Magnetic Schrödinger operators with electric δ -potentials

Markus Holzmann

Graz University of Technology

Schrödinger operators and boundary value problems, Graz, April 24, 2017

Outline

1. Motivation

- 2. Magnetic Schrödinger operators with δ -potentials
 - The magnetic Schrödinger operator without potential
 - Magnetic Sobolev spaces
 - Definition of the δ -operator
- 3. Approximation by Hamiltonians with squeezed potentials
- 4. Exner-Ichinose for homogeneous magnetic fields
- 5. A quasi boundary triple
- 6. Outlook

Outline

1. Motivation

- 2. Magnetic Schrödinger operators with δ -potentials
 - The magnetic Schrödinger operator without potential
 - Magnetic Sobolev spaces
 - Definition of the δ -operator
- 3. Approximation by Hamiltonians with squeezed potentials
- 4. Exner-Ichinose for homogeneous magnetic fields
- 5. A quasi boundary triple

6. Outlook

Goal: describe motion of a particle under the influence of an electric field V : ℝ³ → ℝ and an magnetic field B : ℝ³ → ℝ³

- Goal: describe motion of a particle under the influence of an electric field V : ℝ³ → ℝ and an magnetic field B : ℝ³ → ℝ³
- Corresponding Schrödinger equation:

$$\left(i\partial_t - (-i\nabla_x - A)^2 + V\right)\psi(t, x) = 0 + \text{ i. c.},$$

- Goal: describe motion of a particle under the influence of an electric field V : ℝ³ → ℝ and an magnetic field B : ℝ³ → ℝ³
- Corresponding Schrödinger equation:

$$\left(i\partial_t - (-i\nabla_x - A)^2 + V\right)\psi(t, x) = 0 + \text{i. c.},$$

where $B = \nabla \times A$, i. e. $A : \mathbb{R}^3 \to \mathbb{R}^3$

• Corresponding Schrödinger operator: $H := (-i\nabla_x - A)^2 - V$

- Goal: describe motion of a particle under the influence of an electric field V : ℝ³ → ℝ and an magnetic field B : ℝ³ → ℝ³
- Corresponding Schrödinger equation:

$$(i\partial_t - (-i\nabla_x - A)^2 + V)\psi(t, x) = 0 + i. c.,$$

- Corresponding Schrödinger operator: $H := (-i\nabla_x A)^2 V$
- Spectral properties of H lead to solutions (spectral theorem)

- Goal: describe motion of a particle under the influence of an electric field V : ℝ³ → ℝ and an magnetic field B : ℝ³ → ℝ³
- Corresponding Schrödinger equation:

$$(i\partial_t - (-i\nabla_x - A)^2 + V)\psi(t, x) = 0 + i. c.,$$

- Corresponding Schrödinger operator: $H := (-i\nabla_x A)^2 V$
- Spectral properties of H lead to solutions (spectral theorem)
- Note: for A₁ ≠ A₂ with ∇ × A₁ = ∇ × A₂: different Hamiltonians, but same physics

- Goal: describe motion of a particle under the influence of an electric field V : ℝ³ → ℝ and an magnetic field B : ℝ³ → ℝ³
- Corresponding Schrödinger equation:

$$(i\partial_t - (-i\nabla_x - A)^2 + V)\psi(t, x) = 0 + i. c.,$$

- Corresponding Schrödinger operator: $H := (-i\nabla_x A)^2 V$
- Spectral properties of H lead to solutions (spectral theorem)
- Note: for A₁ ≠ A₂ with ∇ × A₁ = ∇ × A₂: different Hamiltonians, but same physics ⇒ gauge invariance

- Goal: describe motion of a particle under the influence of an electric field V : ℝ³ → ℝ and an magnetic field B : ℝ³ → ℝ³
- Corresponding Schrödinger equation:

$$(i\partial_t - (-i\nabla_x - A)^2 + V)\psi(t, x) = 0 + i. c.,$$

- Corresponding Schrödinger operator: $H := (-i\nabla_x A)^2 V$
- Spectral properties of H lead to solutions (spectral theorem)
- Note: for A₁ ≠ A₂ with ∇ × A₁ = ∇ × A₂: different Hamiltonians, but same physics ⇒ gauge invariance
- We consider *H* in L²(ℝ^d) for any *d* ≥ 2 (physical meaning for *d* = 2,3)

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
 in $L^2(\mathbb{R}^d)$

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
 in $L^2(\mathbb{R}^d)$

Main application: leaky quantum graphs

 Description of motion of quantum particle on network of wires in the presence of a magnetic field

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
 in $L^2(\mathbb{R}^d)$

Main application: leaky quantum graphs

- Description of motion of quantum particle on network of wires in the presence of a magnetic field
- α > 0 ⇒ motion of particle is confined to Σ

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
 in $L^2(\mathbb{R}^d)$

Main application: leaky quantum graphs

- Description of motion of quantum particle on network of wires in the presence of a magnetic field
- α > 0 ⇒ motion of particle is confined to Σ
- Quantum tunneling effects are allowed

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
 in $L^2(\mathbb{R}^d)$

Main application: leaky quantum graphs

- Description of motion of quantum particle on network of wires in the presence of a magnetic field
- α > 0 ⇒ motion of particle is confined to Σ
- Quantum tunneling effects are allowed

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
 in $L^2(\mathbb{R}^d)$

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

Mathematical motivation:

Interesting spectral effects for δ-operators without magnetic field:

6

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

Mathematical motivation:

Interesting spectral effects for δ-operators without magnetic field:

d = 2: Existence of bound states

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
 - d = 2: Existence of bound states
 - Asymptotics of the smallest eigenvalue

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
 - d = 2: Existence of bound states
 - Asymptotics of the smallest eigenvalue
 - Isoperimetric inequalities

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
 - d = 2: Existence of bound states
 - Asymptotics of the smallest eigenvalue
 - Isoperimetric inequalities
- Question: Do these effects also occur in the presence of a magnetic field?

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
 - d = 2: Existence of bound states
 - Asymptotics of the smallest eigenvalue
 - Isoperimetric inequalities
- Question: Do these effects also occur in the presence of a magnetic field?

Conjectures:

For homogeneous magnetic fields (*B* = const.): same behavior

For a zero-set $\Sigma \subset \mathbb{R}^d$ and $\alpha : \Sigma \to \mathbb{R}$ consider

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

Mathematical motivation:

- Interesting spectral effects for δ-operators without magnetic field:
 - *d* = 2: Existence of bound states
 - Asymptotics of the smallest eigenvalue
 - Isoperimetric inequalities
- Question: Do these effects also occur in the presence of a magnetic field?

Conjectures:

- For homogeneous magnetic fields (*B* = const.): same behavior
- For non-homogeneous fields: bound states disappear

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
 in $L^2(\mathbb{R}^d)$

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

Studies on Hamiltonians with point interactions

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
 - $d = 2, \Sigma$ is a closed compact curve, $\alpha = \text{const.}$

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
 - $d = 2, \Sigma$ is a closed compact curve, $\alpha = \text{const.}$
 - Asymptotics of the lowest eigenvalue, as $\alpha \to \infty$

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
 - $d = 2, \Sigma$ is a closed compact curve, $\alpha = \text{const.}$
 - Asymptotics of the lowest eigenvalue, as $\alpha \to \infty$
- Ožanová '06:
 - $d = 2, \alpha \delta_{\Sigma}$ belongs to generalized Kato class

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
 - $d = 2, \Sigma$ is a closed compact curve, $\alpha = \text{const.}$
 - Asymptotics of the lowest eigenvalue, as $\alpha \to \infty$
- Ožanová '06:
 - d = 2, $\alpha \delta_{\Sigma}$ belongs to generalized Kato class
 - Brasche-Exner-Kuperin-Šeba type analysis

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$
" in $L^2(\mathbb{R}^d)$

- Studies on Hamiltonians with point interactions
- Exner-Yoshitomi '02:
 - $d = 2, \Sigma$ is a closed compact curve, $\alpha = \text{const.}$
 - Asymptotics of the lowest eigenvalue, as $\alpha \to \infty$
- Ožanová '06:
 - d = 2, $\alpha \delta_{\Sigma}$ belongs to generalized Kato class
 - Brasche-Exner-Kuperin-Šeba type analysis
 - Approximation by Hamiltonians with point interactions

Outline

1. Motivation

- 2. Magnetic Schrödinger operators with δ -potentials
 - The magnetic Schrödinger operator without potential
 - Magnetic Sobolev spaces
 - Definition of the δ -operator
- 3. Approximation by Hamiltonians with squeezed potentials
- 4. Exner-Ichinose for homogeneous magnetic fields
- 5. A quasi boundary triple

6. Outlook

General assumption:

 $A\in \textit{C}^{\infty}(\mathbb{R}^{d};\mathbb{R}^{d})$

General assumption:

$$A \in \mathcal{C}^{\infty}(\mathbb{R}^d; \mathbb{R}^d)$$

Define the sequilinear form

$$\begin{split} \mathfrak{h}_0[f,g] &:= \left((-i\nabla - \mathcal{A})f, (-i\nabla - \mathcal{A})g \right), \\ \mathsf{dom}\,\mathfrak{h}_0 &= \mathcal{H}^1_{\mathcal{A}}(\mathbb{R}^d) := \left\{ f \in L^2(\mathbb{R}^d) : (-i\nabla - \mathcal{A})f \in L^2(\mathbb{R}^d) \right\} \end{split}$$

