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Robin eigenvalue problem

Let Ω ⊂ Rd be an open set with a sufficiently regular boundary. We consider the
eigenvalue problem :

−∆ψ = −
( d∑

j=1

∂2

∂x2j

)
ψ = Eψ on Ω,

∂ψ

∂ν
= γψ on ∂Ω,

where ν is the outward unit normal of ∂Ω, γ > 0 and E is a discrete eigenvalue.

More precisely, we study the spectral problem for the self-ajdoint operator T γ
Ω on

L2(Ω) associated with the sesquilinear form :

tγΩ(ψ,ψ) =
∫

Ω
|∇ψ|2dx − γ

∫
∂Ω
|ψ|2dσ, ψ ∈ H1(Ω).
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Smooth domains
Main goal : Study of En(T γ

Ω ) as γ → +∞.
- Change of variables : En(T γ

Ω ) = γ2En(T 1
γΩ).

- Link with the study of superconductors.
[Lacey-Ockendon-Sabina, 1998 ; Lou-Zhu,2004 ; Levitin-Parnovski 2008,
Bruneau-Popoff,2016 ;...]

Theorem [Daners-Kennedy, 2010]
If ∂Ω is C1, for each fixed n ∈ N,

En(T γ
Ω ) = −γ2 + o(γ2), γ → +∞.

Theorem [Exner-Minakov-Parnovski, 2014 ; Pankrashkin-Popoff, 2015]
If ∂Ω is C3, for each fixed n ∈ N,

En(T γ
Ω ) = −γ2 − (d − 1)Hmax(Ω)γ + O(γ 2

3 ), γ → +∞,

where Hmax(Ω) is the maximum of the mean curvature of ∂Ω.
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What happens on non-smooth domains ?
Theorem [Levitin-Parnovski, 2008 ; Bruneau-Popoff, 2016]
If Ω is a ’corner domain’ (Lipschitz, piecewise smooth boundary + little more),

E1(T γ
Ω ) = −Cγ2 + o(γ2), γ → +∞,

where C ≥ 1 depends only on the tangent cones of ∂Ω.

If Ω ⊂ R2 is a curvilinear polygon, can we obtain a more detailed eigenvalue
asymptotics ?
In this case, the tangent cones are the infinite sectors.

Theorem [Pankrashkin,2013]
If Ω ⊂ R2 has a piecewise smooth boundary which admits non-convex corners
then,

E1(T γ
Ω ) = −γ2 − κmaxγ + O(γ 2

3 ), γ → +∞.

i.e : the non convex corners do not contribute in the asymptotics.
Role of convex corners ?
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Robin Laplacian on infinite sectors

α ∈ (0, π),

Uα :=
{
x ∈ R2 : |arg (x1 + ix2)| < α

}
.

T γ
α = Robin Laplacian on L2(Uα),

γ > 0 :

T γ
αψ = −∆ψ on Uα,
∂ψ

∂ν
= γψ on ∂Uα.

Behavior of the eigenvalues of T γ
α with respect to α ?

Uα is invariant by dilations : En(T γ
α ) = γ2En(T 1

α). In the following : T 1
α := Tα.
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Some known results
Proposition [Levitin-Parnovski, 2008]
For all α ∈ (0, π), specess(Tα) = [−1,+∞).

If α ≥ π

2 , inf spec(Tα) = −1 =⇒ spec(Tα) = [−1,+∞).

If α ∈ (0, π2 ),

E1(Tα) = − 1
sin2(α)

< −1, ϕ1,α(x1, x2) = exp(− x1
sin(α) ).

Main questions for α ∈ (0, π2 ),

• Is specdisc(T γ
α ) finite or infinite ?

• What is the behavior (regularity, monotonicity) of the eigenvalues
with respect to α ?

• What is their behavior as α→ 0 ?
• What are the properties of the associated eigenfunctions ?
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Finiteness of the spectrum and monotonicity

Theorem
The discrete spectrum of Tα is finite for all α ∈ (0, π2 ).

-The result fails in dimension 3 (cones can have infinite discrete spectrum).
-Proof based on the idea of A. Morame et F. Truc (2005) : reduction to a
one-dimensional Bargman-type estimate.

Notation : Nα = #{n ∈ N : En(Tα) < −1}.

Proposition
• The eigenvalues of Tα are non-decreasing and continuous with respect to α.
• (0, π/2) 3 α 7→ Nα is decreasing.
• For all α ≥ π/6, Nα = 1.
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Asymptotic behavior as the angle becomes small

Proposition
There exists κ > 0 such that Nα ≥ κ/α as α→ 0. In particular,

Nα → +∞, α→ 0.

Theorem : First order asymptotics
For each n ∈ N :

En(Tα) = − 1
(2n − 1)2α2 + O(1), α→ 0.

