Network meeting
April 23-28, TU Graz

Periodic Schrödinger operators with δ^{\prime}-potentials

Andrii Khrabustovskyi

Institute for Analysis, Karlsruhe Institute of Technology, Germany
CRC 1173 "Wave phenomena: analysis and numerics", Karlsruhe Institute of Technology, Germany
joint work with Pavel Exner

Preliminaries

Periodic operators and their spectrum

It is known that the spectrum of self-adjoint periodic differential operators has a band structure, i.e. the spectrum is a locally finite union of compact intervals called bands.

The open interval (α, β) is called a gap if $(\alpha, \beta) \cap \sigma(\mathcal{H})=\varnothing$ and $\alpha, \beta \in \sigma(\mathcal{H})$.

In general the presence of gaps in the spectrum is not guaranteed!
Example: $\sigma\left(-\Delta_{\mathbb{R}^{n}}\right)=[0, \infty)$.

Problem 1

For a given class \mathcal{L} of periodic differential operators to construct the operator $\mathcal{H} \in \mathcal{L}$ with at least one gap in the spectrum

Preliminaries

References

- Scalar elliptic operators of the form $b \nabla^{*}(a \nabla)$ with periodic a and b
- A. Figotin, P. Kuchment, SIAM J. Appl. Math. 56 (1996).
- R. Hempel, K. Lienau, Commun. PDEs 25 (2000).
- V. Zhikov, St. Petersb. Math. J. 16 (2005).
- V. Hoang, M. Plum, C. Wieners, ZAMP 60 (2009).
- Laplace-Beltrami operators on periodic Riemannian manifolds
- E. B. Davies, E. M. Harrell, J. Differ. Equ. 66 (1987).
- O. Post, J. Differ. Equ. 187 (2003).
- P. Exner, O. Post, J. Geom. Phys. 54 (2005).
- Laplacians posed in noncompact periodic domains
- S. Nazarov, K. Ruotsalainen, J. Taskinen, J. Math. Sci. 181(2012).
- Periodic operators posed in domains with waveguide geometry
- K. Yoshitomi, J. Differ. Equ. 142 (1998).
- G. Cardone, S. Nazarov, C. Perugia, Math. Nachr. 283 (2010).
- D. Borisov, K. Pankrashkin, J. Phys. A 46 (2013).
- Maxwell operators
- A. Figotin, P. Kuchment, SIAM J. AppI. Math. 56 (1996)
- N. Filonov, Commun. Math. Phys. 240 (2003).

Preliminaries

Control of spectral gaps

Problem 2

To construct the operator $\mathcal{H} \in \mathcal{L}$ having gaps which are close (in some natural sense) to preassigned intervals

- Laplace-Beltrami operators on periodic Riemannian manifolds [A. K., J. Differ. Equations 252(3) (2012)]
- Scalar elliptic operators in divergence form [A. K., Asympt. Analysis 82(1-2) (2013)]
- Laplacians posed in noncompact periodic domains [A. K., E. Khruslov, Math. Meth. Appl. Sci. 38(1) (2015)], [A. K., J. Math. Phys. 55(12) (2014)]
- Periodic quantum graphs
[D. Barseghyan, A. K., J. Phys. A 48(25) (2015)]

Preliminaries

Control of spectral gaps: example

- $m \in \mathbb{N}$ is a given number
- the sets $S_{i j}^{\varepsilon}\left(j \in\{1, \ldots, m\}\right.$ is fixed, $\left.i \in \mathbb{Z}^{n}\right)$ are distributed ε-periodically in $\mathbb{R}^{n}(\varepsilon>0)$
- each set $S_{i j}^{\varepsilon}$ has the form $\varepsilon\left(S_{j}+i\right) \backslash D_{i j}^{\varepsilon}$, where S_{j} are fixed surfaces without a boundary, $D_{i j}^{\varepsilon}$ are small "holes"
- the radius of $D_{i j}^{\varepsilon}$ is equal to $d_{j} \varepsilon^{\frac{n}{n-2}}(n \geq 3)$ or $e^{-1 / d j \varepsilon^{2}} \quad(n=2)$
- $\Omega^{\varepsilon}=\mathbb{R}^{n} \backslash\left(\bigcup_{i \in \mathbb{Z}^{n}} \bigcup_{j=1}^{m} S_{i j}^{\varepsilon}\right)$