General assumption:

$$A \in \mathcal{C}^{\infty}(\mathbb{R}^d; \mathbb{R}^d)$$

Define the sequilinear form

$$\begin{split} \mathfrak{h}_0[f,g] &:= \left((-i\nabla - \mathcal{A})f, (-i\nabla - \mathcal{A})g \right), \\ \mathsf{dom}\,\mathfrak{h}_0 &= \mathcal{H}^1_{\mathcal{A}}(\mathbb{R}^d) := \left\{ f \in L^2(\mathbb{R}^d) : (-i\nabla - \mathcal{A})f \in L^2(\mathbb{R}^d) \right\} \end{split}$$

- \mathfrak{h}_0 is densely defined, closed, and $\mathfrak{h}_0 \geq 0$

General assumption:

$$\mathsf{A}\in \mathsf{C}^\infty(\mathbb{R}^d;\mathbb{R}^d)$$

Define the sequilinear form

$$\begin{split} \mathfrak{h}_0[f,g] &:= \left((-i\nabla - \mathcal{A})f, (-i\nabla - \mathcal{A})g \right), \\ \mathsf{dom}\,\mathfrak{h}_0 &= \mathcal{H}^1_{\mathcal{A}}(\mathbb{R}^d) := \left\{ f \in L^2(\mathbb{R}^d) : (-i\nabla - \mathcal{A})f \in L^2(\mathbb{R}^d) \right\} \end{split}$$

- \mathfrak{h}_0 is densely defined, closed, and $\mathfrak{h}_0 \geq 0$
- associated self-adjoint operator

$$H_0 := (-i\nabla - A)^2$$

Markus Holzmann, Schrödinger operators and boundary value problems, Graz

Definition of magnetic Sobolev spaces

• Problem: for $A \in C^{\infty}(\mathbb{R}^d; \mathbb{R}^d)$ we have in general $f \in H^1(\mathbb{R}^d) \Rightarrow f \in \mathcal{H}^1_A(\mathbb{R}^d)$

Definition of magnetic Sobolev spaces

- Problem: for $A \in C^{\infty}(\mathbb{R}^d; \mathbb{R}^d)$ we have in general $f \in H^1(\mathbb{R}^d) \Rightarrow f \in \mathcal{H}^1_A(\mathbb{R}^d)$
- Define for s ≥ 0 the magnetic Sobolev spaces

$$\mathcal{H}^{s}_{A}(\mathbb{R}^{d}) := \operatorname{dom} H^{s/2}_{0}$$

Definition of magnetic Sobolev spaces

- Problem: for $A \in C^{\infty}(\mathbb{R}^d; \mathbb{R}^d)$ we have in general $f \in H^1(\mathbb{R}^d) \Rightarrow f \in \mathcal{H}^1_A(\mathbb{R}^d)$
- Define for s ≥ 0 the magnetic Sobolev spaces

$$\mathcal{H}^{s}_{A}(\mathbb{R}^{d}) := \operatorname{dom} H^{s/2}_{0}$$

• For an open $\Omega \subset \mathbb{R}^d$ define

$$\mathcal{H}^{s}_{A}(\Omega) := \left\{ f|_{\Omega} : f \in \mathcal{H}^{s}_{A}(\mathbb{R}^{d}) \right\}$$

Definition of magnetic Sobolev spaces

- Problem: for $A \in C^{\infty}(\mathbb{R}^d; \mathbb{R}^d)$ we have in general $f \in H^1(\mathbb{R}^d) \Rightarrow f \in \mathcal{H}^1_A(\mathbb{R}^d)$
- Define for s ≥ 0 the magnetic Sobolev spaces

$$\mathcal{H}^{s}_{A}(\mathbb{R}^{d}) := \operatorname{dom} H^{s/2}_{0}$$

• For an open $\Omega \subset \mathbb{R}^d$ define

$$\mathcal{H}^{s}_{A}(\Omega) := \left\{ f|_{\Omega} : f \in \mathcal{H}^{s}_{A}(\mathbb{R}^{d}) \right\}$$

• $\mathcal{H}^{s}_{A}(\Omega)$, equipped with the natural norm, is a Hilbert space

Theorem

Let t > 0 and $f \in L^2(\mathbb{R}^d)$. Then:

$$\left|e^{-tH_0}f\right| \leq e^{-t(-\Delta)}|f|.$$

Theorem

Let t > 0 and $f \in L^2(\mathbb{R}^d)$. Then:

$$\left| e^{-tH_0} f \right| \leq e^{-t(-\Delta)} |f|.$$

Consequences:

• It holds for s > 0, $r \ge 0$, and $\lambda < 0$

$$(r-\lambda)^{-s} = \frac{1}{\Gamma(-\lambda)} \int_0^\infty t^{s-1} e^{-t(r-\lambda)} dt$$

Theorem

Let t > 0 and $f \in L^2(\mathbb{R}^d)$. Then:

$$\left| e^{-tH_0} f \right| \leq e^{-t(-\Delta)} |f|.$$

Consequences:

• It holds for s > 0, $r \ge 0$, and $\lambda < 0$

$$(r-\lambda)^{-s} = \frac{1}{\Gamma(-\lambda)} \int_0^\infty t^{s-1} e^{-t(r-\lambda)} dt$$

•
$$(H_0 - \lambda)^{-s} \leq (-\Delta - \lambda)^{-s}$$
 for all $s > 0$

Theorem

Let t > 0 and $f \in L^2(\mathbb{R}^d)$. Then:

$$\left| e^{-tH_0}f \right| \leq e^{-t(-\Delta)}|f|.$$

Consequences:

• It holds for s > 0, $r \ge 0$, and $\lambda < 0$

$$(r-\lambda)^{-s} = \frac{1}{\Gamma(-\lambda)} \int_0^\infty t^{s-1} e^{-t(r-\lambda)} dt$$

•
$$(H_0 - \lambda)^{-s} \le (-\Delta - \lambda)^{-s}$$
 for all $s > 0$
• $(-\Delta - \lambda)^s \le (H_0 - \lambda)^s$ for all $s > 0$

Theorem

Let t > 0 and $f \in L^2(\mathbb{R}^d)$. Then:

$$\left| e^{-tH_0}f \right| \leq e^{-t(-\Delta)}|f|.$$

Consequences:

• It holds for s > 0, $r \ge 0$, and $\lambda < 0$

$$(r-\lambda)^{-s} = \frac{1}{\Gamma(-\lambda)} \int_0^\infty t^{s-1} e^{-t(r-\lambda)} dt$$

•
$$(H_0 - \lambda)^{-s} \le (-\Delta - \lambda)^{-s}$$
 for all $s > 0$
• $(-\Delta - \lambda)^s \le (H_0 - \lambda)^s$ for all $s > 0$

Corollary

$$\mathcal{H}^{s}_{\mathcal{A}}(\mathbb{R}^{d}) \subset H^{s}(\mathbb{R}^{d})$$
 for all $s \geq 0$.

Markus Holzmann, Schrödinger operators and boundary value problems, Graz

• Let $\{\Sigma_j\}_{j=1}^N$ be a family of smooth hypersurfaces with $\sigma(\Sigma_k \cap \Sigma_l) = 0, k \neq l$

- Let $\{\Sigma_i\}_{i=1}^N$ be a family of smooth hypersurfaces with $\sigma(\Sigma_k \cap \Sigma_l) = 0, k \neq l$
- Set $\Sigma := \bigcup_{j=1}^{N} \Sigma_j$ and $\int_{\Sigma} f d\sigma := \sum_{j=1}^{N} \int_{\Sigma_j} f|_{\Sigma_j} d\sigma$

- Let $\{\Sigma_i\}_{i=1}^N$ be a family of smooth hypersurfaces with $\sigma(\Sigma_k \cap \Sigma_l) = 0, k \neq l$
- Set $\Sigma := \bigcup_{j=1}^{N} \Sigma_j$ and $\int_{\Sigma} f d\sigma := \sum_{j=1}^{N} \int_{\Sigma_j} f|_{\Sigma_j} d\sigma$
- Since $\mathcal{H}^1_A(\mathbb{R}^d) \subset H^1(\mathbb{R}^d)$, the trace $f|_{\Sigma} \in L^2(\Sigma)$ for $f \in \mathcal{H}^1_A(\mathbb{R}^d)$

- Let $\{\Sigma_i\}_{i=1}^N$ be a family of smooth hypersurfaces with $\sigma(\Sigma_k \cap \Sigma_l) = 0, k \neq l$
- Set $\Sigma := \bigcup_{j=1}^{N} \Sigma_j$ and $\int_{\Sigma} f d\sigma := \sum_{j=1}^{N} \int_{\Sigma_j} f|_{\Sigma_j} d\sigma$
- Since $\mathcal{H}^1_A(\mathbb{R}^d) \subset H^1(\mathbb{R}^d)$, the trace $f|_{\Sigma} \in L^2(\Sigma)$ for $f \in \mathcal{H}^1_A(\mathbb{R}^d)$

Corollary

For any $\alpha \in L^{\infty}(\Sigma; \mathbb{R})$ the form $\mathfrak{h}_{\Sigma}[f, g] := \int_{\Sigma} \alpha f \overline{g} d\sigma$, dom $\mathfrak{h}_{\Sigma} := \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$, is form bounded w.r.t. \mathfrak{h}_{0} with bound zero.