The constant can’t be improve :

E1(Tα) = − 1
α2 −

1
3 + o(1), α→ 0.
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Ideas of the proof of the first order asymptotics

To avoid the singularity near the origin we introduce a dense subspace of H1(Uα) :

F :=
{
u ∈ C∞(Uα) | ∃R1,R2 > 0 : u = 0 for |x | < R1, and |x | > R2

}
.

Polar coordinates :

U : L2(Uα, dx)→ L2(Vα, drdθ)

u 7→ r 1
2 u(r cos(θ), r sin(θ)),

G := U(F) = {v ∈ C∞(Vα)| ∃R1,R2 > 0 : u(r , θ) = 0 for r < R1 and r > R2}.
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The unitarily equivalent operator is Qα associated to

qα(v , v) := tα (U∗(v),U∗(v)) , v ∈ G,

where :

qα(v , v) =
∫

Vα

|vr |2 −
1
4
|v |2
r2 drdθ

+
∫
R+

1
r2

{∫ α

−α
|vθ|2dθ − r |v(r , α)|2 − r |v(r ,−α)|2

}
dr .

Robin Laplacian Bα,r acting on L2(−α, α), r ∈ R+ :

Bα,ru = −u′′ sur (−α, α)
±u′(±α) = ru(±α).

First eigenvalue : E1(α, r) associated to the eigenfunction φα.
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Reduction of the dimension : we apply qα on functions of the form
v(r , θ) = f (r)φα(r , θ) :

qα(v , v) =
{∫

R+

|f ′(r)|2 − 1
4r2 |f (r)|2 − 1

αr |f (r)|2dr
}

+
∫
R+

Kα(r)|f (r)|2dr .

We define the operator Ha acting on L2(R+) by

(Ha)(v) =
(
− d2

dr2 −
1
4r2 −

1
ar

)
v(r), v ∈ C∞c (R+),

and H∞a its Friedrichs extension. Then, specess(H∞a ) = [0,+∞) and its discrete
eigenvalues are :

En(a) = − 1
(2n − 1)2a2 , n ∈ N.
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Orthogonal projections :
Πv(r , θ) := f (r)Φα(r , θ), f (r) :=

∫ α

−α
v(r , θ)Φ(r , θ)dθ and

Pv(r , θ) := v(r , θ)− Πv(r , θ).
For all α ∈ (0, 1) :

(1− α2)I∗
(
H∞α(1−α2) 0

0 0

)
I
(

Πv
Pv

)
−M ≤ Qα ≤ I∗

(
H∞α 0
0 0

)
I
(

Πv
Pv

)
+ M,

M ∈ R+, I is the unitary operator satisfying I(Πv ,Pv) = (f ,Pv).
We conclude with the min-max principle.
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Theorem : Complete asymptotic expansion
For each n ∈ N, there exists λj,n ∈ R, j ∈ N ∪ {0}, such that for all N ∈ N ∪ {0} :

En(Tα) = 1
α2

N∑
j=0

λj,nα
2j + O(α2N), α→ 0,

with λ0,n = − 1
(2n−1)2 .

Proof : standard perturbation theory, each eigenvalue is simple as α→ 0.

Theorem : An Agmon-type estimate for the eigenfunctions
Let E be a discrete eigenvalue of Tα and V be an associated eigenfunction. Then,
for all ε ∈ (0, 1), ∫

Uα

(
|∇V|2 + |V|2

)
e2(1−ε)

√
−1−E |x |dx < +∞.
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Application to Robin Laplacians on polygons

V := {vertices of Ω},

αv := half aperture at v ∈ V,
Qγ := Robin Laplacian on L2(Ω),

specess(Qγ) = ∅,

specdisc(Qγ) = {(En(Qγ))n∈N}.

Behavior of En(Qγ) as γ → +∞ ?

Proposition [Levitin-Parnovski,2008 ; Bruneau-Popoff,2016]

E1(Qγ) = − γ2

sin2 (minv∈V αv )
+ o(γ2), γ → +∞.
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Proposition [Levitin-Parnovski,2008 ; Bruneau-Popoff,2016]

E1(Qγ) = − γ2

sin2 (minv∈V αv )
+ o(γ2), γ → +∞.
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Model operator

We define T⊕ the Laplacian acting on
⊕

v∈V L2(Uαv ) and defined by :

T⊕ =
⊕
v∈V

Tαv .

Then,
• spec(T⊕) =

⋃
v∈V spec(Tαv ),

• specess(T⊕) = [−1,+∞),

• N⊕ := #{n ∈ N,En(T⊕) < −1} =
∑
v∈V

Nαv < +∞,

• E1(T⊕) = − 1
sin2(minv∈V αv )

.
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Asymptotics of the first eigenvalues of Qγ

Theorem
For all n ≤ N⊕,

En(Qγ) = γ2En(T⊕) + O(e−cγ), γ → +∞.

