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Schrödinger operator with magnetic fields

Goal: describe motion of a particle under the influence of an
electric field V : R3 → R and an magnetic field B : R3 → R3

Corresponding Schrödinger equation:(
i∂t − (−i∇x − A)2 + V

)
ψ(t , x) = 0 + i. c.,

where B = ∇× A, i. e. A : R3 → R3

Corresponding Schrödinger operator: H := (−i∇x − A)2 − V
Spectral properties of H lead to solutions (spectral theorem)
Note: for A1 6= A2 with ∇× A1 = ∇× A2: different Hamiltonians,
but same physics

⇒ gauge invariance

We consider H in L2(Rd ) for any d ≥ 2 (physical meaning
for d = 2,3)
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Hamiltonians with δ-potentials

For a zero-set Σ ⊂ Rd and α : Σ→ R consider

Hα := “(−i∇− A)2 − αδΣ” in L2(Rd )

Main application: leaky quantum graphs
Description of motion of quantum
particle on network of wires in the
presence of a magnetic field
α > 0⇒ motion of particle is
confined to Σ

Quantum tunneling effects are
allowed

Markus Holzmann,
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Hamiltonians with δ-potentials

For a zero-set Σ ⊂ Rd and α : Σ→ R consider

Hα := “(−i∇− A)2 − αδΣ” in L2(Rd )

Mathematical motivation:
Interesting spectral effects for δ-operators without magnetic field:

d = 2: Existence of bound states
Asymptotics of the smallest eigenvalue
Isoperimetric inequalities

Question: Do these effects also occur in the presence of a
magnetic field?

Conjectures:
For homogeneous magnetic fields (B = const.): same behavior
For non-homogeneous fields: bound states disappear
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What is known

Hα := “(−i∇− A)2 − αδΣ” in L2(Rd )

Studies on Hamiltonians with point interactions
Exner-Yoshitomi ’02:

d = 2, Σ is a closed compact curve, α = const.
Asymptotics of the lowest eigenvalue, as α→∞

Ožanová ’06:

d = 2, αδΣ belongs to generalized Kato class
Brasche-Exner-Kuperin-Šeba type analysis
Approximation by Hamiltonians with point interactions

Markus Holzmann,
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Ožanová ’06:

d = 2, αδΣ belongs to generalized Kato class
Brasche-Exner-Kuperin-Šeba type analysis
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The magnetic Schrödinger operator without
electric potential

General assumption:

A ∈ C∞(Rd ;Rd )

Define the sequilinear form

h0[f ,g] :=
(
(−i∇− A)f , (−i∇− A)g

)
,

dom h0 = H1
A(Rd ) :=

{
f ∈ L2(Rd ) : (−i∇− A)f ∈ L2(Rd )

}
h0 is densely defined, closed, and h0 ≥ 0
associated self-adjoint operator

H0 := (−i∇− A)2

Markus Holzmann,
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Definition of magnetic Sobolev spaces

Problem: for A ∈ C∞(Rd ;Rd ) we have in general
f ∈ H1(Rd ) 6⇒ f ∈ H1

A(Rd )

Define for s ≥ 0 the magnetic Sobolev spaces

Hs
A(Rd ) := dom Hs/2

0

For an open Ω ⊂ Rd define

Hs
A(Ω) :=

{
f |Ω : f ∈ Hs

A(Rd )
}

Hs
A(Ω), equipped with the natural norm, is a Hilbert space

Markus Holzmann,
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The diamagnetic inequality

Theorem

Let t > 0 and f ∈ L2(Rd ). Then:∣∣e−tH0 f
∣∣ ≤ e−t(−∆)|f |.

Consequences:
It holds for s > 0, r ≥ 0, and λ < 0

(r − λ)−s =
1

Γ(−λ)

∫ ∞
0

ts−1e−t(r−λ)dt

(H0 − λ)−s ≤ (−∆− λ)−s for all s > 0
(−∆− λ)s ≤ (H0 − λ)s for all s > 0

Corollary

Hs
A(Rd ) ⊂ Hs(Rd ) for all s ≥ 0.

