Eigenvalues of Robin Laplacians
 on infinite sectors and application
 to polygons

Magda Khalile
(joint work with Konstantin Pankrashkin)

Université Paris Sud

Robin eigenvalue problem

Let $\Omega \subset \mathbb{R}^{d}$ be an open set with a sufficiently regular boundary. We consider the eigenvalue problem :

$$
\begin{aligned}
-\Delta \psi=-\left(\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}}\right) \psi & =E \psi \text { on } \Omega \\
\frac{\partial \psi}{\partial \nu} & =\gamma \psi \text { on } \partial \Omega
\end{aligned}
$$

where ν is the outward unit normal of $\partial \Omega, \gamma>0$ and E is a discrete eigenvalue.

Robin eigenvalue problem

Let $\Omega \subset \mathbb{R}^{d}$ be an open set with a sufficiently regular boundary. We consider the eigenvalue problem :

$$
\begin{aligned}
-\Delta \psi=-\left(\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}}\right) \psi & =E \psi \text { on } \Omega \\
\frac{\partial \psi}{\partial \nu} & =\gamma \psi \text { on } \partial \Omega
\end{aligned}
$$

where ν is the outward unit normal of $\partial \Omega, \gamma>0$ and E is a discrete eigenvalue. More precisely, we study the spectral problem for the self-ajdoint operator T_{Ω}^{γ} on $L^{2}(\Omega)$ associated with the sesquilinear form :

$$
t_{\Omega}^{\gamma}(\psi, \psi)=\int_{\Omega}|\nabla \psi|^{2} d x-\gamma \int_{\partial \Omega}|\psi|^{2} d \sigma, \quad \psi \in H^{1}(\Omega)
$$

Smooth domains

Main goal : Study of $E_{n}\left(T_{\Omega}^{\gamma}\right)$ as $\gamma \rightarrow+\infty$.

- Change of variables : $E_{n}\left(T_{\Omega}^{\gamma}\right)=\gamma^{2} E_{n}\left(T_{\gamma \Omega}^{1}\right)$.
- Link with the study of superconductors.
[Lacey-Ockendon-Sabina, 1998; Lou-Zhu, 2004 ; Levitin-Parnovski 2008, Bruneau-Popoff,2016;...]

Smooth domains

Main goal : Study of $E_{n}\left(T_{\Omega}^{\gamma}\right)$ as $\gamma \rightarrow+\infty$.

- Change of variables : $E_{n}\left(T_{\Omega}^{\gamma}\right)=\gamma^{2} E_{n}\left(T_{\gamma \Omega}^{1}\right)$.
- Link with the study of superconductors.
[Lacey-Ockendon-Sabina, 1998; Lou-Zhu, 2004 ; Levitin-Parnovski 2008, Bruneau-Popoff, 2016 ;...]

Theorem [Daners-Kennedy, 2010]

If $\partial \Omega$ is C^{1}, for each fixed $n \in \mathbb{N}$,

$$
E_{n}\left(T_{\Omega}^{\gamma}\right)=-\gamma^{2}+o\left(\gamma^{2}\right), \quad \gamma \rightarrow+\infty .
$$

Theorem [Exner-Minakov-Parnovski, 2014 ; Pankrashkin-Popoff, 2015] If $\partial \Omega$ is C^{3}, for each fixed $n \in \mathbb{N}$,

$$
E_{n}\left(T_{\Omega}^{\gamma}\right)=-\gamma^{2}-(d-1) H_{\max }(\Omega) \gamma+O\left(\gamma^{\frac{2}{3}}\right), \quad \gamma \rightarrow+\infty
$$

where $H_{\max }(\Omega)$ is the maximum of the mean curvature of $\partial \Omega$.

What happens on non-smooth domains?

Theorem [Levitin-Parnovski, 2008 ; Bruneau-Popoff, 2016]

If Ω is a 'corner domain' (Lipschitz, piecewise smooth boundary + little more),

$$
E_{1}\left(T_{\Omega}^{\gamma}\right)=-C \gamma^{2}+o\left(\gamma^{2}\right), \quad \gamma \rightarrow+\infty,
$$

where $C \geq 1$ depends only on the tangent cones of $\partial \Omega$.

What happens on non-smooth domains?

Theorem [Levitin-Parnovski, 2008 ; Bruneau-Popoff, 2016]

If Ω is a 'corner domain' (Lipschitz, piecewise smooth boundary + little more),

$$
E_{1}\left(T_{\Omega}^{\gamma}\right)=-C \gamma^{2}+o\left(\gamma^{2}\right), \quad \gamma \rightarrow+\infty,
$$

where $C \geq 1$ depends only on the tangent cones of $\partial \Omega$.

If $\Omega \subset \mathbb{R}^{2}$ is a curvilinear polygon, can we obtain a more detailed eigenvalue asymptotics?
In this case, the tangent cones are the infinite sectors.

What happens on non-smooth domains?

Theorem [Levitin-Parnovski, 2008 ; Bruneau-Popoff, 2016]

If Ω is a 'corner domain' (Lipschitz, piecewise smooth boundary + little more),

$$
E_{1}\left(T_{\Omega}^{\gamma}\right)=-C \gamma^{2}+o\left(\gamma^{2}\right), \quad \gamma \rightarrow+\infty
$$

where $C \geq 1$ depends only on the tangent cones of $\partial \Omega$.

If $\Omega \subset \mathbb{R}^{2}$ is a curvilinear polygon, can we obtain a more detailed eigenvalue asymptotics?
In this case, the tangent cones are the infinite sectors.

Theorem [Pankrashkin,2013]

If $\Omega \subset \mathbb{R}^{2}$ has a piecewise smooth boundary which admits non-convex corners then,

$$
E_{1}\left(T_{\Omega}^{\gamma}\right)=-\gamma^{2}-\kappa_{\max } \gamma+O\left(\gamma^{\frac{2}{3}}\right), \quad \gamma \rightarrow+\infty .
$$

i.e : the non convex corners do not contribute in the asymptotics.

Role of convex corners?

