Optimisation of the lowest eigenvalue induced by singular interactions

Vladimir Lotoreichik

Nuclear Physics Institute, Czech Academy of Sciences

TU Graz, Austria, 24.04.2017

From classical to spectral isoperimetric inequality

From classical to spectral isoperimetric inequality

A bounded domain $\Omega \subset \mathbb{R}^{d}(d \geq 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^{d}$.

From classical to spectral isoperimetric inequality

A bounded domain $\Omega \subset \mathbb{R}^{d}(d \geq 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^{d}$.
Self-adjoint Dirichlet Laplacian $-\Delta_{\mathrm{D}}^{\Omega}$ in $L^{2}(\Omega)$
Spectrum of $-\Delta_{D}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega)>0-$ the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.

From classical to spectral isoperimetric inequality

A bounded domain $\Omega \subset \mathbb{R}^{d}(d \geq 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^{d}$.
Self-adjoint Dirichlet Laplacian $-\Delta_{\mathrm{D}}^{\Omega}$ in $L^{2}(\Omega)$
Spectrum of $-\Delta_{D}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega)>0-$ the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.
Isoperimetric inequalities

$$
\left\{\begin{array} { l l l }
{ | \partial \Omega | = | \partial \mathcal { B } | } \\
{ \Omega \nsubseteq \mathcal { B } }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{ll}
|\Omega|<|\mathcal{B}| & \text { (geometric) } \\
\lambda_{1}^{\mathrm{D}}(\Omega)>\lambda_{1}^{\mathrm{D}}(\mathcal{B}) & \text { (spectral) }
\end{array}\right.\right.
$$

From classical to spectral isoperimetric inequality

A bounded domain $\Omega \subset \mathbb{R}^{d}(d \geq 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^{d}$.
Self-adjoint Dirichlet Laplacian $-\Delta_{\mathrm{D}}^{\Omega}$ in $L^{2}(\Omega)$
Spectrum of $-\Delta_{D}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega)>0$ - the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.
Isoperimetric inequalities

$$
\left\{\begin{array} { l l l }
{ | \partial \Omega | = | \partial \mathcal { B } | } \\
{ \Omega \nsubseteq \mathcal { B } }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{ll}
|\Omega|<|\mathcal{B}| & \text { (geometric) } \\
\lambda_{1}^{\mathrm{D}}(\Omega)>\lambda_{1}^{\mathrm{D}}(\mathcal{B}) & \text { (spectral) }
\end{array}\right.\right.
$$

Geometric: Steiner-1842, Hurwitz-1902 $(d=2)$, corollary of Brunn-Minkowski inequality $(d \geq 3)$. Spectral: Faber-23, Krahn-26.

From classical to spectral isoperimetric inequality

A bounded domain $\Omega \subset \mathbb{R}^{d}(d \geq 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^{d}$.

Self-adjoint Dirichlet Laplacian $-\Delta_{\mathrm{D}}^{\Omega}$ in $L^{2}(\Omega)$

Spectrum of $-\Delta_{D}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega)>0$ - the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.
Isoperimetric inequalities

$$
\left\{\begin{array} { l l l }
{ | \partial \Omega | = | \partial \mathcal { B } | } \\
{ \Omega \neq \mathcal { B } }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
|\Omega|<|\mathcal{B}| & \text { (geometric) } \\
\lambda_{1}^{\mathrm{D}}(\Omega)>\lambda_{1}^{\mathrm{D}}(\mathcal{B}) & \text { (spectral) }
\end{array}\right.\right.
$$

Geometric: Steiner-1842, Hurwitz-1902 $(d=2)$, corollary of Brunn-Minkowski inequality ($d \geq 3$). Spectral: Faber-23, Krahn-26.

Other boundary conditions

The Neumann Laplacian: similar spectral inequality is trivial: $\lambda_{1}^{\mathrm{N}}(\Omega)=0$. Non-trivial for δ-interactions on manifolds and for the Robin Laplacian.