- Let $\{\Sigma_i\}_{i=1}^N$ be a family of smooth hypersurfaces with $\sigma(\Sigma_k \cap \Sigma_l) = 0, k \neq l$
- Set $\Sigma := \bigcup_{j=1}^{N} \Sigma_j$ and $\int_{\Sigma} f d\sigma := \sum_{j=1}^{N} \int_{\Sigma_j} f|_{\Sigma_j} d\sigma$
- Since $\mathcal{H}^1_A(\mathbb{R}^d) \subset H^1(\mathbb{R}^d)$, the trace $f|_{\Sigma} \in L^2(\Sigma)$ for $f \in \mathcal{H}^1_A(\mathbb{R}^d)$

Corollary

For any $\alpha \in L^{\infty}(\Sigma; \mathbb{R})$ the form $\mathfrak{h}_{\Sigma}[f, g] := \int_{\Sigma} \alpha f \overline{g} d\sigma$, dom $\mathfrak{h}_{\Sigma} := \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$, is form bounded w.r.t. \mathfrak{h}_{0} with bound zero.

Proof: $\forall a > 0 \exists b > 0$:

$$\mathfrak{h}_{\Sigma}[f] \leq a \|\nabla f\|^2 + b \|f\|^2$$

- Let $\{\Sigma_i\}_{i=1}^N$ be a family of smooth hypersurfaces with $\sigma(\Sigma_k \cap \Sigma_l) = 0, k \neq l$
- Set $\Sigma := \bigcup_{j=1}^{N} \Sigma_j$ and $\int_{\Sigma} f d\sigma := \sum_{j=1}^{N} \int_{\Sigma_j} f|_{\Sigma_j} d\sigma$
- Since $\mathcal{H}^1_A(\mathbb{R}^d) \subset H^1(\mathbb{R}^d)$, the trace $f|_{\Sigma} \in L^2(\Sigma)$ for $f \in \mathcal{H}^1_A(\mathbb{R}^d)$

Corollary

For any $\alpha \in L^{\infty}(\Sigma; \mathbb{R})$ the form $\mathfrak{h}_{\Sigma}[f, g] := \int_{\Sigma} \alpha f \overline{g} d\sigma$, dom $\mathfrak{h}_{\Sigma} := \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$, is form bounded w.r.t. \mathfrak{h}_{0} with bound zero.

Proof: $\forall a > 0 \exists b > 0$:

$$\mathfrak{h}_{\Sigma}[f] \leq a \|\nabla f\|^2 + b \|f\|^2 \leq a \mathfrak{h}_0[f] + b \|f\|^2$$

(diamagnetic inequality)

Markus Holzmann, Schrödinger operators and boundary value problems, Graz

• Let
$$\Sigma := \bigcup_{j=1}^{N} \Sigma_j$$
 and $\alpha \in L^{\infty}(\Sigma; \mathbb{R})$.

• Let
$$\Sigma := \bigcup_{j=1}^{N} \Sigma_j$$
 and $\alpha \in L^{\infty}(\Sigma; \mathbb{R})$.

Define

$$\mathfrak{h}_{\alpha}[f,g] := \left((-i\nabla - A)f, (-i\nabla - A)g\right) - \int_{\Sigma} \alpha f|_{\Sigma}\overline{g|_{\Sigma}} d\sigma,$$

 $\mathsf{dom}\,\mathfrak{h}_{\alpha} = \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$

• Let
$$\Sigma := \bigcup_{j=1}^{N} \Sigma_j$$
 and $\alpha \in L^{\infty}(\Sigma; \mathbb{R})$.

Define

$$\begin{split} \mathfrak{h}_{\alpha}[f,g] &:= \left((-i\nabla - \mathcal{A})f, (-i\nabla - \mathcal{A})g \right) - \int_{\Sigma} \alpha f|_{\Sigma} \overline{g|_{\Sigma}} \mathsf{d}\sigma, \\ \mathsf{dom}\, \mathfrak{h}_{\alpha} &= \mathcal{H}^{1}_{\mathcal{A}}(\mathbb{R}^{d}) \end{split}$$

 KLMN-Theorem:
 *h*_α is densely defined, closed and bounded from below

• Let
$$\Sigma := \bigcup_{j=1}^{N} \Sigma_j$$
 and $\alpha \in L^{\infty}(\Sigma; \mathbb{R})$.

Define

$$\begin{split} \mathfrak{h}_{\alpha}[f,g] &:= \left((-i\nabla - \mathcal{A})f, (-i\nabla - \mathcal{A})g \right) - \int_{\Sigma} \alpha f|_{\Sigma} \overline{g|_{\Sigma}} \mathsf{d}\sigma, \\ \mathsf{dom}\, \mathfrak{h}_{\alpha} &= \mathcal{H}^{1}_{\mathcal{A}}(\mathbb{R}^{d}) \end{split}$$

- KLMN-Theorem:
 *h*_α is densely defined, closed and bounded from below
- Associated self-adjoint operator H_α:

$$H_{\alpha} = "(-i\nabla - A)^2 - \alpha \delta_{\Sigma}"$$

• Let
$$\Sigma := \bigcup_{j=1}^{N} \Sigma_j$$
 and $\alpha \in L^{\infty}(\Sigma; \mathbb{R})$.

Define

$$\begin{split} \mathfrak{h}_{\alpha}[f,g] &:= \left((-i\nabla - \mathcal{A})f, (-i\nabla - \mathcal{A})g \right) - \int_{\Sigma} \alpha f|_{\Sigma} \overline{g|_{\Sigma}} \mathsf{d}\sigma, \\ \mathsf{dom}\, \mathfrak{h}_{\alpha} &= \mathcal{H}^{1}_{\mathcal{A}}(\mathbb{R}^{d}) \end{split}$$

- KLMN-Theorem: \mathfrak{h}_α is densely defined, closed and bounded from below
- Associated self-adjoint operator H_α:

$$H_{\alpha} = "(-i\nabla - A)^2 - \alpha \delta_{\Sigma}"$$

Remark: One can add a form bounded potential Q with relative bound < 1</p>

Markus Holzmann, Schrödinger operators and boundary value problems, Graz

Outline

1. Motivation

- 2. Magnetic Schrödinger operators with δ -potentials
 - The magnetic Schrödinger operator without potential
 - Magnetic Sobolev spaces
 - Definition of the δ -operator
- 3. Approximation by Hamiltonians with squeezed potentials
- 4. Exner-Ichinose for homogeneous magnetic fields
- 5. A quasi boundary triple

6. Outlook

14

Our operator:

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$

Our operator:

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$

Problem:

• H_{α} is used to find approximately the spectral properties of

$$H=(-i\nabla-A)^2-V,$$

where V is large around Σ and small else

Our operator:

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$

Problem:

• H_{α} is used to find approximately the spectral properties of

$$H=(-i\nabla-A)^2-V,$$

where V is large around Σ and small else

Is this really the case?

Our operator:

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$

Problem:

• H_{α} is used to find approximately the spectral properties of

$$H=(-i\nabla-A)^2-V,$$

where V is large around Σ and small else

Is this really the case?

Justification for the usage of H_{α} :

• Construct potentials V_{ε} such that $(-i\nabla - A)^2 - V_{\varepsilon} o H_{lpha}$

Our operator:

$$H_{\alpha} := (-i\nabla - A)^2 - \alpha \delta_{\Sigma}$$

Problem:

• H_{α} is used to find approximately the spectral properties of

$$H=(-i\nabla-A)^2-V,$$

where V is large around Σ and small else

Is this really the case?