Robin Laplacian on infinite sectors

$$
\begin{gathered}
\alpha \in(0, \pi), \\
U_{\alpha}:=\left\{x \in \mathbb{R}^{2}:\left|\arg \left(x_{1}+i x_{2}\right)\right|<\alpha\right\} .
\end{gathered}
$$

Robin Laplacian on infinite sectors

$$
\begin{gathered}
\alpha \in(0, \pi), \\
U_{\alpha}:=\left\{x \in \mathbb{R}^{2}:\left|\arg \left(x_{1}+i x_{2}\right)\right|<\alpha\right\} . \\
T_{\alpha}^{\gamma}=\text { Robin Laplacian on } L^{2}\left(U_{\alpha}\right), \\
\gamma>0: \\
T_{\alpha}^{\gamma} \psi=-\Delta \psi \text { on } U_{\alpha}, \\
\frac{\partial \psi}{\partial \nu}=\gamma \psi \text { on } \partial U_{\alpha} .
\end{gathered}
$$

Robin Laplacian on infinite sectors

$$
\begin{gathered}
\alpha \in(0, \pi), \\
U_{\alpha}:=\left\{x \in \mathbb{R}^{2}:\left|\arg \left(x_{1}+i x_{2}\right)\right|<\alpha\right\} . \\
T_{\alpha}^{\gamma}=\text { Robin Laplacian on } L^{2}\left(U_{\alpha}\right), \\
\gamma>0: \\
T_{\alpha}^{\gamma} \psi=-\Delta \psi \text { on } U_{\alpha} \\
\frac{\partial \psi}{\partial \nu}=\gamma \psi \text { on } \partial U_{\alpha} .
\end{gathered}
$$

Behavior of the eigenvalues of T_{α}^{γ} with respect to α ?

Robin Laplacian on infinite sectors

$$
\begin{gathered}
\alpha \in(0, \pi), \\
U_{\alpha}:=\left\{x \in \mathbb{R}^{2}:\left|\arg \left(x_{1}+i x_{2}\right)\right|<\alpha\right\} . \\
T_{\alpha}^{\gamma}=\text { Robin Laplacian on } L^{2}\left(U_{\alpha}\right), \\
\gamma>0: \\
T_{\alpha}^{\gamma} \psi=-\Delta \psi \text { on } U_{\alpha} \\
\frac{\partial \psi}{\partial \nu}=\gamma \psi \text { on } \partial U_{\alpha} .
\end{gathered}
$$

Behavior of the eigenvalues of T_{α}^{γ} with respect to α ?
U_{α} is invariant by dilations : $E_{n}\left(T_{\alpha}^{\gamma}\right)=\gamma^{2} E_{n}\left(T_{\alpha}^{1}\right)$. In the following : $T_{\alpha}^{1}:=T_{\alpha}$.

Some known results

Proposition [Levitin-Parnovski, 2008]
For all $\alpha \in(0, \pi)$, $\operatorname{spec}_{\mathrm{ess}}\left(T_{\alpha}\right)=[-1,+\infty)$.

Some known results

Proposition [Levitin-Parnovski, 2008]
For all $\alpha \in(0, \pi)$, $\operatorname{spec}_{\mathrm{ess}}\left(T_{\alpha}\right)=[-1,+\infty)$.
If $\alpha \geq \frac{\pi}{2}, \inf \operatorname{spec}\left(T_{\alpha}\right)=-1 \Longrightarrow \operatorname{spec}\left(T_{\alpha}\right)=[-1,+\infty)$.

Some known results

Proposition [Levitin-Parnovski, 2008]

For all $\alpha \in(0, \pi)$, $\operatorname{spec}_{\text {ess }}\left(T_{\alpha}\right)=[-1,+\infty)$.

$$
\text { If } \alpha \geq \frac{\pi}{2}, \inf \operatorname{spec}\left(T_{\alpha}\right)=-1 \Longrightarrow \operatorname{spec}\left(T_{\alpha}\right)=[-1,+\infty)
$$

$$
\text { If } \alpha \in\left(0, \frac{\pi}{2}\right) \text {, }
$$

$$
E_{1}\left(T_{\alpha}\right)=-\frac{1}{\sin ^{2}(\alpha)}<-1, \quad \varphi_{1, \alpha}\left(x_{1}, x_{2}\right)=\exp \left(-\frac{x_{1}}{\sin (\alpha)}\right) .
$$

Some known results

Proposition [Levitin-Parnovski, 2008]
For all $\alpha \in(0, \pi)$, $\operatorname{spec}_{\text {ess }}\left(T_{\alpha}\right)=[-1,+\infty)$.

$$
\text { If } \alpha \geq \frac{\pi}{2}, \inf \operatorname{spec}\left(T_{\alpha}\right)=-1 \Longrightarrow \operatorname{spec}\left(T_{\alpha}\right)=[-1,+\infty)
$$

$$
\text { If } \alpha \in\left(0, \frac{\pi}{2}\right)
$$

$$
E_{1}\left(T_{\alpha}\right)=-\frac{1}{\sin ^{2}(\alpha)}<-1, \quad \varphi_{1, \alpha}\left(x_{1}, x_{2}\right)=\exp \left(-\frac{x_{1}}{\sin (\alpha)}\right)
$$

Main questions for $\alpha \in\left(0, \frac{\pi}{2}\right)$,

Some known results

Proposition [Levitin-Parnovski, 2008]

For all $\alpha \in(0, \pi)$, $\operatorname{spec}_{\mathrm{ess}}\left(T_{\alpha}\right)=[-1,+\infty)$.

$$
\text { If } \alpha \geq \frac{\pi}{2}, \inf \operatorname{spec}\left(T_{\alpha}\right)=-1 \Longrightarrow \operatorname{spec}\left(T_{\alpha}\right)=[-1,+\infty)
$$

$$
\text { If } \alpha \in\left(0, \frac{\pi}{2}\right) \text {, }
$$

$$
E_{1}\left(T_{\alpha}\right)=-\frac{1}{\sin ^{2}(\alpha)}<-1, \quad \varphi_{1, \alpha}\left(x_{1}, x_{2}\right)=\exp \left(-\frac{x_{1}}{\sin (\alpha)}\right) .
$$

Main questions for $\alpha \in\left(0, \frac{\pi}{2}\right)$,

- Is $\operatorname{spec}_{\text {disc }}\left(T_{\alpha}^{\gamma}\right)$ finite or infinite?