We denote by $\mathcal{H}^{\varepsilon}=-\Delta_{\Omega^{\varepsilon}}$ the Neumann Laplacian in Ω^{ε}. One has [A.K., 2014]:

- the operator $\mathcal{H}^{\varepsilon}$ has at least m gaps as ε is small enough,
- the first m gaps converge as $\varepsilon \rightarrow 0$ to certain intervals $\left(a_{j}, b_{j}\right)$, whose closures are pairwise disjoint; the next gaps (if any) go to infinity,
- one can completely control the location of the intervals $\left(a_{j}, b_{j}\right)$ via a suitable choice of the numbers d_{j} and the surfaces S_{j}.

Preliminaries

Our goal

The goal

To study this problem for periodic Schrödinger operators with singular potentials

Preliminaries

Example: gaps in the spectrum of Schrödinger operator

- $B \subset(0,1)^{n}-$ an open domain
- $G:=\bigcup_{i \in \mathbb{Z}^{n}}(B+i)$
- $\Omega:=\mathbb{R}^{n} \backslash \bar{G}$
- $\mathcal{H}^{\varepsilon}:=-\Delta_{\mathbb{R}^{n}}+\varepsilon^{-1} 1_{\Omega}, \varepsilon>0$.
- \mathcal{H} is the Dirichlet Laplacian in G

One can prove ${ }^{1}$ that $\mathcal{H}^{\varepsilon}$ norm resolvent converges to \mathcal{H}.
Since $\sigma(\mathcal{H})=\bigcup_{k=1}^{\infty}\left\{\lambda_{k}\right\}, 0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k} \rightarrow \infty$, the spectrum of $\mathcal{H}^{\varepsilon}$ has at least m gaps provided ε is small enough.

Main results

The operator $\mathcal{H}^{\varepsilon}$

Notations:

- $m \in \mathbb{N}$
- $\varepsilon>0$ - a small parameter
- $Y:=(0,1)^{n}$
- $B_{j}, j=1, \ldots, m$ be Lipschitz domains satisfying

$$
\overline{B_{j_{1}}} \cap \overline{B_{j_{2}}}=\varnothing, \quad \bigcup_{j=1}^{m} B_{j} \subset Y
$$

- $B_{0}:=Y \backslash \bigcup_{j=1}^{m} \overline{B_{j}}$
- $S_{j}:=\partial B_{j}, j=1, \ldots, m$
- $B_{i j}^{\varepsilon}:=\varepsilon\left(B_{j}+i\right), i \in \mathbb{Z}^{n}, j=1, \ldots, m$
- $S_{i j}^{\varepsilon}:=\partial B_{i j}^{\varepsilon} \quad-$ the surfaces supporting our potential
- $\Omega^{\varepsilon}:=\mathbb{R}^{n} \backslash \overline{\bigcup_{i j} B_{i j}^{\varepsilon}}$

Main results

The operator $\mathcal{H}^{\varepsilon}$
Let us define accurately the Schrödinger operator $\mathcal{H}^{\varepsilon}=-\Delta+V^{\varepsilon}$ with a singular potential defined by the following formal expression:

$$
V^{\varepsilon}=\sum_{i \in \mathbb{Z}^{n}} \sum_{j=1}^{m} q_{j} \varepsilon^{-1}\left\langle\delta_{S_{i j}^{\varepsilon}}^{\prime}, \cdot\right\rangle \delta_{S_{i j}^{\varepsilon}}^{\prime}, q_{j} \text { are positive constants. }
$$

In what follows by $(f)_{i j}^{+}$(respectively, $(f)_{i j}^{+}$) we denote the trace of the function f on $S_{i j}^{\varepsilon}$, when we approach this surface from outside (respectively, inside).

