squeezed potentials - the problem

Our operator:

$$
H_{\alpha}:=(-i \nabla-A)^{2}-\alpha \delta_{\Sigma}
$$

Problem:

- H_{α} is used to find approximately the spectral properties of

$$
H=(-i \nabla-A)^{2}-V
$$

where V is large around Σ and small else

- Is this really the case?

Justification for the usage of H_{α} :

- Construct potentials V_{ε} such that $(-i \nabla-A)^{2}-V_{\varepsilon} \rightarrow H_{\alpha}$
- Then, spectral properties of the operators are approximately the same

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that
$\Sigma_{j} \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}$ is injective for all j

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma_{j} \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective for all j
= $\Omega_{j}^{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma_{j}, t \in(-\beta, \beta)\right\}$

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that
$\Sigma_{j} \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}$
is injective for all j
- $\Omega_{j}^{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma_{j}, t \in(-\beta, \beta)\right\}$

- Choose real-valued $V_{j} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with supp $V_{j} \subset \Omega_{j}^{\beta}$

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma_{j} \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective for all j

- $\Omega_{j}^{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma_{j}, t \in(-\beta, \beta)\right\}$

- Choose real-valued $V_{j} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with supp $V_{j} \subset \Omega_{j}^{\beta}$

$$
V_{j, \varepsilon}(x)= \begin{cases}\frac{\beta}{\varepsilon} V_{j}\left(x_{\Sigma}+\frac{\beta}{\varepsilon} t \nu\left(x_{\Sigma}\right)\right), & x=x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \text { with } \\ & x_{\Sigma} \in \Sigma_{j}, t \in(-\varepsilon, \varepsilon), \\ 0, & \text { otherwise } .\end{cases}
$$

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma_{j} \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective for all j

- $\Omega_{j}^{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma_{j}, t \in(-\beta, \beta)\right\}$

- Choose real-valued $V_{j} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with supp $V_{j} \subset \Omega_{j}^{\beta}$

$$
V_{j, \varepsilon}(x)= \begin{cases}\frac{\beta}{\varepsilon} V_{j}\left(x_{\Sigma}+\frac{\beta}{\varepsilon} t \nu\left(x_{\Sigma}\right)\right), & x=x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \text { with } \\ & x_{\Sigma} \in \Sigma_{j}, t \in(-\varepsilon, \varepsilon), \\ 0, & \text { otherwise } .\end{cases}
$$

Construction of the approximating sequence

- Assume $\exists \beta>0$ such that

$$
\Sigma_{j} \times(-\beta, \beta) \ni\left(x_{\Sigma}, t\right) \mapsto x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \in \mathbb{R}^{d}
$$

is injective for all j

- $\Omega_{j}^{\beta}:=\left\{x_{\Sigma}+t \nu\left(x_{\Sigma}\right): x_{\Sigma} \in \Sigma_{j}, t \in(-\beta, \beta)\right\}$

- Choose real-valued $V_{j} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ with supp $V_{j} \subset \Omega_{j}^{\beta}$

$$
V_{j, \varepsilon}(x)= \begin{cases}\frac{\beta}{\varepsilon} V_{j}\left(x_{\Sigma}+\frac{\beta}{\varepsilon} t \nu\left(x_{\Sigma}\right)\right), & x=x_{\Sigma}+t \nu\left(x_{\Sigma}\right) \text { with } \\ & x_{\Sigma} \in \Sigma_{j}, t \in(-\varepsilon, \varepsilon), \\ 0, & \text { otherwise } .\end{cases}
$$

- $(-i \nabla-A)^{2}-\sum_{j=1}^{N} V_{j, \varepsilon}$ is self-adjoint on $\mathcal{H}_{A}^{2}\left(\mathbb{R}^{d}\right)$

The result

Theorem

Define $\alpha \in L^{\infty}(\Sigma)$ as

$$
\alpha\left(x_{\Sigma}\right):=\int_{-\beta}^{\beta} V_{j}\left(x_{\Sigma}+\boldsymbol{s} \nu\left(x_{\Sigma}\right)\right) \mathrm{d} s, \quad x_{\Sigma} \in \Sigma_{j}
$$

and let $\lambda \ll 0$. Then there exists $c>0$ such that

$$
\left\|\left((-i \nabla-A)^{2}-\sum_{j=1}^{N} V_{j, \varepsilon}-\lambda\right)^{-1}-\left(H_{\alpha}-\lambda\right)^{-1}\right\| \leq c \varepsilon
$$

for small $\varepsilon>0$. In particular $(-i \nabla-A)^{2}-\sum_{j=1}^{N} V_{j, \varepsilon}$ converge to H_{α} in the norm resolvent sense.

