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Preliminaries
Periodic operators and their spectrum

It is known that the spectrum of self-adjoint periodic differential
operators has a band structure, i.e. the spectrum is a locally finite
union of compact intervals called bands.

The open interval (α, β) is called a gap if (α, β) ∩ σ(H) = ∅ and
α, β ∈ σ(H).

In general the presence of gaps in the spectrum is not guaranteed!

Example: σ(−∆Rn ) = [0,∞).

Problem 1
For a given class L of periodic differential operators to construct
the operator H ∈ L with at least one gap in the spectrum
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References

Scalar elliptic operators of the form b∇∗(a∇) with periodic a and b

- A. Figotin, P. Kuchment, SIAM J. Appl. Math. 56 (1996).
- R. Hempel, K. Lienau, Commun. PDEs 25 (2000).
- V. Zhikov, St. Petersb. Math. J. 16 (2005).
- V. Hoang, M. Plum, C. Wieners, ZAMP 60 (2009).

Laplace-Beltrami operators on periodic Riemannian manifolds

- E. B. Davies, E. M. Harrell, J. Differ. Equ. 66 (1987).
- O. Post, J. Differ. Equ. 187 (2003).
- P. Exner, O. Post, J. Geom. Phys. 54 (2005).

Laplacians posed in noncompact periodic domains
- S. Nazarov, K. Ruotsalainen, J. Taskinen, J. Math. Sci. 181(2012).

Periodic operators posed in domains with waveguide geometry
- K. Yoshitomi, J. Differ. Equ. 142 (1998).
- G. Cardone, S. Nazarov, C. Perugia, Math. Nachr. 283 (2010).
- D. Borisov, K. Pankrashkin, J. Phys. A 46 (2013).

Maxwell operators
- A. Figotin, P. Kuchment, SIAM J. Appl. Math. 56 (1996)
- N. Filonov, Commun. Math. Phys. 240 (2003).

A. Khrabustovskyi Periodic Schrödinger operators with δ′-potentials



4/22

Preliminaries
Control of spectral gaps

Problem 2
To construct the operator H ∈ L having gaps which are close (in
some natural sense) to preassigned intervals
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Preliminaries
Control of spectral gaps: example

Sε
ij

Dε
ij HHj

ε

m ∈ N is a given number

the sets Sε
ij (j ∈ {1, ...,m} is fixed, i ∈ Zn)

are distributed ε-periodically in Rn (ε > 0)

each set Sε
ij has the form ε(Sj + i) \ Dε

ij ,
where Sj are fixed surfaces without a
boundary, Dε

ij are small “holes”

the radius of Dε
ij is equal to djε

n
n−2 (n ≥ 3)

or e−1/djε
2

(n = 2)

Ωε = Rn \

( ⋃
i∈Zn

m⋃
j=1

Sε
ij

)
We denote by Hε = −∆Ωε the Neumann Laplacian in Ωε.
One has [A.K., 2014]:

I the operator Hε has at least m gaps as ε is small enough,
I the first m gaps converge as ε→ 0 to certain intervals (aj , bj), whose

closures are pairwise disjoint; the next gaps (if any) go to infinity,
I one can completely control the location of the intervals (aj , bj) via a suitable

choice of the numbers dj and the surfaces Sj .
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Preliminaries
Our goal

The goal

To study this problem for periodic Schrödinger operators with
singular potentials
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Preliminaries
Example: gaps in the spectrum of Schrödinger operator

G
B
BM
��
�*

B ⊂ (0, 1)n – an open domain

G :=
⋃

i∈Zn
(B + i)

Ω := Rn \ G

Hε := −∆Rn + ε−11Ω, ε > 0.

H is the Dirichlet Laplacian in G

One can prove1 that Hε norm resolvent converges to H .

Since σ(H) =
∞⋃

k=1
{λk }, 0 < λ1 ≤ λ2 ≤ · · · ≤ λk → ∞, the spectrum

of Hε has at least m gaps provided ε is small enough.

1R. Hempel, I. Herbst, Commun. Math. Phys. 169 (1995), 237–259
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Main results
The operator Hε

Notations:
m ∈ N
ε > 0 - a small parameter
Y := (0, 1)n

Bj , j = 1, . . . ,m be Lipschitz domains satisfying

Bj1 ∩ Bj2 = ∅,
m⋃

j=1

Bj ⊂ Y

B0 := Y \
m⋃

j=1
Bj

Sj := ∂Bj , j = 1, . . . ,m
Bε

ij := ε(Bj + i), i ∈ Zn, j = 1, . . . ,m
Sε

ij := ∂Bε
ij – the surfaces supporting our potential

Ωε := Rn \
⋃
ij

Bε
ij
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Main results
The operator Hε

Let us define accurately the Schrödinger operator Hε = −∆ + Vε

with a singular potential defined by the following formal expression:

Vε =
∑
i∈Zn

m∑
j=1

qjε
−1〈δ′Sε

ij
, ·〉δ′Sε

ij
, qj are positive constants.