Justification for the usage of H_{α} :

- Construct potentials V_{ε} such that $(-i\nabla A)^2 V_{\varepsilon} o H_{\alpha}$
- Then, spectral properties of the operators are approximately the same

Markus Holzmann, Schrödinger operators and boundary value problems, Graz

 $\Sigma_j \times (-\beta, \beta) \ni (\mathbf{x}_{\Sigma}, t) \mapsto \mathbf{x}_{\Sigma} + t \nu(\mathbf{x}_{\Sigma}) \in \mathbb{R}^d$

is injective for all j

• Assume $\exists \beta > 0$ such that

$$\Sigma_j imes (-eta,eta)
i (x_{\Sigma},t) \mapsto x_{\Sigma} + t
u(x_{\Sigma}) \in \mathbb{R}^d$$

is injective for all j

•
$$\Omega_j^{\beta} := \{ \mathbf{x}_{\Sigma} + t\nu(\mathbf{x}_{\Sigma}) : \mathbf{x}_{\Sigma} \in \Sigma_j, t \in (-\beta, \beta) \}$$

βı

• Assume $\exists \beta > 0$ such that

 $\Sigma_j \times (-\beta, \beta) \ni (\mathbf{x}_{\Sigma}, t) \mapsto \mathbf{x}_{\Sigma} + t \nu(\mathbf{x}_{\Sigma}) \in \mathbb{R}^d$

is injective for all j

•
$$\Omega_j^\beta := \{ \mathbf{x}_\Sigma + t\nu(\mathbf{x}_\Sigma) : \mathbf{x}_\Sigma \in \Sigma_j, t \in (-\beta, \beta) \}$$

• Choose real-valued $V_j \in L^{\infty}(\mathbb{R}^d)$ with supp $V_j \subset \Omega_i^{\beta}$

• Assume $\exists \beta > 0$ such that

 $\Sigma_j \times (-\beta, \beta) \ni (\mathbf{x}_{\Sigma}, t) \mapsto \mathbf{x}_{\Sigma} + t \nu(\mathbf{x}_{\Sigma}) \in \mathbb{R}^d$

is injective for all j

• Choose real-valued $V_j \in L^{\infty}(\mathbb{R}^d)$ with supp $V_j \subset \Omega_j^{\beta}$

$$V_{j,\varepsilon}(x) = \begin{cases} \frac{\beta}{\varepsilon} V_j \left(x_{\Sigma} + \frac{\beta}{\varepsilon} t \nu(x_{\Sigma}) \right), & x = x_{\Sigma} + t \nu(x_{\Sigma}) \text{ with} \\ & x_{\Sigma} \in \Sigma_j, \ t \in (-\varepsilon, \varepsilon), \\ 0, & \text{otherwise.} \end{cases}$$

 $\beta \nu$

• Assume $\exists \beta > 0$ such that

$$\Sigma_j imes (-eta,eta)
i (x_{\Sigma},t) \mapsto x_{\Sigma} + t
u(x_{\Sigma}) \in \mathbb{R}^d$$

is injective for all j

- Choose real-valued $V_j \in L^{\infty}(\mathbb{R}^d)$ with supp $V_j \subset \Omega_j^{\beta}$

$$V_{j,\varepsilon}(x) = \begin{cases} \frac{\beta}{\varepsilon} V_j \left(x_{\Sigma} + \frac{\beta}{\varepsilon} t \nu(x_{\Sigma}) \right), & x = x_{\Sigma} + t \nu(x_{\Sigma}) \text{ with} \\ & x_{\Sigma} \in \Sigma_j, \ t \in (-\varepsilon, \varepsilon), \\ 0, & \text{otherwise.} \end{cases}$$

 $= \beta/2$

• Assume $\exists \beta > 0$ such that

$$\Sigma_j \times (-\beta, \beta) \ni (\mathbf{x}_{\Sigma}, t) \mapsto \mathbf{x}_{\Sigma} + t\nu(\mathbf{x}_{\Sigma}) \in \mathbb{R}^d$$

is injective for all j

- $\Omega_j^\beta := \{ \mathbf{x}_{\Sigma} + t\nu(\mathbf{x}_{\Sigma}) : \mathbf{x}_{\Sigma} \in \Sigma_j, t \in (-\beta, \beta) \}$
- Choose real-valued $V_j \in L^\infty(\mathbb{R}^d)$ with supp $V_j \subset \Omega_j^\beta$

$$V_{j,\varepsilon}(x) = \begin{cases} \frac{\beta}{\varepsilon} V_j \left(x_{\Sigma} + \frac{\beta}{\varepsilon} t \nu(x_{\Sigma}) \right), & x = x_{\Sigma} + t \nu(x_{\Sigma}) \text{ with} \\ & x_{\Sigma} \in \Sigma_j, \ t \in (-\varepsilon, \varepsilon), \\ 0, & \text{otherwise.} \end{cases}$$

 $= \beta/2$

•
$$(-i\nabla - A)^2 - \sum_{j=1}^N V_{j,\varepsilon}$$
 is self-adjoint on $\mathcal{H}^2_A(\mathbb{R}^d)$

Markus Holzmann, Schrödinger operators and boundary value problems, Graz

The result

Theorem

Define $\alpha \in L^{\infty}(\Sigma)$ as

$$lpha(\mathbf{x}_{\Sigma}) := \int_{-\beta}^{\beta} V_j(\mathbf{x}_{\Sigma} + \mathbf{s}\nu(\mathbf{x}_{\Sigma})) \mathrm{d}\mathbf{s}, \quad \mathbf{x}_{\Sigma} \in \Sigma_j,$$

and let $\lambda \ll 0$. Then there exists c > 0 such that

$$\left\|\left((-i\nabla - A)^2 - \sum_{j=1}^N V_{j,\varepsilon} - \lambda\right)^{-1} - (H_\alpha - \lambda)^{-1}\right\| \leq c\varepsilon$$

for small $\varepsilon > 0$. In particular $(-i\nabla - A)^2 - \sum_{j=1}^N V_{j,\varepsilon}$ converge to H_{α} in the norm resolvent sense.

• Let
$$\mathfrak{h}_{\varepsilon}[f,g] := \mathfrak{h}_{0}[f,g] - \sum_{j=1}^{N} (V_{j,\varepsilon}f,g)$$
, dom $\mathfrak{h}_{\varepsilon} = \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$

- Let $\mathfrak{h}_{\varepsilon}[f,g] := \mathfrak{h}_{0}[f,g] \sum_{j=1}^{N} (V_{j,\varepsilon}f,g)$, dom $\mathfrak{h}_{\varepsilon} = \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$
- It holds for $f,g\in \mathit{C}^\infty_0(\mathbb{R}^d)$

$$\left|\mathfrak{h}_{\alpha}[f,g]-\mathfrak{h}_{\varepsilon}[f,g]\right|=\left|\int_{\Sigma}lpha f|_{\Sigma}\overline{g|_{\Sigma}}d\sigma-\sum_{j=1}^{N}(V_{j\varepsilon}f,g)
ight|$$

- Let $\mathfrak{h}_{\varepsilon}[f,g] := \mathfrak{h}_{0}[f,g] \sum_{j=1}^{N} (V_{j,\varepsilon}f,g)$, dom $\mathfrak{h}_{\varepsilon} = \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$
- It holds for $f,g\in \textit{C}_{0}^{\infty}(\mathbb{R}^{d})$

$$\begin{split} \left| \mathfrak{h}_{\alpha}[f,g] - \mathfrak{h}_{\varepsilon}[f,g] \right| &= \left| \int_{\Sigma} \alpha f|_{\Sigma} \overline{g|_{\Sigma}} \mathsf{d}\sigma - \sum_{j=1}^{N} (V_{j\varepsilon}f,g) \right| \\ &\leq \sum_{j=1}^{N} \left| \int_{\Sigma_{j}} \alpha f|_{\Sigma_{j}} \overline{g|_{\Sigma_{j}}} \mathsf{d}\sigma - (V_{j,\varepsilon}f,g) \right| \end{split}$$

- Let $\mathfrak{h}_{\varepsilon}[f,g] := \mathfrak{h}_{0}[f,g] \sum_{j=1}^{N} (V_{j,\varepsilon}f,g)$, dom $\mathfrak{h}_{\varepsilon} = \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$
- It holds for $f,g\in \mathit{C}^\infty_0(\mathbb{R}^d)$

$$\begin{split} \left| \mathfrak{h}_{\alpha}[f,g] - \mathfrak{h}_{\varepsilon}[f,g] \right| &= \left| \int_{\Sigma} \alpha f|_{\Sigma} \overline{g|_{\Sigma}} \mathsf{d}\sigma - \sum_{j=1}^{N} (V_{j\varepsilon}f,g) \right| \\ &\leq \sum_{j=1}^{N} \left| \int_{\Sigma_{j}} \alpha f|_{\Sigma_{j}} \overline{g|_{\Sigma_{j}}} \mathsf{d}\sigma - (V_{j,\varepsilon}f,g) \right| \\ &\leq c\varepsilon \|f\|_{H^{1}} \|g\|_{H^{1}} \end{split}$$

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f,g] := \mathfrak{h}_{0}[f,g] \sum_{j=1}^{N} (V_{j,\varepsilon}f,g)$, dom $\mathfrak{h}_{\varepsilon} = \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$
- It holds for $f,g\in \textit{C}_{0}^{\infty}(\mathbb{R}^{d})$

$$\begin{split} \left| \mathfrak{h}_{\alpha}[f,g] - \mathfrak{h}_{\varepsilon}[f,g] \right| &= \left| \int_{\Sigma} \alpha f|_{\Sigma} \overline{g|_{\Sigma}} \mathsf{d}\sigma - \sum_{j=1}^{N} (V_{j\varepsilon}f,g) \right| \\ &\leq \sum_{j=1}^{N} \left| \int_{\Sigma_{j}} \alpha f|_{\Sigma_{j}} \overline{g|_{\Sigma_{j}}} \mathsf{d}\sigma - (V_{j,\varepsilon}f,g) \right| \\ &\leq c \varepsilon \|f\|_{H^{1}} \|g\|_{H^{1}} \leq c \varepsilon \mathfrak{h}_{\alpha}[f]^{1/2} \mathfrak{h}_{\varepsilon}[g]^{1/2} \end{split}$$