I. Schrödinger operators with δ-interactions on hypersurfaces

Definition of Hamiltonians with surface δ-interactions

Definition of Hamiltonians with surface δ-interactions

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^{d}$, not necessarily bounded or closed.

Definition of Hamiltonians with surface δ-interactions

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^{d}$, not necessarily bounded or closed.

$$
\begin{aligned}
& \text { Symmetric quadratic form in } L^{2}\left(\mathbb{R}^{d}\right) \\
& H^{1}\left(\mathbb{R}^{d}\right) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u]:=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}^{d}\right)}^{2}-\alpha\left\|\left.u\right|_{\Sigma}\right\|_{L^{2}(\Sigma)}^{2} \text { for } \alpha>0 .
\end{aligned}
$$

Definition of Hamiltonians with surface δ-interactions

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^{d}$, not necessarily bounded or closed.

> Symmetric quadratic form in $L^{2}\left(\mathbb{R}^{d}\right)$
> $H^{1}\left(\mathbb{R}^{d}\right) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u]:=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}^{d}\right)}^{2}-\alpha\left\|\left.u\right|_{\Sigma}\right\|_{L^{2}(\Sigma)}^{2}$ for $\alpha>0$.

The quadratic from $\mathfrak{h}_{\alpha}^{\sum}$ is closed, densely defined, and semi-bounded.

Definition of Hamiltonians with surface δ-interactions

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^{d}$, not necessarily bounded or closed.

Symmetric quadratic form in $L^{2}\left(\mathbb{R}^{d}\right)$
$H^{1}\left(\mathbb{R}^{d}\right) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u]:=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}^{d}\right)}^{2}-\alpha\left\|\left.u\right|_{\Sigma}\right\|_{L^{2}(\Sigma)}^{2}$ for $\alpha>0$.

The quadratic from $\mathfrak{h}_{\alpha}^{\sum}$ is closed, densely defined, and semi-bounded.

Schrödinger operator with δ-interaction on Σ of strength α
$\mathrm{H}_{\alpha}^{\Sigma}$ - self-adjoint operator in $L^{2}\left(\mathbb{R}^{d}\right)$ associated to the form $\mathfrak{h}_{\alpha}^{\Sigma}$.

Definition of Hamiltonians with surface δ-interactions

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^{d}$, not necessarily bounded or closed.

Symmetric quadratic form in $L^{2}\left(\mathbb{R}^{d}\right)$
$H^{1}\left(\mathbb{R}^{d}\right) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u]:=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d} ; \mathbb{C}^{d}\right)}^{2}-\alpha\left\|\left.u\right|_{\Sigma}\right\|_{L^{2}(\Sigma)}^{2}$ for $\alpha>0$.

The quadratic from $\mathfrak{h}_{\alpha}^{\sum}$ is closed, densely defined, and semi-bounded.

Schrödinger operator with δ-interaction on Σ of strength α
$\mathrm{H}_{\alpha}^{\Sigma}$ - self-adjoint operator in $L^{2}\left(\mathbb{R}^{d}\right)$ associated to the form $\mathfrak{h}_{\alpha}^{\Sigma}$.
The lowest spectral point for $\mathrm{H}_{\alpha}^{\Sigma}$
$\mu_{1}^{\alpha}(\Sigma):=\inf \sigma\left(\mathrm{H}_{\alpha}^{\Sigma}\right)$.

Motivations to study $\mathrm{H}_{\alpha}^{\Sigma}$

Motivations to study $\mathrm{H}_{\alpha}^{\Sigma}$

Physics

(i) 'Leaky' quantum systems: a particle is confined to Σ but the tunneling between different parts of Σ is not neglected.
(ii) Inverse scattering problem for $\mathrm{H}_{\alpha}^{\Sigma}$ is linked to the Calderon problem with non-smooth conductivity.
(iii) Existence of spectral gaps for high-contrast photonic crystals.