In the space $L^{2}\left(\mathbb{R}^{n}\right)$ we define the sesquilinear form $\mathfrak{b}^{\varepsilon}$ by
$\mathfrak{h}^{\varepsilon}[u, v]=\int_{\mathbb{R}^{n}} \nabla u \cdot \nabla \bar{v} \mathrm{~d} x+\sum_{i \in \mathbb{Z}^{n}} \sum_{j=1}^{m} q_{j}^{-1} \varepsilon \int_{S_{i j}^{\varepsilon}}\left((u)_{i j}^{+}-(u)_{i j}^{-}\right) \overline{\left((v)_{i j}^{+}-(u)_{i j}^{-}\right)} \mathrm{d} s$
with $\operatorname{dom}\left(\mathfrak{h}^{\varepsilon}\right)=\widetilde{H}^{1}\left(\mathbb{R}^{n}\right):=H^{1}\left(\Omega^{\varepsilon}\right) \underset{i, j}{\oplus} H^{1}\left(B_{i j}^{\varepsilon}\right)$.

Main results

The operator $\mathcal{H}^{\varepsilon}$

The form $\mathfrak{h}^{\varepsilon}$ is symmetric, densely defined, closed and positive.
By $\mathcal{H}^{\varepsilon}$ we denote the operator associated with the form $\mathfrak{b}^{\varepsilon}$, i.e.

$$
\left(\mathcal{H}^{\varepsilon} u, v\right)_{L^{2}\left(\mathbb{R}^{n}\right)}=\mathfrak{h}^{\varepsilon}[u, v], \quad \forall u \in \operatorname{dom}\left(\mathcal{H}^{\varepsilon}\right), \quad \forall v \in \operatorname{dom}\left(h^{\varepsilon}\right)
$$

The functions u from $\operatorname{dom}\left(\mathcal{H}^{\varepsilon}\right)$ satisfy (see, e.g., ${ }^{2}$):

- $u \in \widetilde{H}^{1}\left(\mathbb{R}^{n}\right), \quad \Delta u \in L^{2}\left(\mathbb{R}^{n}\right), \quad\left(\frac{\partial u}{\partial n}\right)_{i j}^{ \pm} \in L^{2}\left(S_{i j}^{\varepsilon}\right)$,
- $\mathcal{H}^{\varepsilon} u=-\Delta u$,
- $\left(\frac{\partial u}{\partial n}\right)_{i j}^{+}=\left(\frac{\partial u}{\partial n}\right)_{i j}^{-}=:\left(\frac{\partial u}{\partial n}\right)_{i j}, \quad q_{j} \varepsilon^{-1}\left(\frac{\partial u}{\partial n}\right)_{i j}+\left((u)_{i j}^{-}-(u)_{i j}^{+}\right)=0$.

Main results

Notations

For $j=1, \ldots, m$ we set:

$$
a_{j}:=q_{j}^{-1}\left|S_{j} \| B_{j}\right|^{-1} .
$$

It is assumed that the numbers a_{j} are pairwise non-equivalent. We renumber them in the ascending order: $a_{j}<a_{j+1}, j=1, \ldots, m+1$.

We consider the following equation (with unknown $\lambda \in \mathbb{C}$):

$$
\mathcal{F}(\lambda)=0, \text { where } \mathcal{F}(\lambda):=1+\frac{1}{\left|B_{0}\right|} \sum_{i=1}^{m} \frac{q_{j}^{-1}\left|S_{j}\right|}{\lambda-q_{j}^{-1}\left|S_{j}\right|\left|B_{j}\right|^{-1}}
$$