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f, g]:=\mathfrak{h}_{0}[f, g]-\sum_{j=1}^{N}\left(V_{j, \varepsilon} f, g\right), \operatorname{dom} \mathfrak{h}_{\varepsilon}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f, g]:=\mathfrak{h}_{0}[f, g]-\sum_{j=1}^{N}\left(V_{j, \varepsilon} f, g\right)$, $\operatorname{dom} \mathfrak{h}_{\varepsilon}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$
- It holds for $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\left|\mathfrak{h}_{\alpha}[f, g]-\mathfrak{h}_{\varepsilon}[f, g]\right|=\left|\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma-\sum_{j=1}^{N}\left(V_{j \varepsilon} f, g\right) \mid
$$

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f, g]:=\mathfrak{h}_{0}[f, g]-\sum_{j=1}^{N}\left(V_{j, \varepsilon} f, g\right)$, $\operatorname{dom} \mathfrak{h}_{\varepsilon}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$
- It holds for $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\left|\mathfrak{h}_{\alpha}[f, g]-\mathfrak{h}_{\varepsilon}[f, g]\right| & =\left|\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma-\sum_{j=1}^{N}\left(V_{j \varepsilon} f, g\right) \mid \\
& \leq \sum_{j=1}^{N}\left|\int_{\Sigma_{j}} \alpha f\right|_{\Sigma_{j}} \overline{\left.g\right|_{\Sigma_{j}}} \mathrm{~d} \sigma-\left(V_{j, \varepsilon} f, g\right) \mid
\end{aligned}
$$

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f, g]:=\mathfrak{h}_{0}[f, g]-\sum_{j=1}^{N}\left(V_{j, \varepsilon} f, g\right)$, $\operatorname{dom} \mathfrak{h}_{\varepsilon}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$
- It holds for $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\left|\mathfrak{h}_{\alpha}[f, g]-\mathfrak{h}_{\varepsilon}[f, g]\right| & =\left|\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma-\sum_{j=1}^{N}\left(V_{j \varepsilon} f, g\right) \mid \\
& \leq \sum_{j=1}^{N}\left|\int_{\Sigma_{j}} \alpha f\right|_{\Sigma_{j}} \overline{\left.g\right|_{\Sigma_{j}}} \mathrm{~d} \sigma-\left(V_{j, \varepsilon} f, g\right) \mid \\
& \leq c \varepsilon\|f\|_{H^{1}}\|g\|_{H^{1}}
\end{aligned}
$$

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f, g]:=\mathfrak{h}_{0}[f, g]-\sum_{j=1}^{N}\left(V_{j, \varepsilon} f, g\right)$, $\operatorname{dom} \mathfrak{h}_{\varepsilon}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$
- It holds for $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\left|\mathfrak{h}_{\alpha}[f, g]-\mathfrak{h}_{\varepsilon}[f, g]\right| & =\left|\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma-\sum_{j=1}^{N}\left(V_{j \varepsilon} f, g\right) \mid \\
& \leq \sum_{j=1}^{N}\left|\int_{\Sigma_{j}} \alpha f\right|_{\Sigma_{j}} \overline{\left.g\right|_{\Sigma_{j}}} \mathrm{~d} \sigma-\left(V_{j, \varepsilon} f, g\right) \mid \\
& \leq c \varepsilon\|f\|_{H^{1}}\|g\|_{H^{1}} \leq c \varepsilon \mathfrak{h}_{\alpha}[f]^{1 / 2} \mathfrak{h}_{\varepsilon}[g]^{1 / 2}
\end{aligned}
$$

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f, g]:=\mathfrak{h}_{0}[f, g]-\sum_{j=1}^{N}\left(V_{j, \varepsilon} f, g\right)$, $\operatorname{dom} \mathfrak{h}_{\varepsilon}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$
- It holds for $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\left|\mathfrak{h}_{\alpha}[f, g]-\mathfrak{h}_{\varepsilon}[f, g]\right| & =\left|\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma-\sum_{j=1}^{N}\left(V_{j \varepsilon} f, g\right) \mid \\
& \leq \sum_{j=1}^{N}\left|\int_{\Sigma_{j}} \alpha f\right|_{\Sigma_{j}} \overline{\left.g\right|_{\Sigma_{j}}} \mathrm{~d} \sigma-\left(V_{j, \varepsilon} f, g\right) \mid \\
& \leq c \varepsilon\|f\|_{H^{1}}\|g\|_{H^{1}} \leq c \varepsilon \mathfrak{h}_{\alpha}[f]^{1 / 2} \mathfrak{h}_{\varepsilon}[g]^{1 / 2}
\end{aligned}
$$

- This implies then the claim

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f, g]:=\mathfrak{h}_{0}[f, g]-\sum_{j=1}^{N}\left(V_{j, \varepsilon} f, g\right)$, $\operatorname{dom} \mathfrak{h}_{\varepsilon}=\mathcal{H}_{A}^{1}\left(\mathbb{R}^{d}\right)$
- It holds for $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\left|\mathfrak{h}_{\alpha}[f, g]-\mathfrak{h}_{\varepsilon}[f, g]\right| & =\left|\int_{\Sigma} \alpha f\right|_{\Sigma} \overline{\left.g\right|_{\Sigma}} \mathrm{d} \sigma-\sum_{j=1}^{N}\left(V_{j \varepsilon} f, g\right) \mid \\
& \leq \sum_{j=1}^{N}\left|\int_{\Sigma_{j}} \alpha f\right|_{\Sigma_{j}} \overline{\left.g\right|_{\Sigma_{j}}} \mathrm{~d} \sigma-\left(V_{j, \varepsilon} f, g\right) \mid \\
& \leq c \varepsilon\|f\|_{H^{1}}\|g\|_{H^{1}} \leq c \varepsilon \mathfrak{h}_{\alpha}[f]^{1 / 2} \mathfrak{h}_{\varepsilon}[g]^{1 / 2}
\end{aligned}
$$

- This implies then the claim
- Adding a form bounded potential Q does not change the argument

Comparison to [Behrndt-Exner-H-Lotoreichik'17]

Known
New

Comparison to [Behrndt-Exner-H-Lotoreichik'17]

Statement

Magnetic field

Known
No

New
Yes

Comparison to [Behrndt-Exner-H-Lotoreichik'17]

Statement

Magnetic field
Allowed for Σ

Known
No
hypersurface

New
Yes
networks

Comparison to [Behrndt-Exner-H-Lotoreichik'17]

Statement

Magnetic field
Allowed for Σ
Order of convergence

Known
No
hypersurface
$\varepsilon(1+|\ln \varepsilon|)$

New
Yes
networks
ε

Comparison to [Behrndt-Exner-H-Lotoreichik'17]

Statement

Magnetic field
Allowed for Σ
Order of convergence
Additive potential Q

Known
No
hypersurface
$\varepsilon(1+|\ln \varepsilon|)$
bounded

New
Yes networks
ε
form bdd.