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f,g] := \mathfrak{h}_{0}[f,g] \sum_{j=1}^{N} (V_{j,\varepsilon}f,g), \operatorname{dom} \mathfrak{h}_{\varepsilon} = \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$
- It holds for $f,g\in \textit{C}_{0}^{\infty}(\mathbb{R}^{d})$

$$\begin{split} \left| \mathfrak{h}_{\alpha}[f,g] - \mathfrak{h}_{\varepsilon}[f,g] \right| &= \left| \int_{\Sigma} \alpha f|_{\Sigma} \overline{g|_{\Sigma}} \mathsf{d}\sigma - \sum_{j=1}^{N} (V_{j\varepsilon}f,g) \right| \\ &\leq \sum_{j=1}^{N} \left| \int_{\Sigma_{j}} \alpha f|_{\Sigma_{j}} \overline{g|_{\Sigma_{j}}} \mathsf{d}\sigma - (V_{j,\varepsilon}f,g) \right| \\ &\leq c\varepsilon \|f\|_{H^{1}} \|g\|_{H^{1}} \leq c\varepsilon \mathfrak{h}_{\alpha}[f]^{1/2} \mathfrak{h}_{\varepsilon}[g]^{1/2} \end{split}$$

This implies then the claim

Sketch of the proof

- Let $\mathfrak{h}_{\varepsilon}[f,g] := \mathfrak{h}_{0}[f,g] \sum_{j=1}^{N} (V_{j,\varepsilon}f,g)$, dom $\mathfrak{h}_{\varepsilon} = \mathcal{H}^{1}_{A}(\mathbb{R}^{d})$
- It holds for $f,g\in C_0^\infty(\mathbb{R}^d)$

$$\begin{split} \left| \mathfrak{h}_{\alpha}[f,g] - \mathfrak{h}_{\varepsilon}[f,g] \right| &= \left| \int_{\Sigma} \alpha f|_{\Sigma} \overline{g|_{\Sigma}} \mathsf{d}\sigma - \sum_{j=1}^{N} (V_{j\varepsilon}f,g) \right| \\ &\leq \sum_{j=1}^{N} \left| \int_{\Sigma_{j}} \alpha f|_{\Sigma_{j}} \overline{g|_{\Sigma_{j}}} \mathsf{d}\sigma - (V_{j,\varepsilon}f,g) \right| \\ &\leq c\varepsilon \|f\|_{H^{1}} \|g\|_{H^{1}} \leq c\varepsilon \mathfrak{h}_{\alpha}[f]^{1/2} \mathfrak{h}_{\varepsilon}[g]^{1/2} \end{split}$$

- This implies then the claim
- Adding a form bounded potential Q does not change the argument

Statement

Known

New

Statement	Known	New
Magnetic field	No	Yes

Statement	Known	New
Magnetic field	No	Yes
Allowed for Σ	hypersurface	networks

Statement	Known	New
Magnetic field	No	Yes
Allowed for Σ	hypersurface	networks
Order of convergence	$\varepsilon(1+ \ln\varepsilon)$	ε

_

Statement	Known	New
Magnetic field	No	Yes
Allowed for Σ	hypersurface	networks
Order of convergence	$\varepsilon(1 + \ln \varepsilon)$	ε
Additive potential Q	bounded	form bdd.

Outline

1. Motivation

- 2. Magnetic Schrödinger operators with δ -potentials
 - The magnetic Schrödinger operator without potential
 - Magnetic Sobolev spaces
 - Definition of the δ -operator
- 3. Approximation by Hamiltonians with squeezed potentials

4. Exner-Ichinose for homogeneous magnetic fields

5. A quasi boundary triple

6. Outlook

Assume from now on d = 2 and B = const.

- Assume from now on d = 2 and B = const.
- Possible choices for A (gauge invariance):

•
$$A = \frac{B}{2}(-y, x)^{\top}$$

• $A = B(-y, 0)^{\top}$

- Assume from now on d = 2 and B = const.
- Possible choices for A (gauge invariance):

•
$$A = \frac{B}{2}(-y, x)^{\top}$$

• $A = B(-y, 0)^{\top}$

• Physical interpretation: $(0, 0, B)^{\top} = \nabla \times (A, 0)^{\top}$

- Assume from now on d = 2 and B = const.
- Possible choices for A (gauge invariance):

•
$$A = \frac{B}{2}(-y, x)^{\top}$$

• $A = B(-y, 0)^{\top}$

Physical interpretation: (0, 0, B)^T = ∇ × (A, 0)^T, i.e. the magnetic field is perpendicular to the plane

- Assume from now on d = 2 and B = const.
- Possible choices for A (gauge invariance):

•
$$A = \frac{B}{2}(-y, x)^{\top}$$

• $A = B(-y, 0)^{\top}$

Physical interpretation: (0, 0, B)^T = ∇ × (A, 0)^T, i.e. the magnetic field is perpendicular to the plane

• For
$$\lambda \in \rho((-i\nabla - A)^2)$$
 it holds

$$\left((-i\nabla - A)^2 - \lambda\right)^{-1} f(x) = \int_{\mathbb{R}^2} G^A_\lambda(x, y) f(y) dy,$$

where G_{λ}^{A} is explicitely given by a combination of

- an irregular confluent hypergeometric function
- an in general complex valued function

Markus Holzmann, Schrödinger operators and boundary value problems, Graz

• Let $\Gamma := \{ (0, s)^\top : s \in \mathbb{R} \}$

- Let $\Gamma := \{ (\mathbf{0}, \boldsymbol{s})^\top : \boldsymbol{s} \in \mathbb{R} \}$
- Assume that Σ is a compact perturbation of Γ without self-intersections

- Let $\Gamma := \{ (\mathbf{0}, \boldsymbol{s})^\top : \boldsymbol{s} \in \mathbb{R} \}$
- Assume that Σ is a compact perturbation of Γ without self-intersections

Theorem (Exner-Ichinose '01)

Assume that $\Sigma \neq \Gamma$ and $\alpha > 0$ is constant. Then, $\sigma_{\text{disc}}(-\Delta - \alpha \delta_{\Sigma}) \neq \emptyset$.

- Let $\Gamma := \{ (\mathbf{0}, \boldsymbol{s})^\top : \boldsymbol{s} \in \mathbb{R} \}$
- Assume that Σ is a compact perturbation of Γ without self-intersections

Theorem (Exner-Ichinose '01)

Assume that $\Sigma \neq \Gamma$ and $\alpha > 0$ is constant. Then, $\sigma_{\text{disc}}(-\Delta - \alpha \delta_{\Sigma}) \neq \emptyset$.

Goal: Prove a similar result for $B \neq 0$

Use Birman-Schwinger principle:

$$(-\infty, 0) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow 1 \in \sigma(\alpha M_{\Sigma}(\lambda))$$

with $M_{\Sigma}(\lambda) : L^{2}(\Sigma) \to L^{2}(\Sigma), M_{\Sigma}(\lambda)\varphi(x) = \int_{\Sigma} G^{0}_{\lambda}(x, y)\varphi(y) d\sigma$

Use Birman-Schwinger principle:

$$(-\infty, 0) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow 1 \in \sigma(\alpha M_{\Sigma}(\lambda))$$

with $M_{\Sigma}(\lambda) : L^{2}(\Sigma) \to L^{2}(\Sigma), M_{\Sigma}(\lambda)\varphi(x) = \int_{\Sigma} G^{0}_{\lambda}(x, y)\varphi(y) d\sigma$
For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$

Use Birman-Schwinger principle:

$$(-\infty, 0) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow 1 \in \sigma(\alpha M_{\Sigma}(\lambda))$$

with $M_{\Sigma}(\lambda) : L^{2}(\Sigma) \to L^{2}(\Sigma), M_{\Sigma}(\lambda)\varphi(x) = \int_{\Sigma} G^{0}_{\lambda}(x, y)\varphi(y) d\sigma$
For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
For $\Sigma \neq \Gamma$ parametrize Σ by its are length

• For $\Sigma \neq \Gamma$ parametrize Σ by its arc length

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a test function ψ such that $(\alpha M_{\Sigma}(\lambda)\psi,\psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a test function ψ such that $(\alpha M_{\Sigma}(\lambda)\psi, \psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a test function ψ such that $(\alpha M_{\Sigma}(\lambda)\psi, \psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

What is still true for $B \neq 0$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma(-\Delta - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a test function ψ such that $(\alpha M_{\Sigma}(\lambda)\psi, \psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

What is still true for $B \neq 0$

Use Birman-Schwinger principle:

$$(-\infty,\mathbf{0}) \ni \lambda \in \sigma((-i\nabla - A)^2 - \alpha\delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a test function ψ such that $(\alpha M_{\Sigma}(\lambda)\psi, \psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

• Choose
$$A = -B(y, 0)^{\top}$$

- Choose $A = -B(y, 0)^{\top}$
- Fourier transform w.r.t. x:

$$(-i\nabla - A)^2 - \alpha\delta_{\Gamma} \sim \int (-\partial_{yy} + (By - \xi)^2 - \alpha\delta_0) d\xi$$