It has exactly m roots b_{j} satisfying (after appropriate renumbering)

$$
a_{j}<b_{j}<a_{j+1}, j=1, \ldots, m-1, \quad a_{m}<b_{m}<\infty .
$$

Main results

Convergence theorem

Theorem 1

Let $L>0$ be an arbitrary number. Then the spectrum of the operator $\mathcal{H}^{\varepsilon}$ in $[0, L]$ has the following structure for ε small enough:

$$
\sigma\left(\mathcal{H}^{\varepsilon}\right) \cap[0, L]=[0, L] \backslash \bigcup_{j=1}^{m}\left(a_{j}(\varepsilon), b_{j}(\varepsilon)\right)
$$

where the endpoints of the intervals $\left(a_{j}(\varepsilon), b_{j}(\varepsilon)\right)$ satisfy the relations

$$
\lim _{\varepsilon \rightarrow 0} a_{j}(\varepsilon)=a_{j}, \quad \lim _{\varepsilon \rightarrow 0} b_{j}(\varepsilon)=b_{j}, j=1, \ldots, m
$$

Main results

Control of gaps edges

Theorem 2

Let $L>0$ be an arbitrarily large number and let $\left(\alpha_{j}, \beta_{j}\right), j=1, \ldots, m$ be any arbitrary intervals satisfying

$$
0<\alpha_{1}, \quad \alpha_{j}<\beta_{j}<\alpha_{j+1}, j=\overline{1, m-1}, \quad \alpha_{m}<\beta_{m}<L .
$$

Suppose that the sets $B_{j}, j=1, \ldots, m$, satisfy

$$
\left|B_{j}\right|=\left(1-\sum_{j=1}^{m}\left|B_{j}\right|\right) \frac{\beta_{j}-\alpha_{j}}{\alpha_{j}} \prod_{i=\overline{1, m} \mid \neq j}\left(\frac{\beta_{i}-\alpha_{j}}{\alpha_{i}-\alpha_{j}}\right) .
$$

Then one has

$$
a_{j}=\alpha_{j}, b_{j}=\beta_{j}, \quad j=1, \ldots, m
$$

provided

$$
q_{j}=\frac{\left|B_{j}\right|}{\alpha_{j}\left|S_{j}\right|}, j=1, \ldots, m .
$$

Sketch of the proof

Preliminaries

We rescale the problem to Y-periodic. Namely, we consider the operator

$$
\widetilde{\mathcal{H}^{\varepsilon}}=-\varepsilon^{-2} \Delta+\sum_{i \in \mathbb{Z}^{n}} \sum_{j=1}^{m} q_{j}\left\langle\delta_{S_{i j}}^{\prime} \cdot\right\rangle \delta_{S_{i j}}^{\prime},
$$

where $S_{i j}:=S_{j}+i$. It is clear that $\sigma\left(\widetilde{\mathcal{H}^{\varepsilon}}\right)=\sigma\left(\mathcal{H}^{\varepsilon}\right)$.
We introduce the following forms in $L^{2}(Y)$:
$\mathfrak{h}^{\varepsilon, N}: \operatorname{dom}\left(\mathfrak{h}^{\varepsilon, N}\right)=\left\{u \in L^{2}(Y): u \in H^{1}\left(B_{j}\right), j=\overline{1, m}, u \in H^{1}\left(Y \backslash \bigcup_{j=1}^{m} \overline{B_{j}}\right)\right\}$,

$$
\left.\mathfrak{h}_{N}^{\varepsilon}[u, v]=\frac{1}{\varepsilon^{2}} \int_{Y} \nabla u \cdot \nabla \bar{v} \mathrm{~d} x+\sum_{j=1}^{m} \frac{1}{q_{j}} \int_{S_{j}}\left((u)_{j}^{+}-(u)_{j}^{-}\right) \overline{\left((v)_{j}^{+}-(v)_{j}^{-}\right.}\right) \mathrm{d} s
$$