Markus Holzmann,
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Definition of the δ-operator – preparations

Let
{

Σj
}N

j=1 be a family of smooth hypersurfaces with
σ(Σk ∩ Σl ) = 0, k 6= l

Set Σ :=
⋃N

j=1 Σj and
∫

Σ
fdσ :=

∑N
j=1

∫
Σj

f |Σj dσ

Since H1
A(Rd ) ⊂ H1(Rd ), the trace f |Σ ∈ L2(Σ) for f ∈ H1

A(Rd )

Corollary

For any α ∈ L∞(Σ;R) the form hΣ[f ,g] :=
∫

Σ αf gdσ,
dom hΣ := H1

A(Rd ), is form bounded w.r.t. h0 with bound zero.

Proof: ∀a > 0 ∃b > 0:

hΣ[f ] ≤ a‖∇f‖2 + b‖f‖2

≤ ah0[f ] + b‖f‖2

(diamagnetic inequality)

Markus Holzmann,
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Definition of the δ-operator

Let Σ :=
⋃N

j=1 Σj and α ∈ L∞(Σ;R).

Define

hα[f ,g] :=
(
(−i∇− A)f , (−i∇− A)g

)
−
∫

Σ

αf |Σg|Σdσ,

dom hα = H1
A(Rd )

KLMN-Theorem: hα is densely defined, closed and bounded
from below
Associated self-adjoint operator Hα:

Hα = “(−i∇− A)2 − αδΣ”

Remark: One can add a form bounded potential Q with relative
bound < 1

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz13
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Approximation by Hamiltonians with squeezed
potentials – the problem

Our operator:
Hα := (−i∇− A)2 − αδΣ

Problem:
Hα is used to find approximately the spectral properties of

H = (−i∇− A)2 − V ,

where V is large around Σ and small else
Is this really the case?

Justification for the usage of Hα:
Construct potentials Vε such that (−i∇− A)2 − Vε → Hα
Then, spectral properties of the operators are approximately the
same

Markus Holzmann,
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Construction of the approximating sequence

Assume ∃β > 0 such that

Σj × (−β, β) 3 (xΣ, t) 7→ xΣ + tν(xΣ) ∈ Rd

is injective for all j

Ωβ
j := {xΣ + tν(xΣ) : xΣ ∈ Σj , t ∈ (−β, β)}

Σj

βν

Choose real-valued Vj ∈ L∞(Rd ) with supp Vj ⊂ Ωβ
j

Vj,ε(x) =


β
εVj

(
xΣ + β

ε tν(xΣ)
)
, x = xΣ + tν(xΣ) with

xΣ ∈ Σj , t ∈ (−ε, ε),

0, otherwise.

(−i∇− A)2 −
∑N

j=1 Vj,ε is self-adjoint on H2
A(Rd )
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The result

Theorem
Define α ∈ L∞(Σ) as

α(xΣ) :=

∫ β

−β
Vj(xΣ + sν(xΣ))ds, xΣ ∈ Σj ,

and let λ� 0. Then there exists c > 0 such that∥∥∥((−i∇− A)2 −
∑N

j=1Vj,ε − λ
)−1
− (Hα − λ)−1

∥∥∥ ≤ cε

for small ε > 0. In particular (−i∇−A)2−
∑N

j=1 Vj,ε converge to
Hα in the norm resolvent sense.