Outline

1. Motivation
2. Magnetic Schrödinger operators with δ-potentials

- The magnetic Schrödinger operator without potential
- Magnetic Sobolev spaces
- Definition of the δ-operator

3. Approximation by Hamiltonians with squeezed potentials
4. Exner-Ichinose for homogeneous magnetic fields
5. A quasi boundary triple
6. Outlook

Homogeneous magnetic fields

- Assume from now on $d=2$ and $B=$ const.

Homogeneous magnetic fields

- Assume from now on $d=2$ and $B=$ const.
- Possible choices for A (gauge invariance):
- $A=\frac{B}{2}(-y, x)^{\top}$
- $A=B(-y, 0)^{\top}$

Homogeneous magnetic fields

- Assume from now on $d=2$ and $B=$ const.
- Possible choices for A (gauge invariance):
- $A=\frac{B}{2}(-y, x)^{\top}$
- $A=B(-y, 0)^{\top}$
- Physical interpretation: $(0,0, B)^{\top}=\nabla \times(A, 0)^{\top}$

Homogeneous magnetic fields

- Assume from now on $d=2$ and $B=$ const.
- Possible choices for A (gauge invariance):
- $A=\frac{B}{2}(-y, x)^{\top}$
- $A=B(-y, 0)^{\top}$
- Physical interpretation: $(0,0, B)^{\top}=\nabla \times(A, 0)^{\top}$, i.e. the magnetic field is perpendicular to the plane

Homogeneous magnetic fields

- Assume from now on $d=2$ and $B=$ const.
- Possible choices for A (gauge invariance):
- $A=\frac{B}{2}(-y, x)^{\top}$
- $A=B(-y, 0)^{\top}$
- Physical interpretation: $(0,0, B)^{\top}=\nabla \times(A, 0)^{\top}$, i.e. the magnetic field is perpendicular to the plane
- For $\lambda \in \rho\left((-i \nabla-A)^{2}\right)$ it holds

$$
\left((-i \nabla-A)^{2}-\lambda\right)^{-1} f(x)=\int_{\mathbb{R}^{2}} G_{\lambda}^{A}(x, y) f(y) \mathrm{d} y
$$

where G_{λ}^{A} is explicitely given by a combination of

- an irregular confluent hypergeometric function
- an in general complex valued function

Goal: derive an Exner-Ichinose type result

- Let $\Gamma:=\left\{(0, s)^{\top}: s \in \mathbb{R}\right\}$

Goal: derive an Exner-Ichinose type result

- Let $\Gamma:=\left\{(0, s)^{\top}: s \in \mathbb{R}\right\}$
- Assume that Σ is a compact perturbation of Γ without self-intersections

Goal: derive an Exner-Ichinose type result

- Let $\Gamma:=\left\{(0, s)^{\top}: s \in \mathbb{R}\right\}$
- Assume that Σ is a compact perturbation of Γ without self-intersections

Theorem (Exner-Ichinose '01)

Assume that $\Sigma \neq \Gamma$ and $\alpha>0$ is constant. Then, $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$.

Goal: derive an Exner-Ichinose type result

- Let $\Gamma:=\left\{(0, s)^{\top}: s \in \mathbb{R}\right\}$
- Assume that Σ is a compact perturbation of Γ without self-intersections

Theorem (Exner-Ichinose '01)

Assume that $\Sigma \neq \Gamma$ and $\alpha>0$ is constant. Then, $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$.

Goal: Prove a similar result for $B \neq 0$

Proof of Exner-Ichinose

- Use Birman-Schwinger principle:

$$
\begin{aligned}
&(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right) \\
& \text { with } M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma
\end{aligned}
$$

Proof of Exner-Ichinose

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$

Proof of Exner-Ichinose

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length

Proof of Exner-Ichinose

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates
$\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$

Proof of Exner-Ichinose

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$

Proof of Exner-Ichinose

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ

Proof of Exner-Ichinose

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a test function ψ such that $\left(\alpha M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$

Proof of Exner-Ichinose

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a test function ψ such that $\left(\alpha M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$

Proof of Exner-Ichinose

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a test function ψ such that $\left(\alpha M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left(-\Delta-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{0}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a test function ψ such that $\left(\alpha M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\ulcorner }(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a test function ψ such that $\left(\alpha M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

Essential spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$

- Choose $A=-B(y, 0)^{\top}$

Essential spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$

- Choose $A=-B(y, 0)^{\top}$
- Fourier transform w.r.t. x :

$$
(-i \nabla-A)^{2}-\alpha \delta_{\Gamma} \sim \int\left(-\partial_{y y}+(B y-\xi)^{2}-\alpha \delta_{0}\right) \mathrm{d} \xi
$$