$\mathfrak{h}^{\varepsilon, D}: \operatorname{dom}\left(\mathfrak{h}^{\varepsilon, D}\right)=\left\{u \in \mathfrak{h}^{\varepsilon, N}: u \|_{\partial Y}=0\right\}, \quad \mathfrak{h}_{D}^{\varepsilon}[u, v]=\mathfrak{h}_{N}^{\varepsilon}[u, v]$
$\mathfrak{h}^{\varepsilon,+}: \operatorname{dom}\left(\mathfrak{h}^{\varepsilon,+}\right)=\left\{u \in \mathfrak{h}^{\varepsilon, N}: u\right.$ is periodic $\}, \quad \mathfrak{h}_{+}^{\varepsilon}[u, v]=\mathfrak{h}_{N}^{\varepsilon}[u, v]$
$\mathfrak{h}^{\varepsilon,-}: \operatorname{dom}\left(\mathfrak{h}^{\varepsilon,-}\right)=\left\{u \in \mathfrak{h}^{\varepsilon, N}: u\right.$ is antiperiodic $\}, \quad \mathfrak{h}_{-}^{\varepsilon}[u, v]=\mathfrak{b}_{N}^{\varepsilon}[u, v]$

Sketch of the proof

Preliminaries

We denote by $\mathcal{H}^{\varepsilon, N}, \mathcal{H}^{\varepsilon, D}, \mathcal{H}^{\varepsilon,+}, \mathcal{H}^{\varepsilon,-}$ the operators associated with these forms. The spectra of these operators are purely discrete.

We denote by $\left\{\lambda_{k}^{\varepsilon, N}\right\}_{k \in \mathbb{N}},\left\{\lambda_{k}^{\varepsilon, D}\right\}_{k \in \mathbb{N}},\left\{\lambda_{k}^{\varepsilon,+}\right\}_{k \in \mathbb{N}},\left\{\lambda_{k}^{\varepsilon,-}\right\}_{k \in \mathbb{N}}$ the corresponding sequences of eigenvalues, renumbered in the ascending order and with account of multiplicity.

Main results

Step 1: Bracketing

Using Floquet-Bloch theory and minimax principle we get:

$$
\begin{gather*}
\sigma\left(\mathcal{H}^{\varepsilon}\right)=\bigcup_{k \in \mathbb{N}} L_{k}^{\varepsilon}, L_{k}^{\varepsilon} \text { are compact intervals satisfying } \tag{1}\\
{\left[\lambda_{k}^{\varepsilon,+}, \lambda_{k}^{\varepsilon,-}\right] \subset L_{k}^{\varepsilon} \subset\left[\lambda_{k}^{\varepsilon, N}, \lambda_{k}^{\varepsilon, D}\right]}
\end{gather*}
$$

Our goal it to prove that

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \lambda_{k}^{\varepsilon, N}=\lim _{\varepsilon \rightarrow 0} \lambda_{k}^{\varepsilon,+}= \begin{cases}0, & k=1 \\
b_{k-1}, & 2 \leq k \leq m+1 \\
\infty, & k \geq m+2\end{cases} \tag{2}\\
& \lim _{\varepsilon \rightarrow 0} \lambda_{k}^{\varepsilon, D}=\lim _{\varepsilon \rightarrow 0} \lambda_{k}^{\varepsilon,-}= \begin{cases}a_{k}, & 1 \leq k \leq m \\
\infty, & k \geq m+1\end{cases}
\end{align*}
$$

$$
(1)+(2) \Longrightarrow \text { Theorem } 1
$$

Main results

Step 2: Resolvent convergence of the operators $\mathcal{H}^{\varepsilon, \bullet}$

The forms $\mathfrak{h}^{\varepsilon, \bullet}$ increases monotonically as ε decreases. We introduce the limit forms \mathfrak{b}^{\bullet} by

$$
\begin{aligned}
& \operatorname{dom}\left(h^{\bullet}\right)=\left\{u \in \operatorname{dom}\left(h^{\varepsilon, \bullet}\right): \sup _{\varepsilon} h^{\varepsilon, \bullet}[u, u]<\infty\right\}, \\
& h^{\bullet}[u, v]:=\lim _{\varepsilon \rightarrow 0} \mathfrak{b}^{\varepsilon, \bullet}[u, v]
\end{aligned}
$$

The forms \mathfrak{F}^{\bullet} are positive and closed (see ${ }^{3}$).
We denote by \mathcal{H}^{\bullet} the operators acting in $\overline{\operatorname{dom}\left(\mathfrak{h}^{\bullet}\right)}{ }^{L^{2}(Y)}$ being associated with these forms.