- Choose $A = -B(y, 0)^{\top}$
- Fourier transform w.r.t. x:

$$(-i\nabla - A)^2 - \alpha \delta_{\Gamma} \sim \int (-\partial_{yy} + (By - \xi)^2 - \alpha \delta_0) d\xi$$

 $\sim \frac{1}{B} \int (-B^{-2}\partial_{tt} + t^2 - \alpha \delta_{-\xi}) d\xi$

- Choose $A = -B(y, 0)^{\top}$
- Fourier transform w.r.t. x:

$$(-i\nabla - A)^2 - \alpha \delta_{\Gamma} \sim \int (-\partial_{yy} + (By - \xi)^2 - \alpha \delta_0) d\xi$$

 $\sim \frac{1}{B} \int (-B^{-2}\partial_{tt} + t^2 - \alpha \delta_{-\xi}) d\xi$

• Spectrum of $(-i\nabla - A)^2 - \alpha \delta_{\Gamma}$ has a band structure

- Choose $A = -B(y, 0)^{\top}$
- Fourier transform w.r.t. x:

$$(-i\nabla - A)^2 - \alpha \delta_{\Gamma} \sim \int (-\partial_{yy} + (By - \xi)^2 - \alpha \delta_0) d\xi$$

 $\sim \frac{1}{B} \int (-B^{-2}\partial_{tt} + t^2 - \alpha \delta_{-\xi}) d\xi$

- Spectrum of $(-i\nabla A)^2 \alpha \delta_{\Gamma}$ has a band structure
- Literature on harmonic oscillators with δ -point interactions [Fassari-Inglese '97]

$$\min \sigma \left((-i\nabla - \mathbf{A})^2 - \alpha \delta_{\Gamma} \right) = \min \sigma \left(\mathbf{B}^{-1} \left(-\mathbf{B}^{-2} \partial_{tt} + t^2 - \alpha \delta_0 \right) \right)$$

- Choose $A = -B(y, 0)^{\top}$
- Fourier transform w.r.t. x:

$$(-i\nabla - A)^2 - \alpha \delta_{\Gamma} \sim \int (-\partial_{yy} + (By - \xi)^2 - \alpha \delta_0) d\xi$$

 $\sim \frac{1}{B} \int (-B^{-2}\partial_{tt} + t^2 - \alpha \delta_{-\xi}) d\xi$

- Spectrum of $(-i\nabla A)^2 \alpha \delta_{\Gamma}$ has a band structure
- Literature on harmonic oscillators with δ -point interactions [Fassari-Inglese '97]

$$\min \sigma \left((-i\nabla - \mathbf{A})^2 - \alpha \delta_{\Gamma} \right) = \min \sigma \left(\mathbf{B}^{-1} \left(-\mathbf{B}^{-2} \partial_{tt} + t^2 - \alpha \delta_0 \right) \right)$$

The last number is the solution an algebraic equation

- Choose $A = -B(y, 0)^{\top}$
- Fourier transform w.r.t. x:

$$(-i\nabla - A)^2 - \alpha \delta_{\Gamma} \sim \int (-\partial_{yy} + (By - \xi)^2 - \alpha \delta_0) d\xi$$

 $\sim \frac{1}{B} \int (-B^{-2}\partial_{tt} + t^2 - \alpha \delta_{-\xi}) d\xi$

- Spectrum of $(-i\nabla A)^2 \alpha \delta_{\Gamma}$ has a band structure
- Literature on harmonic oscillators with δ -point interactions [Fassari-Inglese '97]

$$\min \sigma \left((-i\nabla - \mathbf{A})^2 - \alpha \delta_{\Gamma} \right) = \min \sigma \left(\mathbf{B}^{-1} \left(-\mathbf{B}^{-2} \partial_{tt} + t^2 - \alpha \delta_0 \right) \right)$$

- The last number is the solution an algebraic equation
- Birman-Schwinger principle gives upper bound for σ(M_Γ(λ))

Use Birman-Schwinger principle:

$$(-\infty,\mathbf{0}) \ni \lambda \in \sigma((-i\nabla - A)^2 - \alpha\delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a ψ such that $(M_{\Sigma}(\lambda)\psi,\psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma((-i\nabla - \mathbf{A})^2 - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a ψ such that $(M_{\Sigma}(\lambda)\psi,\psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma((-i\nabla - \mathbf{A})^2 - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a ψ such that $(M_{\Sigma}(\lambda)\psi,\psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma((-i\nabla - \mathbf{A})^2 - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a ψ such that $(M_{\Sigma}(\lambda)\psi,\psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma((-i\nabla - \mathbf{A})^2 - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a ψ such that $(M_{\Sigma}(\lambda)\psi, \psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma((-i\nabla - \mathbf{A})^2 - \alpha\delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha M_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a ψ such that $(M_{\Sigma}(\lambda)\psi,\psi) > \frac{\alpha}{2\sqrt{-\lambda}} \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \frac{\alpha}{2\sqrt{-\lambda}} = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma((-i\nabla - \mathbf{A})^2 - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha \mathbf{M}_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of M_Σ(λ) depend continuously on λ
- Construct a ψ such that $(M_{\Sigma}(\lambda)\psi,\psi) > \sup \sigma(M_{\Gamma}(\lambda)) \|\psi\|^2$ $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \sup \sigma(\alpha M_{\Gamma}(\lambda)) = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma((-i\nabla - \mathbf{A})^2 - \alpha \delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha \mathbf{M}_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $(M_{\Sigma}(\lambda)\psi,\psi) > \sup \sigma(M_{\Gamma}(\lambda)) \|\psi\|^2$??? $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \sup \sigma(\alpha M_{\Gamma}(\lambda)) = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma_{disc}(-\Delta \alpha \delta_{\Sigma}) \neq \emptyset$

Use Birman-Schwinger principle:

$$(-\infty, \mathbf{0}) \ni \lambda \in \sigma((-i\nabla - \mathbf{A})^2 - \alpha\delta_{\Sigma}) \Leftrightarrow \mathbf{1} \in \sigma(\alpha \mathbf{M}_{\Sigma}(\lambda))$$

- For $\Sigma = \Gamma$ and $\lambda < 0$ show $\sigma(\alpha M_{\Gamma}(\lambda)) = \left[0, \frac{\alpha}{2\sqrt{-\lambda}}\right]$
- For $\Sigma \neq \Gamma$ parametrize Σ by its arc length
- Rewrite $M_{\Sigma}(\lambda)$ in these coordinates $\Rightarrow M_{\Sigma}(\lambda), M_{\Gamma}(\lambda) : L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$
- $M_{\Gamma}(\lambda) M_{\Sigma}(\lambda)$ is compact $\Rightarrow \sigma_{ess}(M_{\Sigma}(\lambda)) = \sigma_{ess}(M_{\Gamma}(\lambda))$
- Show: Eigenvalues of $M_{\Sigma}(\lambda)$ depend continuously on λ
- Construct a ψ such that $(M_{\Sigma}(\lambda)\psi,\psi) > \sup \sigma(M_{\Gamma}(\lambda)) \|\psi\|^2$??? $\Rightarrow \sup \sigma(\alpha M_{\Sigma}(\lambda)) > \sup \sigma(\alpha M_{\Gamma}(\lambda)) = \sup \sigma_{ess}(\alpha M_{\Sigma}(\lambda))$
- Use Birman-Schwinger to show $\sigma((-i\nabla A)^2 \alpha\delta_{\Sigma}) \neq \emptyset$ \checkmark

Outline

1. Motivation

- 2. Magnetic Schrödinger operators with δ -potentials
 - The magnetic Schrödinger operator without potential
 - Magnetic Sobolev spaces
 - Definition of the δ -operator
- 3. Approximation by Hamiltonians with squeezed potentials
- 4. Exner-Ichinose for homogeneous magnetic fields
- 5. A quasi boundary triple

6. Outlook

 In this section: Σ ⊂ ℝ^d is the boundary of a smooth bounded domain Ω₊ with outer normal vector field ν

- In this section: Σ ⊂ ℝ^d is the boundary of a smooth bounded domain Ω₊ with outer normal vector field ν
- $\Omega_- := \mathbb{R}^d \setminus \overline{\Omega_+}$

- In this section: Σ ⊂ ℝ^d is the boundary of a smooth bounded domain Ω₊ with outer normal vector field ν
- $\Omega_- := \mathbb{R}^d \setminus \overline{\Omega_+}$
- Define

$$Sf := (-i
abla - A)^2 f, \quad \operatorname{dom} S = \left\{ f \in \mathcal{H}^2_A(\mathbb{R}^d) : f|_{\Sigma} = 0
ight\}$$

- In this section: Σ ⊂ ℝ^d is the boundary of a smooth bounded domain Ω₊ with outer normal vector field ν
- $\Omega_- := \mathbb{R}^d \setminus \overline{\Omega_+}$

.