Essential spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$

- Choose $A=-B(y, 0)^{\top}$
- Fourier transform w.r.t. x :

$$
\begin{aligned}
(-i \nabla-A)^{2}-\alpha \delta_{\Gamma} & \sim \int\left(-\partial_{y y}+(B y-\xi)^{2}-\alpha \delta_{0}\right) \mathrm{d} \xi \\
& \sim \frac{1}{B} \int\left(-B^{-2} \partial_{t t}+t^{2}-\alpha \delta_{-\xi}\right) \mathrm{d} \xi
\end{aligned}
$$

Essential spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$

- Choose $A=-B(y, 0)^{\top}$
- Fourier transform w.r.t. x :

$$
\begin{aligned}
(-i \nabla-A)^{2}-\alpha \delta_{\Gamma} & \sim \int\left(-\partial_{y y}+(B y-\xi)^{2}-\alpha \delta_{0}\right) \mathrm{d} \xi \\
& \sim \frac{1}{B} \int\left(-B^{-2} \partial_{t t}+t^{2}-\alpha \delta_{-\xi}\right) \mathrm{d} \xi
\end{aligned}
$$

- Spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$ has a band structure

Essential spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$

- Choose $A=-B(y, 0)^{\top}$
- Fourier transform w.r.t. x :

$$
\begin{aligned}
(-i \nabla-A)^{2}-\alpha \delta_{\Gamma} & \sim \int\left(-\partial_{y y}+(B y-\xi)^{2}-\alpha \delta_{0}\right) \mathrm{d} \xi \\
& \sim \frac{1}{B} \int\left(-B^{-2} \partial_{t t}+t^{2}-\alpha \delta_{-\xi}\right) \mathrm{d} \xi
\end{aligned}
$$

- Spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$ has a band structure
- Literature on harmonic oscillators with δ-point interactions [Fassari-Inglese '97]

$$
\min \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Gamma}\right)=\min \sigma\left(B^{-1}\left(-B^{-2} \partial_{t t}+t^{2}-\alpha \delta_{0}\right)\right)
$$

Essential spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$

- Choose $A=-B(y, 0)^{\top}$
- Fourier transform w.r.t. x :

$$
\begin{aligned}
(-i \nabla-A)^{2}-\alpha \delta_{\Gamma} & \sim \int\left(-\partial_{y y}+(B y-\xi)^{2}-\alpha \delta_{0}\right) \mathrm{d} \xi \\
& \sim \frac{1}{B} \int\left(-B^{-2} \partial_{t t}+t^{2}-\alpha \delta_{-\xi}\right) \mathrm{d} \xi
\end{aligned}
$$

- Spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$ has a band structure
- Literature on harmonic oscillators with δ-point interactions [Fassari-Inglese '97]

$$
\min \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Gamma}\right)=\min \sigma\left(B^{-1}\left(-B^{-2} \partial_{t t}+t^{2}-\alpha \delta_{0}\right)\right)
$$

- The last number is the solution an algebraic equation

Essential spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$

- Choose $A=-B(y, 0)^{\top}$
- Fourier transform w.r.t. x :

$$
\begin{aligned}
(-i \nabla-A)^{2}-\alpha \delta_{\Gamma} & \sim \int\left(-\partial_{y y}+(B y-\xi)^{2}-\alpha \delta_{0}\right) \mathrm{d} \xi \\
& \sim \frac{1}{B} \int\left(-B^{-2} \partial_{t t}+t^{2}-\alpha \delta_{-\xi}\right) \mathrm{d} \xi
\end{aligned}
$$

- Spectrum of $(-i \nabla-A)^{2}-\alpha \delta_{\Gamma}$ has a band structure
- Literature on harmonic oscillators with δ-point interactions [Fassari-Inglese '97]

$$
\min \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Gamma}\right)=\min \sigma\left(B^{-1}\left(-B^{-2} \partial_{t t}+t^{2}-\alpha \delta_{0}\right)\right)
$$

- The last number is the solution an algebraic equation
- Birman-Schwinger principle gives upper bound for $\sigma\left(M_{\Gamma}(\lambda)\right)$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\ulcorner }(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $\left(M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\ulcorner }(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $\left(M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\ulcorner }(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $\left(M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $\left(M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $\left(M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $\left(M_{\Sigma}(\lambda) \psi, \psi\right)>\frac{\alpha}{2 \sqrt{-\lambda}}\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\frac{\alpha}{2 \sqrt{-\lambda}}=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $\left(M_{\Sigma}(\lambda) \psi, \psi\right)>\sup \sigma\left(M_{\Gamma}(\lambda)\right)\|\psi\|^{2}$ $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\sup \sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $\left(M_{\Sigma}(\lambda) \psi, \psi\right)>\sup \sigma\left(M_{\Gamma}(\lambda)\right)\|\psi\|^{2} \quad$??? $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\sup \sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma_{\text {disc }}\left(-\Delta-\alpha \delta_{\Sigma}\right) \neq \emptyset$

What is still true for $B \neq 0$

- Use Birman-Schwinger principle:

$$
(-\infty, 0) \ni \lambda \in \sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \Leftrightarrow 1 \in \sigma\left(\alpha M_{\Sigma}(\lambda)\right)
$$

with $M_{\Sigma}(\lambda): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma), M_{\Sigma}(\lambda) \varphi(x)=\int_{\Sigma} G_{\lambda}^{A}(x, y) \varphi(y) \mathrm{d} \sigma$