Markus Holzmann,
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Sketch of the proof

Let hε[f ,g] := h0[f ,g]−
∑N

j=1(Vj,εf ,g), dom hε = H1
A(Rd )

It holds for f ,g ∈ C∞0 (Rd )

∣∣hα[f ,g]− hε[f ,g]
∣∣ =

∣∣∣∣∣∣
∫

Σ

αf |Σg|Σdσ −
N∑

j=1

(Vjεf ,g)

∣∣∣∣∣∣

≤
N∑

j=1

∣∣∣∣∣
∫

Σj

αf |Σj g|Σj dσ − (Vj,εf ,g)

∣∣∣∣∣
≤ cε‖f‖H1‖g‖H1 ≤ cεhα[f ]1/2hε[g]1/2

This implies then the claim
Adding a form bounded potential Q does not change the
argument
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Comparison to [Behrndt-Exner-H-Lotoreichik’17]

Statement Known New

Magnetic field No Yes

Allowed for Σ hypersurface networks

Order of convergence ε(1 + | ln ε|) ε

Additive potential Q bounded form bdd.
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Homogeneous magnetic fields

Assume from now on d = 2 and B = const.

Possible choices for A (gauge invariance):

A = B
2 (−y , x)>

A = B(−y ,0)>

Physical interpretation: (0,0,B)> = ∇× (A,0)>

, i.e. the
magnetic field is perpendicular to the plane

For λ ∈ ρ
(
(−i∇− A)2

)
it holds

(
(−i∇− A)2 − λ

)−1f (x) =

∫
R2

GA
λ(x , y)f (y)dy ,

where GA
λ is explicitely given by a combination of

an irregular confluent hypergeometric function
an in general complex valued function
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Goal: derive an Exner-Ichinose type result

Let Γ := {(0, s)> : s ∈ R}

Assume that Σ is a compact perturbation of Γ without
self-intersections

Theorem (Exner-Ichinose ’01)
Assume that Σ 6= Γ and α > 0 is constant. Then,
σdisc(−∆− αδΣ) 6= ∅.

Goal: Prove a similar result for B 6= 0
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Proof of Exner-Ichinose

Use Birman-Schwinger principle:

(−∞,0) 3 λ ∈ σ(−∆− αδΣ)⇔ 1 ∈ σ(αMΣ(λ))

with MΣ(λ) : L2(Σ)→ L2(Σ),MΣ(λ)ϕ(x) =
∫

Σ
G0
λ(x , y)ϕ(y)dσ

For Σ = Γ and λ < 0 show σ(αMΓ(λ)) =
[
0, α

2
√
−λ

]
For Σ 6= Γ parametrize Σ by its arc length
Rewrite MΣ(λ) in these coordinates
⇒ MΣ(λ),MΓ(λ) : L2(R)→ L2(R)

MΓ(λ)−MΣ(λ) is compact⇒ σess(MΣ(λ)) = σess(MΓ(λ))

Show: Eigenvalues of MΣ(λ) depend continuously on λ
Construct a test function ψ such that (αMΣ(λ)ψ,ψ) > α

2
√
−λ‖ψ‖

2

⇒ supσ(αMΣ(λ)) > α
2
√
−λ = supσess(αMΣ(λ))

Use Birman-Schwinger to show σdisc(−∆− αδΣ) 6= ∅

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz23



Proof of Exner-Ichinose

Use Birman-Schwinger principle:

(−∞,0) 3 λ ∈ σ(−∆− αδΣ)⇔ 1 ∈ σ(αMΣ(λ))

with MΣ(λ) : L2(Σ)→ L2(Σ),MΣ(λ)ϕ(x) =
∫

Σ
G0
λ(x , y)ϕ(y)dσ

For Σ = Γ and λ < 0 show σ(αMΓ(λ)) =
[
0, α

2
√
−λ

]

For Σ 6= Γ parametrize Σ by its arc length
Rewrite MΣ(λ) in these coordinates
⇒ MΣ(λ),MΓ(λ) : L2(R)→ L2(R)

MΓ(λ)−MΣ(λ) is compact⇒ σess(MΣ(λ)) = σess(MΓ(λ))

Show: Eigenvalues of MΣ(λ) depend continuously on λ
Construct a test function ψ such that (αMΣ(λ)ψ,ψ) > α