[^0]
Main results

Step 2 (continuation)
Finally, we define the "resolvents" of these operators:

$$
R^{\bullet}:= \begin{cases}\left(\mathcal{H}^{\bullet}+l\right)^{-1} & \text { on } \left.\overline{\operatorname{dom}\left(\mathcal{H}^{\bullet}\right.}\right)^{L^{2}(Y)} \\ 0 & \text { on } L^{2}(Y) \ominus{\overline{\operatorname{dom}\left(\mathcal{H}^{\bullet}\right)}}^{L^{2}(Y)}\end{cases}
$$

Then (again see ${ }^{2}$)

$$
\begin{equation*}
\forall f \in L^{2}(Y):\left\|\left(\mathcal{H}^{\varepsilon, \bullet}+I\right)^{-1} f-R^{\bullet} f\right\|_{L^{2}(Y)} \rightarrow 0 \text { as } \varepsilon \rightarrow 0 . \tag{3}
\end{equation*}
$$

Moreover, since $\left(\mathcal{H}^{\varepsilon_{1}, \bullet}+I\right)^{-1} \geq\left(\mathcal{H}^{\varepsilon_{2}, \bullet}+I\right)^{-1}$ as $\varepsilon_{1} \geq \varepsilon_{2}$, and $\left(\mathcal{H}^{\varepsilon, \bullet}+I\right)^{-1}$ and R^{\bullet} are compact operators, one can upgrade (3) to norm convergence (see Theorem VIII-3.5 from ${ }^{4}$):

$$
\begin{equation*}
\left\|\left(\mathcal{H}^{\varepsilon, \bullet}+I\right)^{-1}-R^{\bullet}\right\|_{\mathcal{L}\left(L^{2}(Y)\right)} \rightarrow 0 \text { as } \varepsilon \rightarrow 0 \tag{4}
\end{equation*}
$$

[^1]
Main results

Step 2 (continuation)
One has:

$$
\begin{aligned}
& \operatorname{dom}\left(\mathcal{H}^{N}\right)=\operatorname{dom}\left(\mathcal{H}^{+}\right)=\left\{u(x)=\sum_{j=0}^{m} \mathbf{u}_{j} 1_{B_{j}}(x), \mathbf{u}_{j} \text { are constants }\right\} \\
& \mathcal{H}^{N} u=\mathcal{H}^{+} u=\left(\sum_{k=1}^{m} \frac{\left|S_{j}\right|}{q_{j}\left|B_{0}\right|}\left(\mathbf{u}_{0}-\mathbf{u}_{k}\right)\right) 1_{B_{0}}(x)+\sum_{j=1}^{m} \frac{\left|S_{j}\right|}{q_{j}\left|B_{j}\right|}\left(\mathbf{u}_{j}-\mathbf{u}_{0}\right) 1_{B_{j}}(x)
\end{aligned}
$$

$$
\mathcal{H}^{D} u=\mathcal{H}^{-} u=\operatorname{dom}\left(\mathcal{H}^{-}\right)=\left\{u(x)=\sum_{j=1}^{m} \mathbf{u}_{j} 1_{B_{j}}(x), \mathbf{u}_{j} \text { are constants }\right\}
$$

$$
\mathcal{H}^{D} u=\mathcal{H}^{-} u=\sum_{j=1}^{m} \frac{\left|S_{j}\right|}{q_{j}\left|B_{j}\right|} \mathbf{u}_{j} 1_{B_{j}}(x)
$$

We denote the eigenvalues of these operators by

$$
\lambda_{k}^{N}, \lambda_{k}^{+}, k=\overline{1, m+1}, \quad \lambda_{k}^{D}, \lambda_{k}^{-}, k=\overline{1, m}
$$