- For $\Sigma=\Gamma$ and $\lambda<0$ show $\sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\left[0, \frac{\alpha}{2 \sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates

$$
\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})
$$

- $M_{\Gamma}(\lambda)-M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{\text {ess }}\left(M_{\Sigma}(\lambda)\right)=\sigma_{\text {ess }}\left(M_{\Gamma}(\lambda)\right)$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $\left(M_{\Sigma}(\lambda) \psi, \psi\right)>\sup \sigma\left(M_{\Gamma}(\lambda)\right)\|\psi\|^{2} \quad$??? $\Rightarrow \sup \sigma\left(\alpha M_{\Sigma}(\lambda)\right)>\sup \sigma\left(\alpha M_{\Gamma}(\lambda)\right)=\sup \sigma_{\text {ess }}\left(\alpha M_{\Sigma}(\lambda)\right)$
- Use Birman-Schwinger to show $\sigma\left((-i \nabla-A)^{2}-\alpha \delta_{\Sigma}\right) \neq \emptyset$

Outline

1. Motivation

2. Magnetic Schrödinger operators with δ-potentials

- The magnetic Schrödinger operator without potential
- Magnetic Sobolev spaces
- Definition of the δ-operator

3. Approximation by Hamiltonians with squeezed potentials
4. Exner-Ichinose for homogeneous magnetic fields
5. A quasi boundary triple
6. Outlook

Some notations

- In this section: $\Sigma \subset \mathbb{R}^{d}$ is the boundary of a smooth bounded domain Ω_{+}with outer normal vector field ν

Some notations

- In this section: $\Sigma \subset \mathbb{R}^{d}$ is the boundary of a smooth bounded domain Ω_{+}with outer normal vector field ν
- $\Omega_{-}:=\mathbb{R}^{d} \backslash \overline{\Omega_{+}}$

Some notations

- In this section: $\Sigma \subset \mathbb{R}^{d}$ is the boundary of a smooth bounded domain Ω_{+}with outer normal vector field ν
- $\Omega_{-}:=\mathbb{R}^{d} \backslash \overline{\Omega_{+}}$
- Define

$$
S f:=(-i \nabla-A)^{2} f, \quad \operatorname{dom} S=\left\{f \in \mathcal{H}_{A}^{2}\left(\mathbb{R}^{d}\right):\left.f\right|_{\Sigma}=0\right\}
$$

Some notations

- In this section: $\Sigma \subset \mathbb{R}^{d}$ is the boundary of a smooth bounded domain Ω_{+}with outer normal vector field ν
- $\Omega_{-}:=\mathbb{R}^{d} \backslash \overline{\Omega_{+}}$
- Define

$$
S f:=(-i \nabla-A)^{2} f, \quad \operatorname{dom} S=\left\{f \in \mathcal{H}_{A}^{2}\left(\mathbb{R}^{d}\right):\left.f\right|_{\Sigma}=0\right\}
$$

and

$$
\begin{aligned}
T f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} T & :=\left\{f=f_{+} \oplus f_{-} \in \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right):\left.f_{+}\right|_{\Sigma}=f_{-} \mid \Sigma\right\}
\end{aligned}
$$

The quasi boundary triple

$$
\begin{aligned}
T f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} T & :=\left\{f=f_{+} \oplus f_{-} \in \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right):\left.f_{+}\right|_{\Sigma}=\left.f_{-}\right|_{\Sigma}\right\}
\end{aligned}
$$

The quasi boundary triple

$$
\begin{aligned}
T f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} T & :=\left\{f=f_{+} \oplus f_{-} \in \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right):\left.f_{+}\right|_{\Sigma}=\left.f_{-}\right|_{\Sigma}\right\}
\end{aligned}
$$

- Define Γ_{0}, Γ_{1} : dom $T \rightarrow L^{2}(\Sigma)$ by

$$
\Gamma_{0} f=\left.\partial_{\nu} f_{+}\right|_{\Sigma}-\left.\partial_{\nu} f_{-}\right|_{\Sigma} \quad \text { and } \quad \Gamma_{1} f=\left.f\right|_{\Sigma}
$$

The quasi boundary triple

$$
\begin{aligned}
T f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} T & :=\left\{f=f_{+} \oplus f_{-} \in \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right):\left.f_{+}\right|_{\Sigma}=\left.f_{-}\right|_{\Sigma}\right\}
\end{aligned}
$$

- Define Γ_{0}, Γ_{1} : dom $T \rightarrow L^{2}(\Sigma)$ by

$$
\Gamma_{0} f=\left.\partial_{\nu} f_{+}\right|_{\Sigma}-\left.\partial_{\nu} f_{-}\right|_{\Sigma} \quad \text { and } \quad \Gamma_{1} f=\left.f\right|_{\Sigma}
$$

- It holds for all $f, g \in \operatorname{dom} T$

$$
\begin{aligned}
& \left((-i \nabla-A)^{2} f_{+}, g_{+}\right)_{\Omega_{+}}-\left(f_{+},(-i \nabla-A)^{2} g_{+}\right)_{\Omega_{+}} \\
& \quad=\left(\left.f\right|_{\Sigma},\left(\partial_{\nu}-i \nu A\right) g_{+} \mid \Sigma\right)_{\Sigma}-\left(\left.\left(\partial_{\nu}-i \nu A\right) f_{+}\right|_{\Sigma},\left.g\right|_{\Sigma}\right)_{\Sigma}
\end{aligned}
$$

The quasi boundary triple

$$
\begin{aligned}
T f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} T & :=\left\{f=f_{+} \oplus f_{-} \in \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right):\left.f_{+}\right|_{\Sigma}=\left.f_{-}\right|_{\Sigma}\right\}
\end{aligned}
$$