2
√
−λ‖ψ‖

2

⇒ supσ(αMΣ(λ)) > α
2
√
−λ = supσess(αMΣ(λ))

Use Birman-Schwinger to show σdisc(−∆− αδΣ) 6= ∅

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz23



Proof of Exner-Ichinose

Use Birman-Schwinger principle:

(−∞,0) 3 λ ∈ σ(−∆− αδΣ)⇔ 1 ∈ σ(αMΣ(λ))

with MΣ(λ) : L2(Σ)→ L2(Σ),MΣ(λ)ϕ(x) =
∫

Σ
G0
λ(x , y)ϕ(y)dσ

For Σ = Γ and λ < 0 show σ(αMΓ(λ)) =
[
0, α

2
√
−λ

]
For Σ 6= Γ parametrize Σ by its arc length

Rewrite MΣ(λ) in these coordinates
⇒ MΣ(λ),MΓ(λ) : L2(R)→ L2(R)

MΓ(λ)−MΣ(λ) is compact⇒ σess(MΣ(λ)) = σess(MΓ(λ))

Show: Eigenvalues of MΣ(λ) depend continuously on λ
Construct a test function ψ such that (αMΣ(λ)ψ,ψ) > α

2
√
−λ‖ψ‖

2

⇒ supσ(αMΣ(λ)) > α
2
√
−λ = supσess(αMΣ(λ))

Use Birman-Schwinger to show σdisc(−∆− αδΣ) 6= ∅

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz23



Proof of Exner-Ichinose

Use Birman-Schwinger principle:

(−∞,0) 3 λ ∈ σ(−∆− αδΣ)⇔ 1 ∈ σ(αMΣ(λ))

with MΣ(λ) : L2(Σ)→ L2(Σ),MΣ(λ)ϕ(x) =
∫

Σ
G0
λ(x , y)ϕ(y)dσ

For Σ = Γ and λ < 0 show σ(αMΓ(λ)) =
[
0, α

2
√
−λ

]
For Σ 6= Γ parametrize Σ by its arc length
Rewrite MΣ(λ) in these coordinates
⇒ MΣ(λ),MΓ(λ) : L2(R)→ L2(R)

MΓ(λ)−MΣ(λ) is compact⇒ σess(MΣ(λ)) = σess(MΓ(λ))

Show: Eigenvalues of MΣ(λ) depend continuously on λ
Construct a test function ψ such that (αMΣ(λ)ψ,ψ) > α

2
√
−λ‖ψ‖

2

⇒ supσ(αMΣ(λ)) > α
2
√
−λ = supσess(αMΣ(λ))

Use Birman-Schwinger to show σdisc(−∆− αδΣ) 6= ∅

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz23



Proof of Exner-Ichinose

Use Birman-Schwinger principle:

(−∞,0) 3 λ ∈ σ(−∆− αδΣ)⇔ 1 ∈ σ(αMΣ(λ))

with MΣ(λ) : L2(Σ)→ L2(Σ),MΣ(λ)ϕ(x) =
∫

Σ
G0
λ(x , y)ϕ(y)dσ

For Σ = Γ and λ < 0 show σ(αMΓ(λ)) =
[
0, α

2
√
−λ

]
For Σ 6= Γ parametrize Σ by its arc length
Rewrite MΣ(λ) in these coordinates
⇒ MΣ(λ),MΓ(λ) : L2(R)→ L2(R)

MΓ(λ)−MΣ(λ) is compact⇒ σess(MΣ(λ)) = σess(MΓ(λ))

Show: Eigenvalues of MΣ(λ) depend continuously on λ
Construct a test function ψ such that (αMΣ(λ)ψ,ψ) > α

2
√
−λ‖ψ‖

2

⇒ supσ(αMΣ(λ)) > α
2
√
−λ = supσess(αMΣ(λ))

Use Birman-Schwinger to show σdisc(−∆− αδΣ) 6= ∅

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz23



Proof of Exner-Ichinose

Use Birman-Schwinger principle:

(−∞,0) 3 λ ∈ σ(−∆− αδΣ)⇔ 1 ∈ σ(αMΣ(λ))

with MΣ(λ) : L2(Σ)→ L2(Σ),MΣ(λ)ϕ(x) =
∫

Σ
G0
λ(x , y)ϕ(y)dσ

For Σ = Γ and λ < 0 show σ(αMΓ(λ)) =
[
0, α

2
√
−λ

]
For Σ 6= Γ parametrize Σ by its arc length
Rewrite MΣ(λ) in these coordinates
⇒ MΣ(λ),MΓ(λ) : L2(R)→ L2(R)

MΓ(λ)−MΣ(λ) is compact⇒ σess(MΣ(λ)) = σess(MΓ(λ))

Show: Eigenvalues of MΣ(λ) depend continuously on λ

Construct a test function ψ such that (αMΣ(λ)ψ,ψ) > α
2
√
−λ‖ψ‖

2

⇒ supσ(αMΣ(λ)) > α
2
√
−λ = supσess(αMΣ(λ))

Use Birman-Schwinger to show σdisc(−∆− αδΣ) 6= ∅

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz23



Proof of Exner-Ichinose

Use Birman-Schwinger principle:

(−∞,0) 3 λ ∈ σ(−∆− αδΣ)⇔ 1 ∈ σ(αMΣ(λ))

with MΣ(λ) : L2(Σ)→ L2(Σ),MΣ(λ)ϕ(x) =
∫

Σ
G0
λ(x , y)ϕ(y)dσ

For Σ = Γ and λ < 0 show σ(αMΓ(λ)) =
[
0, α

2
√
−λ

]
For Σ 6= Γ parametrize Σ by its arc length
Rewrite MΣ(λ) in these coordinates
⇒ MΣ(λ),MΓ(λ) : L2(R)→ L2(R)

MΓ(λ)−MΣ(λ) is compact⇒ σess(MΣ(λ)) = σess(MΓ(λ))

Show: Eigenvalues of MΣ(λ) depend continuously on λ
Construct a test function ψ such that (αMΣ(λ)ψ,ψ) > α

2
√
−λ‖ψ‖

2

⇒ supσ(αMΣ(λ)) > α
2
√
−λ = supσess(αMΣ(λ))

Use Birman-Schwinger to show σdisc(−∆− αδΣ) 6= ∅

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz23



Proof of Exner-Ichinose

Use Birman-Schwinger principle:

(−∞,0) 3 λ ∈ σ(−∆− αδΣ)⇔ 1 ∈ σ(αMΣ(λ))

with MΣ(λ) : L2(Σ)→ L2(Σ),MΣ(λ)ϕ(x) =
∫

Σ
G0
λ(x , y)ϕ(y)dσ

For Σ = Γ and λ < 0 show σ(αMΓ(λ)) =
[
0, α

2
√
−λ

]
For Σ 6= Γ parametrize Σ by its arc length
Rewrite MΣ(λ) in these coordinates
⇒ MΣ(λ),MΓ(λ) : L2(R)→ L2(R)

MΓ(λ)−MΣ(λ) is compact⇒ σess(MΣ(λ)) = σess(MΓ(λ))

Show: Eigenvalues of MΣ(λ) depend continuously on λ
Construct a test function ψ such that (αMΣ(λ)ψ,ψ) > α

2
√
−λ‖ψ‖

2

⇒ supσ(αMΣ(λ)) > α
2
√
−λ = supσess(αMΣ(λ))

Use Birman-Schwinger to show σdisc(−∆− αδΣ) 6= ∅

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz23



Proof of Exner-Ichinose

Use Birman-Schwinger principle:

(−∞,0) 3 λ ∈ σ(−∆− αδΣ)⇔ 1 ∈ σ(αMΣ(λ))

with MΣ(λ) : L2(Σ)→ L2(Σ),MΣ(λ)ϕ(x) =
∫

Σ
G0
λ(x , y)ϕ(y)dσ

For Σ = Γ and λ < 0 show σ(αMΓ(λ)) =
[
0, α

2
√
−λ

]
For Σ 6= Γ parametrize Σ by its arc length
Rewrite MΣ(λ) in these coordinates
⇒ MΣ(λ),MΓ(λ) : L2(R)→ L2(R)

MΓ(λ)−MΣ(λ) is compact⇒ σess(MΣ(λ)) = σess(MΓ(λ))

Show: Eigenvalues of MΣ(λ) depend continuously on λ
Construct a test function ψ such that (αMΣ(λ)ψ,ψ) > α

2
√
−λ‖ψ‖

2

⇒ supσ(αMΣ(λ)) > α
2
√
−λ = supσess(αMΣ(λ))

Use Birman-Schwinger to show σdisc(−∆− αδΣ) 6= ∅

Markus Holzmann,
Schrödinger operators and boundary value problems, Graz23



What is still true for B 6= 0
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Essential spectrum of (−i∇− A)2 − αδΓ

Choose A = −B(y ,0)>

Fourier transform w.r.t. x :

(−i∇− A)2 − αδΓ ∼
∫ (
− ∂yy + (By − ξ)2 − αδ0

)
dξ

∼ 1
B

∫ (
− B−2∂tt + t2 − αδ−ξ

)
dξ

Spectrum of (−i∇− A)2 − αδΓ has a band structure
Literature on harmonic oscillators with δ-point interactions
[Fassari-Inglese ’97]

minσ
(
(−i∇− A)2 − αδΓ

)
= minσ

(
B−1(− B−2∂tt + t2 − αδ0

))
The last number is the solution an algebraic equation
Birman-Schwinger principle gives upper bound for σ(MΓ(λ))
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X
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Some notations

In this section: Σ ⊂ Rd is the boundary of a smooth bounded
domain Ω+ with outer normal vector field ν

Ω− := Rd \ Ω+

Define

Sf := (−i∇− A)2f , dom S =
{

f ∈ H2
A(Rd ) : f |Σ = 0

}

and

Tf :=
(
(−i∇− A)2f+

)
⊕
(
(−i∇− A)2f−

)
dom T :=

{
f = f+ ⊕ f− ∈ H2

A(Ω+)⊕H2
A(Ω−) : f+|Σ = f−|Σ

}
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The quasi boundary triple

Tf :=
(
(−i∇− A)2f+

)
⊕
(
(−i∇− A)2f−

)
dom T :=

{
f = f+ ⊕ f− ∈ H2

A(Ω+)⊕H2
A(Ω−) : f+|Σ = f−|Σ

}

Define Γ0, Γ1 : dom T → L2(Σ) by

Γ0f = ∂ν f+|Σ − ∂ν f−|Σ and Γ1f = f |Σ
It holds for all f ,g ∈ dom T

(Tf ,g)Rd − (f ,Tg)Rd = (Γ1f , Γ0g)Σ − (Γ0f , Γ1g)Σ

ran(Γ0, Γ1) = H1/2(Σ)× H3/2(Σ)
A0 := T � ker Γ0 is the free operator (−i∇− A)2 in L2(Rd )
⇒
{

L2(Σ), Γ0, Γ1
}

is a quasi boundary triple for S∗
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The quasi boundary triple and the δ-operator

Define for α ∈ R the operator HQ
α := T � ker(Γ0 − αΓ1), i.e.

AQ
α f :=

(
(−i∇− A)2f+

)
⊕
(
(−i∇− A)2f−

)
dom AQ

α := {f = f+ ⊕ f− ∈ dom T : ∂ν f+|Σ − ∂ν f−|Σ = αf |Σ}

Theorem

AQ
α is self-adjoint and coincides with Aα. In particular,

dom Aα ⊂ H2
A(Ω+)⊕H2

A(Ω−).
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