Some known results

Proposition [Levitin-Parnovski, 2008]

For all $\alpha \in(0, \pi)$, $\operatorname{spec}_{\mathrm{ess}}\left(T_{\alpha}\right)=[-1,+\infty)$.

$$
\begin{aligned}
& \text { If } \alpha \geq \frac{\pi}{2}, \inf \operatorname{spec}\left(T_{\alpha}\right)=-1 \Longrightarrow \operatorname{spec}\left(T_{\alpha}\right)=[-1,+\infty) \\
& \text { If } \alpha \in\left(0, \frac{\pi}{2}\right)
\end{aligned}
$$

$$
E_{1}\left(T_{\alpha}\right)=-\frac{1}{\sin ^{2}(\alpha)}<-1, \quad \varphi_{1, \alpha}\left(x_{1}, x_{2}\right)=\exp \left(-\frac{x_{1}}{\sin (\alpha)}\right) .
$$

Main questions for $\alpha \in\left(0, \frac{\pi}{2}\right)$,

- Is spec $_{\text {disc }}\left(T_{\alpha}^{\gamma}\right)$ finite or infinite?
- What is the behavior (regularity, monotonicity) of the eigenvalues with respect to α ?

Some known results

Proposition [Levitin-Parnovski, 2008]

For all $\alpha \in(0, \pi)$, $\operatorname{spec}_{\mathrm{ess}}\left(T_{\alpha}\right)=[-1,+\infty)$.

$$
\begin{aligned}
& \text { If } \alpha \geq \frac{\pi}{2}, \inf \operatorname{spec}\left(T_{\alpha}\right)=-1 \Longrightarrow \operatorname{spec}\left(T_{\alpha}\right)=[-1,+\infty) \\
& \text { If } \alpha \in\left(0, \frac{\pi}{2}\right)
\end{aligned}
$$

$$
E_{1}\left(T_{\alpha}\right)=-\frac{1}{\sin ^{2}(\alpha)}<-1, \quad \varphi_{1, \alpha}\left(x_{1}, x_{2}\right)=\exp \left(-\frac{x_{1}}{\sin (\alpha)}\right) .
$$

Main questions for $\alpha \in\left(0, \frac{\pi}{2}\right)$,

- Is spec $_{\text {disc }}\left(T_{\alpha}^{\gamma}\right)$ finite or infinite?
- What is the behavior (regularity, monotonicity) of the eigenvalues with respect to α ?
- What is their behavior as $\alpha \rightarrow 0$?

Some known results

Proposition [Levitin-Parnovski, 2008]

For all $\alpha \in(0, \pi)$, $\operatorname{spec}_{\mathrm{ess}}\left(T_{\alpha}\right)=[-1,+\infty)$.

$$
\begin{aligned}
& \text { If } \alpha \geq \frac{\pi}{2}, \inf \operatorname{spec}\left(T_{\alpha}\right)=-1 \Longrightarrow \operatorname{spec}\left(T_{\alpha}\right)=[-1,+\infty) \\
& \text { If } \alpha \in\left(0, \frac{\pi}{2}\right)
\end{aligned}
$$

$$
E_{1}\left(T_{\alpha}\right)=-\frac{1}{\sin ^{2}(\alpha)}<-1, \quad \varphi_{1, \alpha}\left(x_{1}, x_{2}\right)=\exp \left(-\frac{x_{1}}{\sin (\alpha)}\right) .
$$

Main questions for $\alpha \in\left(0, \frac{\pi}{2}\right)$,

- Is spec $_{\text {disc }}\left(T_{\alpha}^{\gamma}\right)$ finite or infinite?
- What is the behavior (regularity, monotonicity) of the eigenvalues with respect to α ?
- What is their behavior as $\alpha \rightarrow 0$?
- What are the properties of the associated eigenfunctions?

Finiteness of the spectrum and monotonicity

Theorem
The discrete spectrum of T_{α} is finite for all $\alpha \in\left(0, \frac{\pi}{2}\right)$.

Finiteness of the spectrum and monotonicity

Theorem

The discrete spectrum of T_{α} is finite for all $\alpha \in\left(0, \frac{\pi}{2}\right)$.
-The result fails in dimension 3 (cones can have infinite discrete spectrum).
-Proof based on the idea of A. Morame et F. Truc (2005) : reduction to a one-dimensional Bargman-type estimate.

Finiteness of the spectrum and monotonicity

Theorem

The discrete spectrum of T_{α} is finite for all $\alpha \in\left(0, \frac{\pi}{2}\right)$.
-The result fails in dimension 3 (cones can have infinite discrete spectrum).
-Proof based on the idea of A. Morame et F. Truc (2005) : reduction to a one-dimensional Bargman-type estimate.
Notation : $N_{\alpha}=\#\left\{n \in \mathbb{N}: E_{n}\left(T_{\alpha}\right)<-1\right\}$.

Finiteness of the spectrum and monotonicity

Theorem

The discrete spectrum of T_{α} is finite for all $\alpha \in\left(0, \frac{\pi}{2}\right)$.
-The result fails in dimension 3 (cones can have infinite discrete spectrum). -Proof based on the idea of A. Morame et F. Truc (2005) : reduction to a one-dimensional Bargman-type estimate.
Notation : $N_{\alpha}=\#\left\{n \in \mathbb{N}: E_{n}\left(T_{\alpha}\right)<-1\right\}$.

Proposition

- The eigenvalues of T_{α} are non-decreasing and continuous with respect to α.
- $(0, \pi / 2) \ni \alpha \mapsto N_{\alpha}$ is decreasing.
- For all $\alpha \geq \pi / 6, N_{\alpha}=1$.

Asymptotic behavior as the angle becomes small

Proposition

There exists $\kappa>0$ such that $N_{\alpha} \geq \kappa / \alpha$ as $\alpha \rightarrow 0$. In particular,

$$
N_{\alpha} \rightarrow+\infty, \quad \alpha \rightarrow 0 .
$$

Asymptotic behavior as the angle becomes small

Proposition

There exists $\kappa>0$ such that $N_{\alpha} \geq \kappa / \alpha$ as $\alpha \rightarrow 0$. In particular,

$$
N_{\alpha} \rightarrow+\infty, \quad \alpha \rightarrow 0 .
$$

Theorem : First order asymptotics
For each $n \in \mathbb{N}$:

$$
E_{n}\left(T_{\alpha}\right)=-\frac{1}{(2 n-1)^{2} \alpha^{2}}+O(1), \quad \alpha \rightarrow 0
$$

The constant can't be improve :

$$
E_{1}\left(T_{\alpha}\right)=-\frac{1}{\alpha^{2}}-\frac{1}{3}+o(1), \alpha \rightarrow 0 .
$$