- Define Γ_{0}, Γ_{1} : dom $T \rightarrow L^{2}(\Sigma)$ by

$$
\Gamma_{0} f=\left.\partial_{\nu} f_{+}\right|_{\Sigma}-\left.\partial_{\nu} f_{-}\right|_{\Sigma} \quad \text { and } \quad \Gamma_{1} f=\left.f\right|_{\Sigma}
$$

- It holds for all $f, g \in \operatorname{dom} T$

$$
\begin{aligned}
& \left((-i \nabla-A)^{2} f_{ \pm}, g_{ \pm}\right)_{\Omega_{ \pm}}-\left(f_{ \pm},(-i \nabla-A)^{2} g_{ \pm}\right)_{\Omega_{ \pm}} \\
& \quad= \pm\left(\left.f\right|_{\Sigma},\left(\partial_{\nu}-i \nu A\right) g_{ \pm} \mid \Sigma\right)_{\Sigma} \mp\left(\left(\partial_{\nu}-i \nu A\right) f_{ \pm}|\Sigma, g|_{\Sigma}\right)_{\Sigma}
\end{aligned}
$$

The quasi boundary triple

$$
\begin{aligned}
T f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} T & :=\left\{f=f_{+} \oplus f_{-} \in \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right):\left.f_{+}\right|_{\Sigma}=\left.f_{-}\right|_{\Sigma}\right\}
\end{aligned}
$$

- Define Γ_{0}, Γ_{1} : dom $T \rightarrow L^{2}(\Sigma)$ by

$$
\Gamma_{0} f=\left.\partial_{\nu} f_{+}\right|_{\Sigma}-\left.\partial_{\nu} f_{-}\right|_{\Sigma} \quad \text { and } \quad \Gamma_{1} f=\left.f\right|_{\Sigma}
$$

- It holds for all $f, g \in \operatorname{dom} T$

$$
\begin{aligned}
& \left((-i \nabla-A)^{2} f_{ \pm}, g_{ \pm}\right)_{\Omega_{ \pm}}-\left(f_{ \pm},(-i \nabla-A)^{2} g_{ \pm}\right)_{\Omega_{ \pm}} \\
& \quad= \pm\left(\left.f\right|_{\Sigma},\left(\partial_{\nu}-i \nu A\right) g_{ \pm} \mid \Sigma\right)_{\Sigma} \mp\left(\left(\partial_{\nu}-i \nu A\right) f_{ \pm}|\Sigma, g|_{\Sigma}\right)_{\Sigma}
\end{aligned}
$$

and hence

$$
(T f, g)_{\mathbb{R}^{d}}-(f, T g)_{\mathbb{R}^{d}}=\left(\Gamma_{1} f, \Gamma_{0} g\right)_{\Sigma}-\left(\Gamma_{0} f, \Gamma_{1} g\right)_{\Sigma}
$$

The quasi boundary triple

$$
\begin{aligned}
T f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} T & :=\left\{f=f_{+} \oplus f_{-} \in \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right):\left.f_{+}\right|_{\Sigma}=\left.f_{-}\right|_{\Sigma}\right\}
\end{aligned}
$$

- Define Γ_{0}, Γ_{1} : dom $T \rightarrow L^{2}(\Sigma)$ by

$$
\Gamma_{0} f=\left.\partial_{\nu} f_{+}\right|_{\Sigma}-\left.\partial_{\nu} f_{-}\right|_{\Sigma} \quad \text { and } \quad \Gamma_{1} f=\left.f\right|_{\Sigma}
$$

- It holds for all $f, g \in \operatorname{dom} T$

$$
(T f, g)_{\mathbb{R}^{d}}-(f, T g)_{\mathbb{R}^{d}}=\left(\Gamma_{1} f, \Gamma_{0} g\right)_{\Sigma}-\left(\Gamma_{0} f, \Gamma_{1} g\right)_{\Sigma}
$$

- $\operatorname{ran}\left(\Gamma_{0}, \Gamma_{1}\right)=H^{1 / 2}(\Sigma) \times H^{3 / 2}(\Sigma)$

The quasi boundary triple

$$
\begin{aligned}
T f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} T & :=\left\{f=f_{+} \oplus f_{-} \in \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right):\left.f_{+}\right|_{\Sigma}=\left.f_{-}\right|_{\Sigma}\right\}
\end{aligned}
$$

- Define Γ_{0}, Γ_{1} : dom $T \rightarrow L^{2}(\Sigma)$ by

$$
\Gamma_{0} f=\left.\partial_{\nu} f_{+}\right|_{\Sigma}-\left.\partial_{\nu} f_{-}\right|_{\Sigma} \quad \text { and } \quad \Gamma_{1} f=\left.f\right|_{\Sigma}
$$

- It holds for all $f, g \in \operatorname{dom} T$

$$
(T f, g)_{\mathbb{R}^{d}}-(f, T g)_{\mathbb{R}^{d}}=\left(\Gamma_{1} f, \Gamma_{0} g\right)_{\Sigma}-\left(\Gamma_{0} f, \Gamma_{1} g\right)_{\Sigma}
$$

- $\operatorname{ran}\left(\Gamma_{0}, \Gamma_{1}\right)=H^{1 / 2}(\Sigma) \times H^{3 / 2}(\Sigma)$
- $A_{0}:=T \upharpoonright \operatorname{ker} \Gamma_{0}$ is the free operator $(-i \nabla-A)^{2}$ in $L^{2}\left(\mathbb{R}^{d}\right)$