Motivations to study $\mathrm{H}_{\alpha}^{\Sigma}$

Physics

(i) 'Leaky' quantum systems: a particle is confined to Σ but the tunneling between different parts of Σ is not neglected.
(ii) Inverse scattering problem for $\mathrm{H}_{\alpha}^{\Sigma}$ is linked to the Calderon problem with non-smooth conductivity.
(iii) Existence of spectral gaps for high-contrast photonic crystals.

Spectral geometry

Characterise the spectrum of $\mathrm{H}_{\alpha}^{\sum}$ in terms of Σ !

Motivations to study $\mathrm{H}_{\alpha}^{\Sigma}$

Physics

(i) 'Leaky' quantum systems: a particle is confined to Σ but the tunneling between different parts of Σ is not neglected.
(ii) Inverse scattering problem for $\mathrm{H}_{\alpha}^{\Sigma}$ is linked to the Calderon problem with non-smooth conductivity.
(iii) Existence of spectral gaps for high-contrast photonic crystals.

Spectral geometry

Characterise the spectrum of $\mathrm{H}_{\alpha}^{\Sigma}$ in terms of Σ !

- An explicit mapping $\Sigma \mapsto \sigma\left(\mathrm{H}_{\alpha}^{\Sigma}\right)$ can not be constructed.
- Particular spectral results might be very difficult to obtain.

δ-interactions on loops

δ-interactions on loops

C^{∞}-smooth loop $\Sigma \subset \mathbb{R}^{2}$, a circle $\mathcal{C} \subset \mathbb{R}^{2}$. Regularity - not the main issue.

δ-interactions on loops

C^{∞}-smooth loop $\Sigma \subset \mathbb{R}^{2}$, a circle $\mathcal{C} \subset \mathbb{R}^{2}$. Regularity - not the main issue.

$$
\sigma_{\text {ess }}\left(\mathrm{H}_{\alpha}^{\Sigma}\right)=\mathbb{R}_{+} \text {and } \sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma}\right) \neq \varnothing \text { for all } \alpha>0
$$

δ-interactions on loops

C^{∞}-smooth loop $\Sigma \subset \mathbb{R}^{2}$, a circle $\mathcal{C} \subset \mathbb{R}^{2}$. Regularity - not the main issue.

$\sigma_{\text {ess }}\left(\mathrm{H}_{\alpha}^{\Sigma}\right)=\mathbb{R}_{+}$and $\sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma}\right) \neq \varnothing$ for all $\alpha>0$.
Theorem (Exner-05, Exner-Harrell-Loss-06)

$$
\left\{\begin{array}{l}
|\Sigma|=|\mathcal{C}| \\
\Sigma \neq \mathcal{C}
\end{array} \quad \Longrightarrow \quad \mu_{1}^{\alpha}(\mathcal{C})>\mu_{1}^{\alpha}(\Sigma), \quad \forall \alpha>0\right.
$$

δ-interactions on loops

C^{∞}-smooth loop $\Sigma \subset \mathbb{R}^{2}$, a circle $\mathcal{C} \subset \mathbb{R}^{2}$. Regularity - not the main issue.

$\sigma_{\text {ess }}\left(\mathrm{H}_{\alpha}^{\Sigma}\right)=\mathbb{R}_{+}$and $\sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma}\right) \neq \varnothing$ for all $\alpha>0$.
Theorem (Exner-05, Exner-Harrell-Loss-06)

$$
\left\{\begin{array}{l}
|\Sigma|=|\mathcal{C}| \\
\Sigma \nsubseteq \mathcal{C}
\end{array} \quad \Longrightarrow \quad \mu_{1}^{\alpha}(\mathcal{C})>\mu_{1}^{\alpha}(\Sigma), \quad \forall \alpha>0\right.
$$

Operator theory: Birman-Schwinger and min-max principles. Geometry: mean-chord length inequality (Lüкő-66).
Classical analysis: decay and convexity of $K_{0}(\cdot)$, Jensen's inequality.