Ideas of the proof of the first order asymptotics

To avoid the singularity near the origin we introduce a dense subspace of $H^{1}\left(U_{\alpha}\right)$:

$$
\mathcal{F}:=\left\{u \in C^{\infty}\left(\overline{U_{\alpha}}\right) \mid \exists R_{1}, R_{2}>0: u=0 \text { for }|x|<R_{1}, \text { and }|x|>R_{2}\right\} .
$$

Polar coordinates :

$$
\begin{aligned}
\mathcal{U}: L^{2}\left(U_{\alpha}, d x\right) & \rightarrow L^{2}\left(V_{\alpha}, d r d \theta\right) \\
u & \mapsto r^{\frac{1}{2}} u(r \cos (\theta), r \sin (\theta)),
\end{aligned}
$$

Ideas of the proof of the first order asymptotics

To avoid the singularity near the origin we introduce a dense subspace of $H^{1}\left(U_{\alpha}\right)$:

$$
\mathcal{F}:=\left\{u \in C^{\infty}\left(\overline{U_{\alpha}}\right) \mid \exists R_{1}, R_{2}>0: u=0 \text { for }|x|<R_{1}, \text { and }|x|>R_{2}\right\} .
$$

Polar coordinates :

$$
\begin{aligned}
\mathcal{U}: L^{2}\left(U_{\alpha}, d x\right) & \rightarrow L^{2}\left(V_{\alpha}, d r d \theta\right) \\
u & \mapsto r^{\frac{1}{2}} u(r \cos (\theta), r \sin (\theta)),
\end{aligned}
$$

$\mathcal{G}:=\mathcal{U}(\mathcal{F})=\left\{v \in C^{\infty}\left(\overline{\bar{V}_{\alpha}}\right) \mid \exists R_{1}, R_{2}>0: u(r, \theta)=0\right.$ for $r<R_{1}$ and $\left.r>R_{2}\right\}$.

The unitarily equivalent operator is Q_{α} associated to

$$
q_{\alpha}(v, v):=t_{\alpha}\left(\mathcal{U}^{*}(v), \mathcal{U}^{*}(v)\right), \quad v \in \mathcal{G}
$$

where :

$$
\begin{aligned}
q_{\alpha}(v, v)=\int_{v_{\alpha}}\left|v_{r}\right|^{2}- & \frac{1}{4} \frac{|v|^{2}}{r^{2}} d r d \theta \\
& +\int_{\mathbb{R}^{+}} \frac{1}{r^{2}}\left\{\int_{-\alpha}^{\alpha}\left|v_{\theta}\right|^{2} d \theta-r|v(r, \alpha)|^{2}-r|v(r,-\alpha)|^{2}\right\} d r .
\end{aligned}
$$

The unitarily equivalent operator is Q_{α} associated to

$$
q_{\alpha}(v, v):=t_{\alpha}\left(\mathcal{U}^{*}(v), \mathcal{U}^{*}(v)\right), \quad v \in \mathcal{G}
$$

where :

$$
\begin{aligned}
q_{\alpha}(v, v)=\int_{v_{\alpha}}\left|v_{r}\right|^{2}- & \frac{1}{4} \frac{|v|^{2}}{r^{2}} d r d \theta \\
& +\int_{\mathbb{R}^{+}} \frac{1}{r^{2}}\left\{\int_{-\alpha}^{\alpha}\left|v_{\theta}\right|^{2} d \theta-r|v(r, \alpha)|^{2}-r|v(r,-\alpha)|^{2}\right\} d r .
\end{aligned}
$$

Robin Laplacian $B_{\alpha, r}$ acting on $L^{2}(-\alpha, \alpha), r \in \mathbb{R}_{+}$:

$$
\begin{aligned}
B_{\alpha, r} u & =-u^{\prime \prime} \operatorname{sur}(-\alpha, \alpha) \\
\pm u^{\prime}(\pm \alpha) & =r u(\pm \alpha) .
\end{aligned}
$$

First eigenvalue : $E_{1}(\alpha, r)$ associated to the eigenfunction ϕ_{α}.

Reduction of the dimension : we apply q_{α} on functions of the form $v(r, \theta)=f(r) \phi_{\alpha}(r, \theta)$:

$$
q_{\alpha}(v, v)=\left\{\int_{\mathbb{R}_{+}}\left|f^{\prime}(r)\right|^{2}-\frac{1}{4 r^{2}}|f(r)|^{2}-\frac{1}{\alpha r}|f(r)|^{2} d r\right\}+\int_{\mathbb{R}_{+}} K_{\alpha}(r)|f(r)|^{2} d r .
$$

We define the operator H_{a} acting on $L^{2}\left(\mathbb{R}_{+}\right)$by

$$
\left(H_{a}\right)(v)=\left(-\frac{d^{2}}{d r^{2}}-\frac{1}{4 r^{2}}-\frac{1}{a r}\right) v(r), \quad v \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right),
$$

and H_{a}^{∞} its Friedrichs extension. Then, $\operatorname{spec}_{\text {ess }}\left(H_{a}^{\infty}\right)=[0,+\infty)$ and its discrete eigenvalues are:

$$
\mathcal{E}_{n}(a)=-\frac{1}{(2 n-1)^{2} a^{2}}, \quad n \in \mathbb{N} .
$$

Orthogonal projections :

$\Pi v(r, \theta):=f(r) \Phi_{\alpha}(r, \theta), \quad f(r):=\int_{-\alpha}^{\alpha} v(r, \theta) \Phi(r, \theta) d \theta$ and
$P v(r, \theta):=v(r, \theta)-\Pi v(r, \theta)$.
For all $\alpha \in(0,1)$:
$\left(1-\alpha^{2}\right) \mathcal{I}^{*}\left(\begin{array}{cc}H_{\alpha\left(1-\alpha^{2}\right)}^{\infty} & 0 \\ 0 & 0\end{array}\right) \mathcal{I}\binom{\Pi v}{P v}-M \leq Q_{\alpha} \leq \mathcal{I}^{*}\left(\begin{array}{cc}H_{\alpha}^{\infty} & 0 \\ 0 & 0\end{array}\right) \mathcal{I}\binom{\Pi v}{P v}+M$,
$M \in \mathbb{R}_{+}, \mathcal{I}$ is the unitary operator satisfying $\mathcal{I}(\Pi v, P v)=(f, P v)$.
We conclude with the min-max principle.