The quasi boundary triple

$$
\begin{aligned}
T f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} T & :=\left\{f=f_{+} \oplus f_{-} \in \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right):\left.f_{+}\right|_{\Sigma}=\left.f_{-}\right|_{\Sigma}\right\}
\end{aligned}
$$

- Define Γ_{0}, Γ_{1} : dom $T \rightarrow L^{2}(\Sigma)$ by

$$
\Gamma_{0} f=\left.\partial_{\nu} f_{+}\right|_{\Sigma}-\left.\partial_{\nu} f_{-}\right|_{\Sigma} \quad \text { and } \quad \Gamma_{1} f=\left.f\right|_{\Sigma}
$$

- It holds for all $f, g \in \operatorname{dom} T$

$$
(T f, g)_{\mathbb{R}^{d}}-(f, T g)_{\mathbb{R}^{d}}=\left(\Gamma_{1} f, \Gamma_{0} g\right)_{\Sigma}-\left(\Gamma_{0} f, \Gamma_{1} g\right)_{\Sigma}
$$

- $\operatorname{ran}\left(\Gamma_{0}, \Gamma_{1}\right)=H^{1 / 2}(\Sigma) \times H^{3 / 2}(\Sigma)$
- $A_{0}:=T$ † $\operatorname{ker} \Gamma_{0}$ is the free operator $(-i \nabla-A)^{2}$ in $L^{2}\left(\mathbb{R}^{d}\right)$
- $\Rightarrow\left\{L^{2}(\Sigma), \Gamma_{0}, \Gamma_{1}\right\}$ is a quasi boundary triple for S^{*}

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$, i.e.

$$
\begin{aligned}
A_{\alpha}^{Q} f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} A_{\alpha}^{Q} & :=\left\{f=f_{+} \oplus f_{-} \in \operatorname{dom} T:\left.\partial_{\nu} f_{+}\right|_{\Sigma}-\left.\partial_{\nu} f_{-}\right|_{\Sigma}=\left.\alpha f\right|_{\Sigma}\right\}
\end{aligned}
$$

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$, i.e.

$$
\begin{aligned}
A_{\alpha}^{Q} f & :=\left((-i \nabla-A)^{2} f_{+}\right) \oplus\left((-i \nabla-A)^{2} f_{-}\right) \\
\operatorname{dom} A_{\alpha}^{Q} & :=\left\{f=f_{+} \oplus f_{-} \in \operatorname{dom} T:\left.\partial_{\nu} f_{+}\right|_{\Sigma}-\left.\partial_{\nu} f_{-}\right|_{\Sigma}=\left.\alpha f\right|_{\Sigma}\right\}
\end{aligned}
$$

Theorem

A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$
Theorem
A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

Sketch of the proof:

- Green's formula: A_{α}^{Q} is symmetric

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$

Theorem

A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

Sketch of the proof:

- Green's formula: A_{α}^{Q} is symmetric
- We verify: $\operatorname{ran}\left(A_{\alpha}^{Q}-\lambda\right)=L^{2}\left(\mathbb{R}^{d}\right)$ for $\lambda \in \mathbb{C} \backslash \mathbb{R}$

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$

Theorem

A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

Sketch of the proof:

- Green's formula: A_{α}^{Q} is symmetric
- We verify: $\operatorname{ran}\left(A_{\alpha}^{Q}-\lambda\right)=L^{2}\left(\mathbb{R}^{d}\right)$ for $\lambda \in \mathbb{C} \backslash \mathbb{R}$
- $f \in \operatorname{ran}\left(A_{\alpha}^{Q}-\lambda\right)$ iff $\Gamma_{1}\left((-i \nabla-A)^{2}-\lambda\right)^{-1} f \in \operatorname{ran}(1-\alpha \widetilde{M}(\lambda))$ for some operator $\widetilde{M}(\lambda)$

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$

Theorem

A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

Sketch of the proof:

- Green's formula: A_{α}^{Q} is symmetric
- We verify: $\operatorname{ran}\left(A_{\alpha}^{Q}-\lambda\right)=L^{2}\left(\mathbb{R}^{d}\right)$ for $\lambda \in \mathbb{C} \backslash \mathbb{R}$
- $f \in \operatorname{ran}\left(A_{\alpha}^{Q}-\lambda\right)$ iff $\Gamma_{1}\left((-i \nabla-A)^{2}-\lambda\right)^{-1} f \in \operatorname{ran}(1-\alpha \widetilde{M}(\lambda))$ for some operator $\widetilde{M}(\lambda)$
- $\widetilde{M}(\lambda): H^{1 / 2}(\Sigma) \rightarrow H^{3 / 2}(\Sigma)$ is bounded

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$

Theorem

A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

Sketch of the proof:

- Green's formula: A_{α}^{Q} is symmetric
- We verify: $\operatorname{ran}\left(A_{\alpha}^{Q}-\lambda\right)=L^{2}\left(\mathbb{R}^{d}\right)$ for $\lambda \in \mathbb{C} \backslash \mathbb{R}$
- $f \in \operatorname{ran}\left(A_{\alpha}^{Q}-\lambda\right)$ iff $\Gamma_{1}\left((-i \nabla-A)^{2}-\lambda\right)^{-1} f \in \operatorname{ran}(1-\alpha \widetilde{M}(\lambda))$ for some operator $\widetilde{M}(\lambda)$
- $\widetilde{M}(\lambda): H^{1 / 2}(\Sigma) \rightarrow H^{3 / 2}(\Sigma)$ is bounded
- $\operatorname{ran}(1-\alpha \widetilde{M}(\lambda))=H^{1 / 2}(\Sigma)$ by Fredholm's alternative