In what follows by (f)+
ij (respectively, (f)+

ij ) we denote the trace of
the function f on Sε

ij , when we approach this surface from outside
(respectively, inside).

In the space L2(Rn) we define the sesquilinear form hε by

h
ε[u, v] =

∫
Rn

∇u·∇v̄dx+
∑
i∈Zn

m∑
j=1

q−1
j ε

∫
Sε

ij

(
(u)+

ij − (u)−ij
) (

(v)+
ij − (u)−ij

)
ds

with dom(hε) = H̃1(Rn) := H1(Ωε) ⊕
i,j

H1(Bε
ij ).
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Main results
The operator Hε

The form hε is symmetric, densely defined, closed and positive.

By Hε we denote the operator associated with the form hε, i.e.

(Hεu, v)L2(Rn) = hε[u, v], ∀u ∈ dom(Hε), ∀v ∈ dom(hε).

The functions u from dom(Hε) satisfy (see, e.g., 2):

u ∈ H̃1(Rn), ∆u ∈ L2(Rn),
(
∂u
∂n

)±
ij
∈ L2(Sε

ij ),

Hεu = −∆u,(
∂u
∂n

)+

ij
=

(
∂u
∂n

)−
ij

=:

(
∂u
∂n

)
ij
, qjε

−1
(
∂u
∂n

)
ij

+
(
(u)−ij − (u)+

ij

)
= 0.

2J. Behrndt, P. Exner, V. Lotoreichik, Rev. Math. Phys. 26 (2014), 1450015.
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Main results
Notations

For j = 1, . . . ,m we set:

aj := q−1
j |Sj ||Bj |

−1.

It is assumed that the numbers aj are pairwise non-equivalent. We
renumber them in the ascending order: aj < aj+1, j = 1, . . . ,m + 1.

We consider the following equation (with unknown λ ∈ C):

F (λ) = 0, where F (λ) := 1 +
1
|B0|

m∑
i=1

q−1
j |Sj |

λ − q−1
j |Sj ||Bj |

−1
.

It has exactly m roots bj satisfying (after appropriate renumbering)

aj < bj < aj+1, j = 1, . . . ,m − 1, am < bm < ∞.
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Main results
Convergence theorem

Theorem 1
Let L > 0 be an arbitrary number. Then the spectrum of the
operatorHε in [0, L ] has the following structure for ε small enough:

σ(Hε) ∩ [0, L ] = [0, L ] \
m⋃

j=1

(
aj(ε), bj(ε)

)
,

where the endpoints of the intervals
(
aj(ε), bj(ε)

)
satisfy the

relations

lim
ε→0

aj(ε) = aj , lim
ε→0

bj(ε) = bj , j = 1, . . . ,m.
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Main results
Control of gaps edges

Theorem 2

Let L > 0 be an arbitrarily large number and let (αj , βj), j = 1, . . . ,m be
any arbitrary intervals satisfying

0 < α1, αj < βj < αj+1, j = 1,m − 1, αm < βm < L .

Suppose that the sets Bj , j = 1, . . . ,m, satisfy

|Bj | =

1 − m∑
j=1

|Bj |

 βj − αj

αj

∏
i=1,m|i,j

(
βi − αj

αi − αj

)
.

Then one has

aj = αj , bj = βj , j = 1, . . . ,m

provided

qj =
|Bj |

αj |Sj |
, j = 1, . . . ,m.
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Sketch of the proof
Preliminaries

We rescale the problem to Y -periodic. Namely, we consider the operator

H̃ε = −ε−2∆ +
∑
i∈Zn

m∑
j=1

qj〈δ
′
Sij
, ·〉δ′Sij

,

where Sij := Sj + i. It is clear that σ(H̃ε) = σ(Hε).

We introduce the following forms in L2(Y):

hε,N : dom(hε,N) =

{
u ∈ L2(Y) : u ∈ H1(Bj), j = 1,m, u ∈ H1(Y \

m⋃
j=1

Bj)

}
,

hεN[u, v] =
1
ε2

∫
Y

∇u · ∇vdx +
m∑

j=1

1
qj

∫
Sj

(
(u)+

j − (u)−j
) (

(v)+
j − (v)−j

)
ds

hε,D : dom(hε,D) =
{
u ∈ hε,N : u|∂Y = 0

}
, hεD [u, v] = hεN[u, v]

hε,+ : dom(hε,+) =
{
u ∈ hε,N : u is periodic

}
, hε+[u, v] = hεN[u, v]

hε,− : dom(hε,−) =
{
u ∈ hε,N : u is antiperiodic

}
, hε−[u, v] = hεN[u, v]
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Sketch of the proof
Preliminaries

We denote by Hε,N, Hε,D , Hε,+, Hε,− the operators associated
with these forms. The spectra of these operators are purely
discrete.