Theorem : Complete asymptotic expansion

For each $n \in \mathbb{N}$, there exists $\lambda_{j, n} \in \mathbb{R}, j \in \mathbb{N} \cup\{0\}$, such that for all $N \in \mathbb{N} \cup\{0\}$:

$$
E_{n}\left(T_{\alpha}\right)=\frac{1}{\alpha^{2}} \sum_{j=0}^{N} \lambda_{j, n} \alpha^{2 j}+O\left(\alpha^{2 N}\right), \quad \alpha \rightarrow 0,
$$

with $\lambda_{0, n}=-\frac{1}{(2 n-1)^{2}}$.
Proof : standard perturbation theory, each eigenvalue is simple as $\alpha \rightarrow 0$.

Theorem : Complete asymptotic expansion

For each $n \in \mathbb{N}$, there exists $\lambda_{j, n} \in \mathbb{R}, j \in \mathbb{N} \cup\{0\}$, such that for all $N \in \mathbb{N} \cup\{0\}$:

$$
E_{n}\left(T_{\alpha}\right)=\frac{1}{\alpha^{2}} \sum_{j=0}^{N} \lambda_{j, n} \alpha^{2 j}+O\left(\alpha^{2 N}\right), \quad \alpha \rightarrow 0,
$$

with $\lambda_{0, n}=-\frac{1}{(2 n-1)^{2}}$.
Proof : standard perturbation theory, each eigenvalue is simple as $\alpha \rightarrow 0$.
Theorem : An Agmon-type estimate for the eigenfunctions
Let E be a discrete eigenvalue of T_{α} and \mathcal{V} be an associated eigenfunction. Then, for all $\epsilon \in(0,1)$,

$$
\int_{U_{\alpha}}\left(|\nabla \mathcal{V}|^{2}+|\mathcal{V}|^{2}\right) e^{2(1-\epsilon) \sqrt{-1-E}|x|} d x<+\infty
$$

Application to Robin Laplacians on polygons

$$
\mathcal{V}:=\{\text { vertices of } \Omega\},
$$

Application to Robin Laplacians on polygons

$$
\begin{aligned}
& \mathcal{V}:=\{\text { vertices of } \Omega\}, \\
& \alpha_{v}:=\text { half aperture at } v \in \mathcal{V},
\end{aligned}
$$

Application to Robin Laplacians on polygons

$\mathcal{V}:=\{$ vertices of $\Omega\}$,
$\alpha_{v}:=$ half aperture at $v \in \mathcal{V}$,
$Q^{\gamma}:=$ Robin Laplacian on $L^{2}(\Omega)$,

Application to Robin Laplacians on polygons

$\mathcal{V}:=\{$ vertices of $\Omega\}$,
$\alpha_{v}:=$ half aperture at $v \in \mathcal{V}$,
$Q^{\gamma}:=$ Robin Laplacian on $L^{2}(\Omega)$,

$$
\begin{aligned}
& \operatorname{spec}_{\text {ess }}\left(Q^{\gamma}\right)=\emptyset, \\
& \operatorname{spec}_{\text {disc }}\left(Q^{\gamma}\right)=\left\{\left(E_{n}\left(Q^{\gamma}\right)\right)_{n \in \mathbb{N}}\right\} .
\end{aligned}
$$

Application to Robin Laplacians on polygons

$$
\begin{aligned}
& \mathcal{V}:=\{\text { vertices of } \Omega\} \\
& \alpha_{v}:=\text { half aperture at } v \in \mathcal{V}, \\
& Q^{\gamma}:={\text { Robin Laplacian on } L^{2}(\Omega),} \\
& \operatorname{spec}_{\mathrm{ess}}\left(Q^{\gamma}\right)=\emptyset \\
& \operatorname{spec}_{\mathrm{disc}}\left(Q^{\gamma}\right)=\left\{\left(E_{n}\left(Q^{\gamma}\right)\right)_{n \in \mathbb{N}}\right\} .
\end{aligned}
$$

Behavior of $E_{n}\left(Q^{\gamma}\right)$ as $\gamma \rightarrow+\infty$?

Proposition [Levitin-Parnovski,2008; Bruneau-Popoff,2016]

$$
E_{1}\left(Q^{\gamma}\right)=-\frac{\gamma^{2}}{\sin ^{2}\left(\min _{v \in \mathcal{V}} \alpha_{v}\right)}+o\left(\gamma^{2}\right), \quad \gamma \rightarrow+\infty .
$$

Model operator

We define T^{\oplus} the Laplacian acting on $\bigoplus_{v \in \mathcal{V}} L^{2}\left(U_{\alpha_{v}}\right)$ and defined by :

$$
T^{\oplus}=\bigoplus_{v \in \mathcal{V}} T_{\alpha_{v}}
$$

Model operator

We define T^{\oplus} the Laplacian acting on $\bigoplus_{v \in \mathcal{V}} L^{2}\left(U_{\alpha_{\nu}}\right)$ and defined by :

$$
T^{\oplus}=\bigoplus_{v \in \mathcal{V}} T_{\alpha_{v}}
$$

Then,

- $\operatorname{spec}\left(T^{\oplus}\right)=\bigcup_{v \in \mathcal{V}} \operatorname{spec}\left(T_{\alpha_{v}}\right)$,
- $\operatorname{spec}_{\text {ess }}\left(T^{\oplus}\right)=[-1,+\infty)$,
- $N^{\oplus}:=\#\left\{n \in \mathbb{N}, E_{n}\left(T^{\oplus}\right)<-1\right\}=\sum_{v \in \mathcal{V}} N_{\alpha_{v}}<+\infty$,
- $E_{1}\left(T^{\oplus}\right)=-\frac{1}{\sin ^{2}\left(\min _{v \in \mathcal{V}} \alpha_{V}\right)}$.