Define

$$Sf := (-i
abla - A)^2 f, \quad \operatorname{dom} S = \left\{ f \in \mathcal{H}^2_A(\mathbb{R}^d) : f|_{\Sigma} = 0
ight\}$$

and

$$Tf := \left((-i\nabla - A)^2 f_+ \right) \oplus \left((-i\nabla - A)^2 f_- \right)$$

dom $T := \left\{ f = f_+ \oplus f_- \in \mathcal{H}^2_A(\Omega_+) \oplus \mathcal{H}^2_A(\Omega_-) : f_+|_{\Sigma} = f_-|_{\Sigma} \right\}$

$$Tf := \left((-i\nabla - A)^2 f_+ \right) \oplus \left((-i\nabla - A)^2 f_- \right)$$

dom $T := \left\{ f = f_+ \oplus f_- \in \mathcal{H}^2_A(\Omega_+) \oplus \mathcal{H}^2_A(\Omega_-) : f_+|_{\Sigma} = f_-|_{\Sigma} \right\}$

$$\begin{split} \mathcal{T}f &:= \left((-i\nabla - A)^2 f_+ \right) \oplus \left((-i\nabla - A)^2 f_- \right) \\ \text{dom } \mathcal{T} &:= \left\{ f = f_+ \oplus f_- \in \mathcal{H}^2_A(\Omega_+) \oplus \mathcal{H}^2_A(\Omega_-) : f_+|_{\Sigma} = f_-|_{\Sigma} \right\} \\ \bullet \text{ Define } \Gamma_0, \Gamma_1 : \text{dom } \mathcal{T} \to \mathcal{L}^2(\Sigma) \text{ by} \\ \Gamma_0 f &= \partial_{\nu} f_+|_{\Sigma} - \partial_{\nu} f_-|_{\Sigma} \quad \text{and} \quad \Gamma_1 f = f|_{\Sigma} \end{split}$$

 $Tf := \left((-i\nabla - A)^2 f_+ \right) \oplus \left((-i\nabla - A)^2 f_- \right)$ dom $T := \left\{ f = f_+ \oplus f_- \in \mathcal{H}^2_A(\Omega_+) \oplus \mathcal{H}^2_A(\Omega_-) : f_+|_{\Sigma} = f_-|_{\Sigma} \right\}$

• Define $\Gamma_0, \Gamma_1 : \text{dom } T \to L^2(\Sigma)$ by

$$\Gamma_0 f = \partial_{\nu} f_+|_{\Sigma} - \partial_{\nu} f_-|_{\Sigma}$$
 and $\Gamma_1 f = f|_{\Sigma}$

• It holds for all $f, g \in \text{dom } T$

$$((-i\nabla - \mathbf{A})^2 f_+, \mathbf{g}_+)_{\Omega_+} - (f_+, (-i\nabla - \mathbf{A})^2 \mathbf{g}_+)_{\Omega_+} = (f|_{\Sigma}, (\partial_{\nu} - i\nu\mathbf{A})\mathbf{g}_+|_{\Sigma})_{\Sigma} - ((\partial_{\nu} - i\nu\mathbf{A})f_+|_{\Sigma}, \mathbf{g}|_{\Sigma})_{\Sigma}$$

 $Tf := \left((-i\nabla - A)^2 f_+ \right) \oplus \left((-i\nabla - A)^2 f_- \right)$ dom $T := \left\{ f = f_+ \oplus f_- \in \mathcal{H}^2_A(\Omega_+) \oplus \mathcal{H}^2_A(\Omega_-) : f_+|_{\Sigma} = f_-|_{\Sigma} \right\}$

• Define $\Gamma_0, \Gamma_1 : \text{dom } T \to L^2(\Sigma)$ by

$$\Gamma_0 f = \partial_{\nu} f_+|_{\Sigma} - \partial_{\nu} f_-|_{\Sigma}$$
 and $\Gamma_1 f = f|_{\Sigma}$

• It holds for all $f, g \in \text{dom } T$

$$((-i\nabla - A)^2 f_{\pm}, g_{\pm})_{\Omega_{\pm}} - (f_{\pm}, (-i\nabla - A)^2 g_{\pm})_{\Omega_{\pm}} = \pm (f|_{\Sigma}, (\partial_{\nu} - i\nu A)g_{\pm}|_{\Sigma})_{\Sigma} \mp ((\partial_{\nu} - i\nu A)f_{\pm}|_{\Sigma}, g|_{\Sigma})_{\Sigma}$$

 $Tf := \left((-i\nabla - A)^2 f_+ \right) \oplus \left((-i\nabla - A)^2 f_- \right)$ dom $T := \left\{ f = f_+ \oplus f_- \in \mathcal{H}^2_A(\Omega_+) \oplus \mathcal{H}^2_A(\Omega_-) : f_+|_{\Sigma} = f_-|_{\Sigma} \right\}$

• Define $\Gamma_0, \Gamma_1 : \text{dom } T \to L^2(\Sigma)$ by

$$\Gamma_0 f = \partial_{\nu} f_+|_{\Sigma} - \partial_{\nu} f_-|_{\Sigma}$$
 and $\Gamma_1 f = f|_{\Sigma}$

• It holds for all $f, g \in \text{dom } T$

$$((-i\nabla - A)^2 f_{\pm}, g_{\pm})_{\Omega_{\pm}} - (f_{\pm}, (-i\nabla - A)^2 g_{\pm})_{\Omega_{\pm}} = \pm (f|_{\Sigma}, (\partial_{\nu} - i\nu A)g_{\pm}|_{\Sigma})_{\Sigma} \mp ((\partial_{\nu} - i\nu A)f_{\pm}|_{\Sigma}, g|_{\Sigma})_{\Sigma}$$

and hence

$$(Tf,g)_{\mathbb{R}^d} - (f,Tg)_{\mathbb{R}^d} = (\Gamma_1 f,\Gamma_0 g)_{\Sigma} - (\Gamma_0 f,\Gamma_1 g)_{\Sigma}$$

 $Tf := ((-i\nabla - A)^2 f_+) \oplus ((-i\nabla - A)^2 f_-)$ dom $T := \{ f = f_+ \oplus f_- \in \mathcal{H}^2_A(\Omega_+) \oplus \mathcal{H}^2_A(\Omega_-) : f_+|_{\Sigma} = f_-|_{\Sigma} \}$ • Define $\Gamma_0, \Gamma_1 : \text{dom } T \to L^2(\Sigma)$ by

$$\Gamma_0 f = \partial_{\nu} f_+|_{\Sigma} - \partial_{\nu} f_-|_{\Sigma}$$
 and $\Gamma_1 f = f|_{\Sigma}$

• It holds for all $f, g \in \text{dom } T$

$$(Tf,g)_{\mathbb{R}^d}-(f,Tg)_{\mathbb{R}^d}=(\Gamma_1f,\Gamma_0g)_{\Sigma}-(\Gamma_0f,\Gamma_1g)_{\Sigma}$$

• ran
$$(\Gamma_0,\Gamma_1) = H^{1/2}(\Sigma) \times H^{3/2}(\Sigma)$$

 $Tf := \left((-i\nabla - A)^2 f_+ \right) \oplus \left((-i\nabla - A)^2 f_- \right)$ dom $T := \left\{ f = f_+ \oplus f_- \in \mathcal{H}^2_A(\Omega_+) \oplus \mathcal{H}^2_A(\Omega_-) : f_+|_{\Sigma} = f_-|_{\Sigma} \right\}$ Define $\Gamma_- \Gamma_-$ dom $T_- = I^2(\Sigma)$ by

• Define $\Gamma_0, \Gamma_1 : \text{dom } T \to L^2(\Sigma)$ by

$$\Gamma_0 f = \partial_{\nu} f_+|_{\Sigma} - \partial_{\nu} f_-|_{\Sigma}$$
 and $\Gamma_1 f = f|_{\Sigma}$

• It holds for all $f, g \in \text{dom } T$

$$(Tf,g)_{\mathbb{R}^d}-(f,Tg)_{\mathbb{R}^d}=(\Gamma_1f,\Gamma_0g)_{\Sigma}-(\Gamma_0f,\Gamma_1g)_{\Sigma}$$

• ran(Γ_0, Γ_1) = $H^{1/2}(\Sigma) \times H^{3/2}(\Sigma)$ • $A_0 := T \upharpoonright \ker \Gamma_0$ is the free operator $(-i\nabla - A)^2$ in $L^2(\mathbb{R}^d)$

 $Tf := \left((-i\nabla - A)^2 f_+ \right) \oplus \left((-i\nabla - A)^2 f_- \right)$ dom $T := \left\{ f = f_+ \oplus f_- \in \mathcal{H}^2_A(\Omega_+) \oplus \mathcal{H}^2_A(\Omega_-) : f_+|_{\Sigma} = f_-|_{\Sigma} \right\}$

• Define $\Gamma_0, \Gamma_1 : \text{dom } T \to L^2(\Sigma)$ by

$$\Gamma_0 f = \partial_{\nu} f_+|_{\Sigma} - \partial_{\nu} f_-|_{\Sigma}$$
 and $\Gamma_1 f = f|_{\Sigma}$

• It holds for all $f, g \in \text{dom } T$

$$(\mathit{Tf}, g)_{\mathbb{R}^d} - (\mathit{f}, \mathit{Tg})_{\mathbb{R}^d} = (\Gamma_1 \mathit{f}, \Gamma_0 g)_{\Sigma} - (\Gamma_0 \mathit{f}, \Gamma_1 g)_{\Sigma}$$