Ideas of the proof [Bonnaillie-Noël-Dauge, 2006] :

- Construction of quasi-modes :
for v ∈ V, let ψγ,vn be a normalized eigenfunction of T γ

αv
and χv a smooth

radial cut-off function such that suppχv ⊂ B(v , r). We define

φγ,vn := ψγ,vn χv .

- φγ,vn ∈ D(Qγ) and

‖Qγφγ,vn − γ2En(Tαv )‖2
‖φγ,vn ‖2

= O(e−cγ), γ → +∞.
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Spectral theorem implies

dist(En(T γ
αv

), spec(Qγ)) = O(e−cγ), γ → +∞.

It’s not enough...

Notations :
- Λ := {λ1 < λ2 < ... < λK} = eigenvalues of T⊕ without multiplicity,
- Sl := {(n, v) : v ∈ V, 1 ≤ n ≤ Nαv : En(T γ

αv
) = γ2λl},

- κl = #Sl = multiplicity of λl .

Properties of quasi-modes
For γ large enough,

• (φγ,vn )(n,v)∈
⋃K

l=1
Sl

is linearly independent,

• |qγ(φγ,vn , φγ,vn )− En(T γ
αv

)| ≤ γCe−cγ ,
• |qγ(φγ,vi , φγ,vj )| ≤ γCe−cγ , i 6= j .

Proof : Localization property of ψγ,vn .
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Lemma
For all 1 ≤ l ≤ K and for γ large enough,

Eκ1+...+κl (Qγ) ≤ γ2λl + Cγ2e−cγ ,

Eκ1+...+κl +1(Qγ) ≥ γ2λl+1 − C .

Proof : Min-max principle + partition of unity.

Cluster of eigenvalues
For 1 ≤ n ≤ κ1,

−Cγ 4
3 ≤ En(Qγ)− γ2En(T⊕) ≤ Cγ2e−cγ .

For κ1 < n ≤ N⊕,

−C ≤ En(Qγ)− γ2En(T⊕) ≤ Cγ2e−cγ .

It’s not enough...
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Spectral approximation

Let A be a self-adjoint operator acting on a Hilbert space H and λ ∈ R. If there
exists ψ1, ..., ψn ∈ D(A) linearly independent and η > 0 such that

‖(A− λ)ψj‖ ≤ η‖ψj‖, j = 1, ..., n,

then,
dimRanPA(λ− Cη, λ+ Cη) ≥ n,

where PA(a, b)= spectral projection of A on (a, b), C > 0 depends on the
Gramian matrix of (ψj)j .
In particular, if specess(A) ∩ (λ− Cη, λ+ Cη) = ∅, there exist at least n
eigenvalues in (λ− cη, λ+ cη).

In our case :
- specess(Qγ) = ∅,
- η = O(e−cγ).
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Work in progress
The asymptotics remains true for curvilinear polygons but the remainders are
polynomials.

What are the differences ?
- Construction of test functions : φγ,vn (x) := χγv (ψγ,vn ◦ fv (x)), for x near v .
- Pseudo quasi-modes only : φγ,vn /∈ D(Qγ) .
- Estimates on φγ,vn are polynomials because of the change of variables.

Important remark
Proof =⇒ EN⊕+1 ≥ −γ2 − κmaxγ + O(γ 2

3 ), γ → +∞.

What happens for EN⊕+j ?
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Weyl asymptotics

We want to study N(Qγ , cγ2) := #{n ∈ N,En(Qγ) < cγ2} as γ → +∞.
What are the interesting constants c ∈ R ?

Theorem [Helffer-Kachmar-Raymond, 2017]
Let D ⊂ R2 be an open, bounded connected set such that ∂D is C4 smooth, and
T γ be the Robin Laplacian acting on L2(D). Then, for all λ ∈ R,

N(T γ
D ,−γ

2 + λγ) ∼
γ→+∞

√
γ

π

∫
∂D

√
(κ(s) + λ)+dσ,

and for all E ∈ (−1, 0), N(T γ
D ,Eγ2) ∼

γ→+∞

|∂D|
π

γ
√
E + 1, where ∂D 3 s 7→ κ(s)

is the curvature of ∂D.

Remark. For E < −1, limγ→+∞ N(T γ
D ,Eγ2) = 0.
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Work in progress
The Weyl formulae remain true for curvilinear polygons.

- There is no contribution of the vertices in the asymptotics.
- If Ω is a polygon with straight edges,

lim
γ→+∞

N(Qγ ,−γ2)
√
γ

= 0.

- Ideas of the proof :
Upper bound : partition of unity adapted to truncated sectors : the
truncated sectors do not contribute, the ’regular’ part gives the
asymptotics.
Lower bound : Dirichlet bracketing.
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What comes next ?

• Asymptotics of eigenvalues on circular cones as the angle goes to 0 ?
• What happens for the next eigenvalues, i.e : for j ∈ N,

EN⊕+j(Qγ) −−−−−→
γ→+∞

?

• Can we adapt the proof in higher dimension ? Study of polyhedra ?
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