Asymptotics of the first eigenvalues of Q^{γ}

Theorem
For all $n \leq N^{\oplus}$,

$$
E_{n}\left(Q^{\gamma}\right)=\gamma^{2} E_{n}\left(T^{\oplus}\right)+O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty .
$$

Asymptotics of the first eigenvalues of Q^{γ}

Theorem

For all $n \leq N^{\oplus}$,

$$
E_{n}\left(Q^{\gamma}\right)=\gamma^{2} E_{n}\left(T^{\oplus}\right)+O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty .
$$

Ideas of the proof [Bonnaillie-Noël-Dauge, 2006] :

- Construction of quasi-modes: for $v \in \mathcal{V}$, let $\psi_{n}^{\gamma, v}$ be a normalized eigenfunction of $T_{\alpha_{v}}^{\gamma}$ and χ_{v} a smooth radial cut-off function such that supp $\chi_{v} \subset B(v, r)$. We define

$$
\phi_{n}^{\gamma, v}:=\psi_{n}^{\gamma, v} \chi_{v} .
$$

Asymptotics of the first eigenvalues of Q^{γ}

Theorem

For all $n \leq N^{\oplus}$,

$$
E_{n}\left(Q^{\gamma}\right)=\gamma^{2} E_{n}\left(T^{\oplus}\right)+O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty
$$

Ideas of the proof [Bonnaillie-Noël-Dauge, 2006] :

- Construction of quasi-modes: for $v \in \mathcal{V}$, let $\psi_{n}^{\gamma, v}$ be a normalized eigenfunction of $T_{\alpha_{v}}^{\gamma}$ and χ_{v} a smooth radial cut-off function such that $\operatorname{supp} \chi_{v} \subset B(v, r)$. We define

$$
\phi_{n}^{\gamma, v}:=\psi_{n}^{\gamma, v} \chi_{v} .
$$

- $\phi_{n}^{\gamma, v} \in D\left(Q^{\gamma}\right)$ and

$$
\frac{\left\|Q^{\gamma} \phi_{n}^{\gamma, v}-\gamma^{2} E_{n}\left(T_{\alpha_{v}}\right)\right\|^{2}}{\left\|\phi_{n}^{\gamma, v}\right\|^{2}}=O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty
$$

Spectral theorem implies

$$
\operatorname{dist}\left(E_{n}\left(T_{\alpha_{v}}^{\gamma}\right), \operatorname{spec}\left(Q^{\gamma}\right)\right)=O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty
$$

It's not enough...

Spectral theorem implies

$$
\operatorname{dist}\left(E_{n}\left(T_{\alpha_{\nu}}^{\gamma}\right), \operatorname{spec}\left(Q^{\gamma}\right)\right)=O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty .
$$

It's not enough...

Notations :

- $\Lambda:=\left\{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{K}\right\}=$ eigenvalues of T^{\oplus} without multiplicity,

Spectral theorem implies

$$
\operatorname{dist}\left(E_{n}\left(T_{\alpha_{\nu}}^{\gamma}\right), \operatorname{spec}\left(Q^{\gamma}\right)\right)=O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty .
$$

It's not enough...

Notations :

- $\Lambda:=\left\{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{K}\right\}=$ eigenvalues of T^{\oplus} without multiplicity,
$-\mathcal{S}_{l}:=\left\{(n, v): v \in \mathcal{V}, 1 \leq n \leq N_{\alpha_{v}}: E_{n}\left(T_{\alpha_{v}}^{\gamma}\right)=\gamma^{2} \lambda_{l}\right\}$,

Spectral theorem implies

$$
\operatorname{dist}\left(E_{n}\left(T_{\alpha_{\nu}}^{\gamma}\right), \operatorname{spec}\left(Q^{\gamma}\right)\right)=O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty .
$$

It's not enough...

Notations :

- $\Lambda:=\left\{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{K}\right\}=$ eigenvalues of T^{\oplus} without multiplicity,
- $\mathcal{S}_{l}:=\left\{(n, v): v \in \mathcal{V}, 1 \leq n \leq N_{\alpha_{v}}: E_{n}\left(T_{\alpha_{v}}^{\gamma}\right)=\gamma^{2} \lambda_{l}\right\}$,
$-\kappa_{l}=\# \mathcal{S}_{l}=$ multiplicity of λ_{l}.

Spectral theorem implies

$$
\operatorname{dist}\left(E_{n}\left(T_{\alpha_{\nu}}^{\gamma}\right), \operatorname{spec}\left(Q^{\gamma}\right)\right)=O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty .
$$

It's not enough...

Notations :

- $\Lambda:=\left\{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{K}\right\}=$ eigenvalues of T^{\oplus} without multiplicity,
$-\mathcal{S}_{l}:=\left\{(n, v): v \in \mathcal{V}, 1 \leq n \leq N_{\alpha_{v}}: E_{n}\left(T_{\alpha_{v}}^{\gamma}\right)=\gamma^{2} \lambda_{l}\right\}$,
$-\kappa_{l}=\# \mathcal{S}_{I}=$ multiplicity of λ_{l}.

Properties of quasi-modes

For γ large enough,

- $\left(\phi_{n}^{\gamma, v}\right)_{(n, v) \in \bigcup_{l=1}^{K} \mathcal{S}_{l}}$ is linearly independent,

Spectral theorem implies

$$
\operatorname{dist}\left(E_{n}\left(T_{\alpha_{\nu}}^{\gamma}\right), \operatorname{spec}\left(Q^{\gamma}\right)\right)=O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty .
$$

It's not enough...

Notations :

- $\Lambda:=\left\{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{K}\right\}=$ eigenvalues of T^{\oplus} without multiplicity,
$-\mathcal{S}_{l}:=\left\{(n, v): v \in \mathcal{V}, 1 \leq n \leq N_{\alpha_{v}}: E_{n}\left(T_{\alpha_{v}}^{\gamma}\right)=\gamma^{2} \lambda_{l}\right\}$,
$-\kappa_{l}=\# \mathcal{S}_{I}=$ multiplicity of λ_{l}.

Properties of quasi-modes

For γ large enough,

- $\left(\phi_{n}^{\gamma, v}\right)_{(n, v) \in \bigcup_{l=1}^{k} \mathcal{S}_{l}}$ is linearly independent,
- $\left|q^{\gamma}\left(\phi_{n}^{\gamma, v}, \phi_{n}^{\gamma, v}\right)-E_{n}\left(T_{\alpha_{v}}^{\gamma}\right)\right| \leq \gamma C e^{-c \gamma}$,

Spectral theorem implies

$$
\operatorname{dist}\left(E_{n}\left(T_{\alpha_{\nu}}^{\gamma}\right), \operatorname{spec}\left(Q^{\gamma}\right)\right)=O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty .
$$

It's not enough...

Notations :

- $\Lambda:=\left\{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{K}\right\}=$ eigenvalues of T^{\oplus} without multiplicity,
$-\mathcal{S}_{l}:=\left\{(n, v): v \in \mathcal{V}, 1 \leq n \leq N_{\alpha_{v}}: E_{n}\left(T_{\alpha_{v}}^{\gamma}\right)=\gamma^{2} \lambda_{l}\right\}$,
$-\kappa_{l}=\# \mathcal{S}_{I}=$ multiplicity of λ_{l}.