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$

Theorem

A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

Sketch of the proof:

- Green's formula: A_{α}^{Q} is symmetric
- We verify: $\operatorname{ran}\left(A_{\alpha}^{Q}-\lambda\right)=L^{2}\left(\mathbb{R}^{d}\right)$ for $\lambda \in \mathbb{C} \backslash \mathbb{R}$
- $f \in \operatorname{ran}\left(A_{\alpha}^{Q}-\lambda\right)$ iff $\Gamma_{1}\left((-i \nabla-A)^{2}-\lambda\right)^{-1} f \in \operatorname{ran}(1-\alpha \widetilde{M}(\lambda))$ for some operator $\widetilde{M}(\lambda)$
- $\widetilde{M}(\lambda): H^{1 / 2}(\Sigma) \rightarrow H^{3 / 2}(\Sigma)$ is bounded
- ran $(1-\alpha \widetilde{M}(\lambda))=H^{1 / 2}(\Sigma)$ by Fredholm's alternative
- $\operatorname{ran}\left(\Gamma_{1}\left((-i \nabla-A)^{2}-\lambda\right)^{-1}\right)=H^{3 / 2}(\Sigma) \subset \operatorname{ran}(1-\alpha \widetilde{M}(\lambda))$

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$

Theorem

A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

Consequences:

- Krein type resolvent formula in terms of Poisson and Neumann to Dirichlet maps

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$

Theorem

A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

Consequences:

- Krein type resolvent formula in terms of Poisson and Neumann to Dirichlet maps
- Resolvent power differences:

$$
\left(A_{\alpha}^{Q}-\lambda\right)^{-m}-\left((-i \nabla-A)^{2}-\lambda\right)^{-m} \in \mathfrak{S}_{\frac{d-1}{2 m+1}, \infty}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)
$$

The quasi boundary triple and the δ-operator

Define for $\alpha \in \mathbb{R}$ the operator $H_{\alpha}^{Q}:=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}-\alpha \Gamma_{1}\right)$

Theorem

A_{α}^{Q} is self-adjoint and coincides with A_{α}. In particular, $\operatorname{dom} A_{\alpha} \subset \mathcal{H}_{A}^{2}\left(\Omega_{+}\right) \oplus \mathcal{H}_{A}^{2}\left(\Omega_{-}\right)$.

Consequences:

- Krein type resolvent formula in terms of Poisson and Neumann to Dirichlet maps
- Resolvent power differences:

$$
\left(A_{\alpha}^{Q}-\lambda\right)^{-m}-\left((-i \nabla-A)^{2}-\lambda\right)^{-m} \in \mathfrak{S}_{\frac{d-1}{2 m+1}, \infty}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)
$$

- Formulae for scattering theory

Outline

1. Motivation

2. Magnetic Schrödinger operators with δ-potentials

- The magnetic Schrödinger operator without potential
- Magnetic Sobolev spaces
- Definition of the δ-operator

3. Approximation by Hamiltonians with squeezed potentials
4. Exner-Ichinose for homogeneous magnetic fields
5. A quasi boundary triple
6. Outlook

Outlook

- Finish proof of Exner-Ichinose type result:

Outlook

- Finish proof of Exner-Ichinose type result:
- Find good estimate for $\sup \sigma\left(M_{\Gamma}(\lambda)\right)$

Outlook

- Finish proof of Exner-Ichinose type result:
- Find good estimate for $\sup \sigma\left(M_{\Gamma}(\lambda)\right)$
- Learn how to work with G_{λ}^{A}

Outlook

- Finish proof of Exner-Ichinose type result:
- Find good estimate for $\sup \sigma\left(M_{\Gamma}(\lambda)\right)$
- Learn how to work with G_{λ}^{A}
- More general Σ

Outlook

- Finish proof of Exner-Ichinose type result:
- Find good estimate for sup $\sigma\left(M_{\Gamma}(\lambda)\right)$
- Learn how to work with G_{λ}^{A}
- More general Σ
- Can one say something for varying B

Outlook

- Finish proof of Exner-Ichinose type result:
- Find good estimate for $\sup \sigma\left(M_{\Gamma}(\lambda)\right)$
- Learn how to work with G_{λ}^{A}
- More general Σ
- Can one say something for varying B
- Conjecture: bound states disappear

Outlook

- Finish proof of Exner-Ichinose type result:
- Find good estimate for $\sup \sigma\left(M_{\Gamma}(\lambda)\right)$
- Learn how to work with G_{λ}^{A}
- More general Σ
- Can one say something for varying B
- Conjecture: bound states disappear
- Can one do more with the quasi boundary triple?

Outlook

- Finish proof of Exner-Ichinose type result:
- Find good estimate for sup $\sigma\left(M_{\Gamma}(\lambda)\right)$
- Learn how to work with G_{λ}^{A}
- More general Σ
- Can one say something for varying B
- Conjecture: bound states disappear
- Can one do more with the quasi boundary triple?
- More suggestions?

Outlook

- Finish proof of Exner-Ichinose type result:
- Find good estimate for sup $\sigma\left(M_{\Gamma}(\lambda)\right)$
- Learn how to work with G_{λ}^{A}
- More general Σ
- Can one say something for varying B
- Conjecture: bound states disappear
- Can one do more with the quasi boundary triple?
- More suggestions?

Thank you for your attention!