Main results

Step 2 (continuation)

It follows from (3) that

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0}\left(\lambda_{k}^{\varepsilon, N /+}+1\right)^{-1}= \begin{cases}\left(\lambda_{k}^{N /+}+1\right)^{-1}, & 1 \leq k \leq m+1 \\
0, & k \geq m+2\end{cases} \\
\lim _{\varepsilon \rightarrow 0}\left(\lambda_{k}^{\varepsilon, D /-}+1\right)^{-1}= \begin{cases}\left(\lambda_{k}^{D /-}+1\right)^{-1}, & 1 \leq k \leq m \\
0, & k \geq m+1\end{cases}
\end{gathered}
$$

or, equivalently,

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0} \lambda_{k}^{\varepsilon, N /+}= \begin{cases}\lambda_{k}^{N /+}, & 1 \leq k \leq m+1 \\
\infty, & k \geq m+2\end{cases} \\
\lim _{\varepsilon \rightarrow 0} \lambda_{k}^{\varepsilon, D /-}= \begin{cases}\lambda_{k}^{D /-}, & 1 \leq k \leq m \\
\infty, & k \geq m+1\end{cases}
\end{gathered}
$$

Main results

Step 3: Analysis of matrices
It is easy to see that $\lambda_{k}^{\varepsilon, D}=\lambda_{k}^{\varepsilon,-}=q_{k}^{-1}\left|S_{k} \| B_{k}\right|^{-1}=a_{k}$.
The eigenvalues $\lambda_{k}^{\varepsilon, N}=\lambda_{k}^{\varepsilon,+}$ are the roots of the equation

$$
\operatorname{det}\left(H^{N}-\lambda I\right)=0,
$$

where the matrix H is as follows:

$$
H:=\left(\begin{array}{ccccc}
\sum_{j=1}^{m} q_{j}^{-1}\left|S_{j}\right|\left|B_{0}\right|^{-1} & -q_{1}^{-1}\left|S_{1} \| B_{0}\right|^{-1} & -q_{2}^{-1}\left|S_{2}\right|\left|B_{0}\right|^{-1} & \ldots & -q_{m}^{-1}\left|S_{m} \| B_{0}\right|^{-1} \\
-q_{1}^{-1}\left|S_{1}\right|\left|B_{1}\right|^{-1} & q_{1}^{-1}\left|S_{1}\right|\left|B_{1}\right|^{-1} & 0 & \ldots & 0 \\
-q_{2}^{-1}\left|S_{2}\right|\left|B_{2}\right|^{-1} & 0 & q_{2}^{-1}\left|S_{2} \| B_{2}\right|^{-1} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-q_{m}^{-1}\left|S_{m} \| B_{m}\right|^{-1} & 0 & 0 & \cdots & q_{m}^{-1}\left|S_{m} \| B_{m}\right|^{-1}
\end{array}\right)
$$

After some algebra we obtain:

$$
\operatorname{det}\left(H^{N}-\lambda l\right)=-\lambda\left(\prod_{j=1}^{m}\left(q_{j}^{-1}\left|S_{j}\right|\left|B_{j}\right|^{-1}-\lambda\right)\right)\left(1+\frac{1}{\left|B_{0}\right|} \sum_{i=1}^{m} \frac{q_{j}^{-1}\left|S_{j}\right|}{\lambda-q_{j}^{-1}\left|S_{j}\right|\left|B_{j}\right|^{-1}}\right),
$$

whence $\lambda_{1}^{N /+}=0, \lambda_{k}^{N /+}=b_{k-1}$ as $k=2, \ldots, m+1$.

Thank you for your attention!

[^0]: ${ }^{3}$ B. Simon, J. Funct. Anal. 28 (1978), no. 3, 377-385.

[^1]: ${ }^{4}$ T. Kato, Perturbation theory for linear operators, Springer, New-York, 1966.