Properties of quasi-modes

For γ large enough,

- $\left(\phi_{n}^{\gamma, v}\right)_{(n, v) \in \bigcup_{l=1}^{k} \mathcal{S}_{l}}$ is linearly independent,
- $\left|q^{\gamma}\left(\phi_{n}^{\gamma, v}, \phi_{n}^{\gamma, v}\right)-E_{n}\left(T_{\alpha_{v}}^{\gamma}\right)\right| \leq \gamma C e^{-c \gamma}$,
- $\left|q^{\gamma}\left(\phi_{i}^{\gamma, v}, \phi_{j}^{\gamma, v}\right)\right| \leq \gamma C e^{-c \gamma}, i \neq j$.

Spectral theorem implies

$$
\operatorname{dist}\left(E_{n}\left(T_{\alpha_{\nu}}^{\gamma}\right), \operatorname{spec}\left(Q^{\gamma}\right)\right)=O\left(e^{-c \gamma}\right), \quad \gamma \rightarrow+\infty .
$$

It's not enough...

Notations :

- $\Lambda:=\left\{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{K}\right\}=$ eigenvalues of T^{\oplus} without multiplicity,
$-\mathcal{S}_{l}:=\left\{(n, v): v \in \mathcal{V}, 1 \leq n \leq N_{\alpha_{v}}: E_{n}\left(T_{\alpha_{v}}^{\gamma}\right)=\gamma^{2} \lambda_{l}\right\}$,
$-\kappa_{l}=\# \mathcal{S}_{I}=$ multiplicity of λ_{l}.

Properties of quasi-modes

For γ large enough,

- $\left(\phi_{n}^{\gamma, v}\right)_{(n, v) \in \bigcup_{l=1}^{k} \mathcal{S}_{l}}$ is linearly independent,
- $\left|q^{\gamma}\left(\phi_{n}^{\gamma, v}, \phi_{n}^{\gamma, v}\right)-E_{n}\left(T_{\alpha_{v}}^{\gamma}\right)\right| \leq \gamma C e^{-c \gamma}$,
- $\left|q^{\gamma}\left(\phi_{i}^{\gamma, v}, \phi_{j}^{\gamma, v}\right)\right| \leq \gamma C e^{-c \gamma}, i \neq j$.

Proof : Localization property of $\psi_{n}^{\gamma, \nu}$.

Lemma

For all $1 \leq I \leq K$ and for γ large enough,

$$
\begin{aligned}
E_{\kappa_{1}+\ldots+\kappa_{l}}\left(Q^{\gamma}\right) & \leq \gamma^{2} \lambda_{l}+C \gamma^{2} e^{-c \gamma}, \\
E_{\kappa_{1}+\ldots+\kappa_{l}+1}\left(Q^{\gamma}\right) & \geq \gamma^{2} \lambda_{l+1}-C .
\end{aligned}
$$

Proof: Min-max principle + partition of unity.

Lemma

For all $1 \leq I \leq K$ and for γ large enough,

$$
\begin{aligned}
E_{\kappa_{1}+\ldots+\kappa_{l}}\left(Q^{\gamma}\right) & \leq \gamma^{2} \lambda_{l}+C \gamma^{2} e^{-c \gamma}, \\
E_{\kappa_{1}+\ldots+\kappa_{l}+1}\left(Q^{\gamma}\right) & \geq \gamma^{2} \lambda_{l+1}-C .
\end{aligned}
$$

Proof: Min-max principle + partition of unity.
Cluster of eigenvalues
For $1 \leq n \leq \kappa_{1}$,

$$
-C \gamma^{\frac{4}{3}} \leq E_{n}\left(Q^{\gamma}\right)-\gamma^{2} E_{n}\left(T^{\oplus}\right) \leq C \gamma^{2} e^{-c \gamma} .
$$

For $\kappa_{1}<n \leq N^{\oplus}$,

$$
-C \leq E_{n}\left(Q^{\gamma}\right)-\gamma^{2} E_{n}\left(T^{\oplus}\right) \leq C \gamma^{2} e^{-c \gamma} .
$$

It's not enough...

Spectral approximation

Let A be a self-adjoint operator acting on a Hilbert space H and $\lambda \in \mathbb{R}$. If there exists $\psi_{1}, \ldots, \psi_{n} \in D(A)$ linearly independent and $\eta>0$ such that

$$
\left\|(A-\lambda) \psi_{j}\right\| \leq \eta\left\|\psi_{j}\right\|, \quad j=1, \ldots, n
$$

then,

$$
\operatorname{dim} \operatorname{Ran} P_{A}(\lambda-C \eta, \lambda+C \eta) \geq n
$$

where $P_{A}(a, b)=$ spectral projection of A on $(a, b), C>0$ depends on the Gramian matrix of $\left(\psi_{j}\right)_{j}$.
In particular, if $\operatorname{spec}_{\text {ess }}(A) \cap(\lambda-C \eta, \lambda+C \eta)=\emptyset$, there exist at least n eigenvalues in $(\lambda-c \eta, \lambda+c \eta)$.

Spectral approximation

Let A be a self-adjoint operator acting on a Hilbert space H and $\lambda \in \mathbb{R}$. If there exists $\psi_{1}, \ldots, \psi_{n} \in D(A)$ linearly independent and $\eta>0$ such that

$$
\left\|(A-\lambda) \psi_{j}\right\| \leq \eta\left\|\psi_{j}\right\|, \quad j=1, \ldots, n
$$

then,

$$
\operatorname{dim} \operatorname{Ran} P_{A}(\lambda-C \eta, \lambda+C \eta) \geq n
$$

where $P_{A}(a, b)=$ spectral projection of A on $(a, b), C>0$ depends on the Gramian matrix of $\left(\psi_{j}\right)_{j}$.
In particular, if $\operatorname{spec}_{\text {ess }}(A) \cap(\lambda-C \eta, \lambda+C \eta)=\emptyset$, there exist at least n eigenvalues in $(\lambda-c \eta, \lambda+c \eta)$.

In our case :
$-\operatorname{spec}_{\text {ess }}\left(Q^{\gamma}\right)=\emptyset$,

- $\eta=O\left(e^{-c \gamma}\right)$.