We denote by
{
λε,Nk

}
k∈N

,
{
λε,Dk

}
k∈N

,
{
λε,+k

}
k∈N

,
{
λε,−k

}
k∈N

the
corresponding sequences of eigenvalues, renumbered in the
ascending order and with account of multiplicity.
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Main results
Step 1: Bracketing

Using Floquet-Bloch theory and minimax principle we get:

σ(Hε) =
⋃

k∈N
Lεk , Lεk are compact intervals satisfying

[λε,+k , λε,−k ] ⊂ Lεk ⊂ [λε,Nk , λε,Dk ]
(1)

Our goal it to prove that

lim
ε→0

λε,Nk = lim
ε→0

λε,+k =


0, k = 1

bk−1, 2 ≤ k ≤ m + 1

∞, k ≥ m + 2

lim
ε→0

λε,Dk = lim
ε→0

λε,−k =

ak , 1 ≤ k ≤ m

∞, k ≥ m + 1

(2)

(1) + (2) =⇒ Theorem 1
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Main results
Step 2: Resolvent convergence of the operators Hε,•

The forms hε,• increases monotonically as ε decreases. We
introduce the limit forms h• by

dom(h•) =

{
u ∈ dom(hε,•) : sup

ε
hε,•[u, u] < ∞

}
,

h•[u, v] := lim
ε→0
hε,•[u, v]

The forms h• are positive and closed (see 3).

We denote by H• the operators acting in dom(h•)
L2(Y)

being
associated with these forms.

3B. Simon, J. Funct. Anal. 28 (1978), no. 3, 377–385.
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Main results
Step 2 (continuation)

Finally, we define the “resolvents” of these operators:

R• :=

(H• + I)−1 on dom(H•)
L2(Y)

0 on L2(Y) 	 dom(H•)
L2(Y)

Then (again see 2)

∀f ∈ L2(Y) :
∥∥∥(Hε,• + I)−1f − R•f

∥∥∥
L2(Y)

→ 0 as ε→ 0. (3)

Moreover, since (Hε1,• + I)−1 ≥ (Hε2,• + I)−1 as ε1 ≥ ε2, and

(Hε,• + I)−1 and R• are compact operators, one can upgrade (3)
to norm convergence (see Theorem VIII-3.5 from 4):∥∥∥(Hε,• + I)−1 − R•

∥∥∥
L(L2(Y))

→ 0 as ε→ 0. (4)

4T. Kato, Perturbation theory for linear operators, Springer, New-York, 1966.
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Main results
Step 2 (continuation)

One has:

dom(HN) = dom(H+) =

u(x) =
m∑

j=0

uj1Bj (x), uj are constants


HNu = H+u =

 m∑
k=1

|Sj |

qj |B0|
(u0 − uk )

 1B0 (x) +
m∑

j=1

|Sj |

qj |Bj |
(uj − u0)1Bj (x)

HDu = H−u = dom(H−) =

u(x) =
m∑

j=1

uj1Bj (x), uj are constants


HDu = H−u =

m∑
j=1

|Sj |

qj |Bj |
uj1Bj (x)

We denote the eigenvalues of these operators by

λN
k , λ

+
k , k = 1,m + 1, λD

k , λ
−
k , k = 1,m.
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Main results
Step 2 (continuation)

It follows from (3) that

lim
ε→0

(λε,N/+k + 1)−1 =

(λN/+
k + 1)−1, 1 ≤ k ≤ m + 1

0, k ≥ m + 2

lim
ε→0

(λε,D/−k + 1)−1 =

(λD/−
k + 1)−1, 1 ≤ k ≤ m

0, k ≥ m + 1

or, equivalently,

lim
ε→0

λε,N/+k =

λN/+
k , 1 ≤ k ≤ m + 1

∞, k ≥ m + 2

lim
ε→0

λε,D/−k =

λD/−
k , 1 ≤ k ≤ m

∞, k ≥ m + 1
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Main results
Step 3: Analysis of matrices

It is easy to see that λε,Dk = λε,−k = q−1
k |Sk ||Bk |

−1 = ak .

The eigenvalues λε,Nk = λε,+k are the roots of the equation

det(HN − λI) = 0,

where the matrix H is as follows:

H :=



m∑
j=1

q−1
j |Sj ||B0|

−1 −q−1
1 |S1||B0|

−1 −q−1
2 |S2||B0|

−1 . . . −q−1
m |Sm ||B0|

−1

−q−1
1 |S1||B1|

−1 q−1
1 |S1||B1|

−1 0 . . . 0
−q−1

2 |S2||B2|
−1 0 q−1

2 |S2||B2|
−1 . . . 0

...
...

...
. . .

...
−q−1

m |Sm ||Bm |
−1 0 0 . . . q−1

m |Sm ||Bm |
−1


After some algebra we obtain:

det(HN − λI) = −λ

 m∏
j=1

(
q−1

j |Sj ||Bj |
−1 − λ

)
1 +

1
|B0|

m∑
i=1

q−1
j |Sj |

λ − q−1
j |Sj ||Bj |

−1

 ,
whence λN/+

1 = 0, λN/+
k = bk−1 as k = 2, . . . ,m + 1.
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Thank you for your attention!
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