• ran
$$(\Gamma_0, \Gamma_1) = H^{1/2}(\Sigma) \times H^{3/2}(\Sigma)$$

• $A_0 := T \upharpoonright \ker \Gamma_0$ is the free operator $(-i\nabla - A)^2$ in $L^2(\mathbb{R}^d)$
• $\Rightarrow \{L^2(\Sigma), \Gamma_0, \Gamma_1\}$ is a quasi boundary triple for S^*

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_{\alpha} := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$, i.e.

$$A_{\alpha}^{Q} f := \left((-i\nabla - A)^{2} f_{+} \right) \oplus \left((-i\nabla - A)^{2} f_{-} \right)$$

$$\operatorname{dom} A_{\alpha}^{Q} := \left\{ f = f_{+} \oplus f_{-} \in \operatorname{dom} T : \partial_{\nu} f_{+}|_{\Sigma} - \partial_{\nu} f_{-}|_{\Sigma} = \alpha f|_{\Sigma} \right\}$$

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_{\alpha} := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$, i.e.

$$\begin{aligned} A^{Q}_{\alpha}f &:= \left((-i\nabla - A)^{2}f_{+} \right) \oplus \left((-i\nabla - A)^{2}f_{-} \right) \\ \operatorname{\mathsf{dom}} A^{Q}_{\alpha} &:= \left\{ f = f_{+} \oplus f_{-} \in \operatorname{\mathsf{dom}} T : \partial_{\nu}f_{+}|_{\Sigma} - \partial_{\nu}f_{-}|_{\Sigma} = \alpha f|_{\Sigma} \right\} \end{aligned}$$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_\alpha := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

Sketch of the proof:

• Green's formula: A^Q_{α} is symmetric

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_\alpha := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

- Green's formula: A^Q_{α} is symmetric
- We verify: $ran(A^Q_{\alpha} \lambda) = L^2(\mathbb{R}^d)$ for $\lambda \in \mathbb{C} \setminus \mathbb{R}$

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_\alpha := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

- Green's formula: A^Q_{α} is symmetric
- We verify: $ran(A^Q_{\alpha} \lambda) = L^2(\mathbb{R}^d)$ for $\lambda \in \mathbb{C} \setminus \mathbb{R}$
- $f \in \operatorname{ran}(A^Q_{\alpha} \lambda)$ iff $\Gamma_1((-i\nabla A)^2 \lambda)^{-1} f \in \operatorname{ran}(1 \alpha \widetilde{M}(\lambda))$ for some operator $\widetilde{M}(\lambda)$

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_\alpha := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

- Green's formula: A^Q_{α} is symmetric
- We verify: $ran(A^Q_{\alpha} \lambda) = L^2(\mathbb{R}^d)$ for $\lambda \in \mathbb{C} \setminus \mathbb{R}$
- $f \in \operatorname{ran}(A^Q_{\alpha} \lambda)$ iff $\Gamma_1((-i\nabla A)^2 \lambda)^{-1} f \in \operatorname{ran}(1 \alpha \widetilde{M}(\lambda))$ for some operator $\widetilde{M}(\lambda)$
- $\widetilde{M}(\lambda): H^{1/2}(\Sigma) o H^{3/2}(\Sigma)$ is bounded

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_\alpha := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

- Green's formula: A^Q_{α} is symmetric
- We verify: $ran(A^Q_{\alpha} \lambda) = L^2(\mathbb{R}^d)$ for $\lambda \in \mathbb{C} \setminus \mathbb{R}$
- $f \in \operatorname{ran}(A^Q_{\alpha} \lambda)$ iff $\Gamma_1((-i\nabla A)^2 \lambda)^{-1} f \in \operatorname{ran}(1 \alpha \widetilde{M}(\lambda))$ for some operator $\widetilde{M}(\lambda)$
- $\widetilde{M}(\lambda): H^{1/2}(\Sigma) \to H^{3/2}(\Sigma)$ is bounded
- $ran(1 \alpha \widetilde{M}(\lambda)) = H^{1/2}(\Sigma)$ by Fredholm's alternative

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_{\alpha} := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

Sketch of the proof:

- Green's formula: A^Q_{α} is symmetric
- We verify: $ran(A^Q_{\alpha} \lambda) = L^2(\mathbb{R}^d)$ for $\lambda \in \mathbb{C} \setminus \mathbb{R}$
- $f \in \operatorname{ran}(A^Q_{\alpha} \lambda)$ iff $\Gamma_1((-i\nabla A)^2 \lambda)^{-1} f \in \operatorname{ran}(1 \alpha \widetilde{M}(\lambda))$ for some operator $\widetilde{M}(\lambda)$
- $\widetilde{M}(\lambda): H^{1/2}(\Sigma) \to H^{3/2}(\Sigma)$ is bounded
- $ran(1 \alpha \widetilde{M}(\lambda)) = H^{1/2}(\Sigma)$ by Fredholm's alternative

• ran
$$(\Gamma_1((-i\nabla - A)^2 - \lambda)^{-1}) = H^{3/2}(\Sigma) \subset \operatorname{ran}(1 - \alpha \widetilde{M}(\lambda))$$

Markus Holzmann,

Schrödinger operators and boundary value problems, Graz

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_{\alpha} := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

Consequences:

 Krein type resolvent formula in terms of Poisson and Neumann to Dirichlet maps

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_{\alpha} := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

Consequences:

- Krein type resolvent formula in terms of Poisson and Neumann to Dirichlet maps
- Resolvent power differences:

$$(A^{Q}_{\alpha}-\lambda)^{-m}-\left((-i\nabla-A)^{2}-\lambda\right)^{-m}\in\mathfrak{S}_{\frac{d-1}{2m+1},\infty}(L^{2}(\mathbb{R}^{d}))$$

Define for $\alpha \in \mathbb{R}$ the operator $H^Q_{\alpha} := T \upharpoonright \ker(\Gamma_0 - \alpha \Gamma_1)$

Theorem

 A^Q_{α} is self-adjoint and coincides with A_{α} . In particular, dom $A_{\alpha} \subset \mathcal{H}^2_{\mathcal{A}}(\Omega_+) \oplus \mathcal{H}^2_{\mathcal{A}}(\Omega_-)$.

Consequences:

- Krein type resolvent formula in terms of Poisson and Neumann to Dirichlet maps
- Resolvent power differences:

$$(\boldsymbol{A}^{\boldsymbol{Q}}_{\alpha}-\lambda)^{-m}-\left((-i\nabla-\boldsymbol{A})^2-\lambda\right)^{-m}\in\mathfrak{S}_{\frac{d-1}{2m+1},\infty}(L^2(\mathbb{R}^d))$$

Formulae for scattering theory

Outline

1. Motivation

- 2. Magnetic Schrödinger operators with δ -potentials
 - The magnetic Schrödinger operator without potential
 - Magnetic Sobolev spaces
 - Definition of the δ -operator
- 3. Approximation by Hamiltonians with squeezed potentials
- 4. Exner-Ichinose for homogeneous magnetic fields
- 5. A quasi boundary triple

6. Outlook

Finish proof of Exner-Ichinose type result:

- Finish proof of Exner-Ichinose type result:
 - Find good estimate for sup σ(M_Γ(λ))

- Finish proof of Exner-Ichinose type result:
 - Find good estimate for sup σ(M_Γ(λ))
 - Learn how to work with G_{λ}^{A}

- Finish proof of Exner-Ichinose type result:
 - Find good estimate for sup $\sigma(M_{\Gamma}(\lambda))$
 - Learn how to work with G_{λ}^{A}
 - More general Σ

- Finish proof of Exner-Ichinose type result:
 - Find good estimate for sup σ(M_Γ(λ))
 - Learn how to work with G_{λ}^{A}
 - More general Σ
- Can one say something for varying B

- Finish proof of Exner-Ichinose type result:
 - Find good estimate for sup σ(M_Γ(λ))
 - Learn how to work with G_{λ}^{A}
 - More general Σ
- Can one say something for varying B
 - Conjecture: bound states disappear

- Finish proof of Exner-Ichinose type result:
 - Find good estimate for sup $\sigma(M_{\Gamma}(\lambda))$
 - Learn how to work with G_{λ}^{A}
 - More general Σ
- Can one say something for varying B
 - Conjecture: bound states disappear
- Can one do more with the quasi boundary triple?

- Finish proof of Exner-Ichinose type result:
 - Find good estimate for sup $\sigma(M_{\Gamma}(\lambda))$
 - Learn how to work with G_{λ}^{A}
 - More general Σ
- Can one say something for varying B
 - Conjecture: bound states disappear
- Can one do more with the quasi boundary triple?
- More suggestions?

- Finish proof of Exner-Ichinose type result:
 - Find good estimate for sup $\sigma(M_{\Gamma}(\lambda))$
 - Learn how to work with G_{λ}^{A}
 - More general Σ
- Can one say something for varying B
 - Conjecture: bound states disappear
- Can one do more with the quasi boundary triple?
- More suggestions?

Thank you for your attention!