Work in progress

The asymptotics remains true for curvilinear polygons but the remainders are polynomials.

Work in progress

The asymptotics remains true for curvilinear polygons but the remainders are polynomials.

What are the differences?

- Construction of test functions : $\phi_{n}^{\gamma, v}(x):=\chi_{v}^{\gamma}\left(\psi_{n}^{\gamma, v} \circ f_{v}(x)\right)$, for x near v.

Work in progress

The asymptotics remains true for curvilinear polygons but the remainders are polynomials.

What are the differences?

- Construction of test functions : $\phi_{n}^{\gamma, v}(x):=\chi_{v}^{\gamma}\left(\psi_{n}^{\gamma, v} \circ f_{v}(x)\right)$, for x near v.
- Pseudo quasi-modes only: $\phi_{n}^{\gamma, v} \notin D\left(Q^{\gamma}\right)$.

Work in progress

The asymptotics remains true for curvilinear polygons but the remainders are polynomials.

What are the differences?

- Construction of test functions : $\phi_{n}^{\gamma, v}(x):=\chi_{v}^{\gamma}\left(\psi_{n}^{\gamma, v} \circ f_{v}(x)\right)$, for x near v.
- Pseudo quasi-modes only : $\phi_{n}^{\gamma, v} \notin D\left(Q^{\gamma}\right)$.
- Estimates on $\phi_{n}^{\gamma, v}$ are polynomials because of the change of variables.

Work in progress

The asymptotics remains true for curvilinear polygons but the remainders are polynomials.

What are the differences?

- Construction of test functions : $\phi_{n}^{\gamma, v}(x):=\chi_{v}^{\gamma}\left(\psi_{n}^{\gamma, v} \circ f_{v}(x)\right)$, for x near v.
- Pseudo quasi-modes only : $\phi_{n}^{\gamma, v} \notin D\left(Q^{\gamma}\right)$.
- Estimates on $\phi_{n}^{\gamma, v}$ are polynomials because of the change of variables.

Important remark

Proof $\Longrightarrow E_{N \oplus+1} \geq-\gamma^{2}-\kappa_{\max } \gamma+O\left(\gamma^{\frac{2}{3}}\right), \quad \gamma \rightarrow+\infty$.

What happens for $E_{N^{\oplus}+j}$?

Weyl asymptotics

We want to study $N\left(Q^{\gamma}, c \gamma^{2}\right):=\#\left\{n \in \mathbb{N}, E_{n}\left(Q^{\gamma}\right)<c \gamma^{2}\right\}$ as $\gamma \rightarrow+\infty$. What are the interesting constants $c \in \mathbb{R}$?

Weyl asymptotics

We want to study $N\left(Q^{\gamma}, c \gamma^{2}\right):=\#\left\{n \in \mathbb{N}, E_{n}\left(Q^{\gamma}\right)<c \gamma^{2}\right\}$ as $\gamma \rightarrow+\infty$. What are the interesting constants $c \in \mathbb{R}$?

Theorem [Helffer-Kachmar-Raymond, 2017]

Let $D \subset \mathbb{R}^{2}$ be an open, bounded connected set such that ∂D is C^{4} smooth, and T^{γ} be the Robin Laplacian acting on $L^{2}(D)$. Then, for all $\lambda \in \mathbb{R}$,

$$
N\left(T_{D}^{\gamma},-\gamma^{2}+\lambda \gamma\right) \underset{\gamma \rightarrow+\infty}{\sim} \frac{\sqrt{\gamma}}{\pi} \int_{\partial D} \sqrt{(\kappa(s)+\lambda)_{+}} d \sigma,
$$

and for all $E \in(-1,0), N\left(T_{D}^{\gamma}, E \gamma^{2}\right) \underset{\gamma \rightarrow+\infty}{\sim} \frac{|\partial D|}{\pi} \gamma \sqrt{E+1}$, where $\partial D \ni s \mapsto \kappa(s)$ is the curvature of ∂D.

Remark. For $E<-1, \lim _{\gamma \rightarrow+\infty} N\left(T_{D}^{\gamma}, E \gamma^{2}\right)=0$.

Work in progress

The Weyl formulae remain true for curvilinear polygons.

- There is no contribution of the vertices in the asymptotics.
- If Ω is a polygon with straight edges,

$$
\lim _{\gamma \rightarrow+\infty} \frac{N\left(Q^{\gamma},-\gamma^{2}\right)}{\sqrt{\gamma}}=0
$$

- Ideas of the proof:

Upper bound : partition of unity adapted to truncated sectors : the truncated sectors do not contribute, the 'regular' part gives the asymptotics.
Lower bound : Dirichlet bracketing.

What comes next?

- Asymptotics of eigenvalues on circular cones as the angle goes to 0 ?
- What happens for the next eigenvalues, i.e : for $j \in \mathbb{N}$,

$$
E_{N \oplus+j}\left(Q^{\gamma}\right) \xrightarrow[\gamma \rightarrow+\infty]{ } ?
$$

- Can we adapt the proof in higher dimension? Study of polyhedra?

囯 V．Bonnaillie－Noël，M．Dauge：Asymptotics for the low－lying eigenstates of the Schrödinger operator with magnetic field near corners．Ann．Henri Poincaré，7，5，pp．899－931（2006）．
围 V．Bruneau，N．Popoff ：On the negative spectrum of the Robin Laplacian in corner domains．Anal．PDE 9，no．5，1259－1283（2016）．
D．Daners，J．B Kennedy：On the asymptotic behaviour of the eigenvalues of a Robin problem．Differ．Integr．Eq． $23: 7 / 8$（2010）659－669．
围 M．Khalile，K．Pankrashkin：Eigenvalues of Robin Laplacians in infinite sectors．Preprint available at http：／／arXiv．org／abs／1607．06848．
－M．Levitin，L．Parnovski ：On the principal eigenvalue of a Robin problem with a large parameter．Math．Nachr． 281 （2008）272－281．

葍 B．J．McCartin ：Laplacian eigenstructure on the equilateral triangle．Hikari， 2011.

A．Morame，F．Truc ：Remarks on the spectrum of the Neumann problem with magnetic field in the half－space．J．Math．Phys． 46 （2005）1－13．
國 K．Pankrashkin，N．Popoff ：Mean curvature bounds and eigenvalues of Robin Laplacians．Calc．Var． 54 （2015）1947－1961

Thank you for your attention