δ-interactions supported on open arcs

δ-interactions supported on open arcs

$$
\Sigma \subset \mathbb{R}^{2} \text { - a } C^{\infty} \text {-smooth open arc. } \mathcal{S} \subset \mathbb{R}^{2} \text { - a line segment. }
$$

δ-interactions supported on open arcs

$\Sigma \subset \mathbb{R}^{2}$ - a C^{∞}-smooth open arc. $\mathcal{S} \subset \mathbb{R}^{2}$ - a line segment.

$$
\sigma_{\text {ess }}\left(\mathrm{H}_{\alpha}^{\Sigma}\right)=\mathbb{R}_{+} \text {and } \sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma}\right) \neq \varnothing \text { for all } \alpha>0 .
$$

δ-interactions supported on open arcs

$\Sigma \subset \mathbb{R}^{2}$ - a C^{∞}-smooth open arc. $\mathcal{S} \subset \mathbb{R}^{2}$ - a line segment.

$\sigma_{\text {ess }}\left(\mathrm{H}_{\alpha}^{\Sigma}\right)=\mathbb{R}_{+}$and $\sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma}\right) \neq \varnothing$ for all $\alpha>0$.
Recent topic: an analogue of the result by Exner-Harrell-Loss-06?

δ-interactions supported on open arcs

$\Sigma \subset \mathbb{R}^{2}$ - a C^{∞}-smooth open arc. $\mathcal{S} \subset \mathbb{R}^{2}$ - a line segment.

$\sigma_{\text {ess }}\left(\mathrm{H}_{\alpha}^{\Sigma}\right)=\mathbb{R}_{+}$and $\sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma}\right) \neq \varnothing$ for all $\alpha>0$.
Recent topic: an analogue of the result by Exner-Harrell-Loss-06?
Theorem (VL-16)

$$
\left\{\begin{array}{l}
|\Sigma|=|\mathcal{S}| \\
\Sigma \neq \mathcal{S}
\end{array} \quad \Longrightarrow \quad \mu_{1}^{\alpha}(\mathcal{S})>\mu_{1}^{\alpha}(\Sigma), \quad \forall \alpha>0\right.
$$

δ-interactions supported on open arcs

$\Sigma \subset \mathbb{R}^{2}$ - a C^{∞}-smooth open arc. $\mathcal{S} \subset \mathbb{R}^{2}$ - a line segment.

$$
\sigma_{\mathrm{ess}}\left(\mathrm{H}_{\alpha}^{\Sigma}\right)=\mathbb{R}_{+} \text {and } \sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma}\right) \neq \varnothing \text { for all } \alpha>0
$$

Recent topic: an analogue of the result by Exner-Harrell-Loss-06?
Theorem (VL-16)

$$
\left\{\begin{array}{l}
|\Sigma|=|\mathcal{S}| \\
\Sigma \nsubseteq \mathcal{S}
\end{array} \quad \Longrightarrow \quad \mu_{1}^{\alpha}(\mathcal{S})>\mu_{1}^{\alpha}(\Sigma), \quad \forall \alpha>0\right.
$$

Geometry: line segment - the shortest path between two endpoints.

Fixed endpoints

Fixed endpoints

$$
\begin{aligned}
& P, Q \in \mathbb{R}^{2} \text { - points. } P \neq Q . \\
& \mathcal{S}, \Sigma \subset \mathbb{R}^{2} \text { - the line segment and an arc connecting } P \text { and } Q .
\end{aligned}
$$

Fixed endpoints

$P, Q \in \mathbb{R}^{2}$ - points. $P \neq Q$.
$\mathcal{S}, \Sigma \subset \mathbb{R}^{2}$ - the line segment and an arc connecting P and Q.

Fixed endpoints

$P, Q \in \mathbb{R}^{2}$ - points. $P \neq Q$.
$\mathcal{S}, \Sigma \subset \mathbb{R}^{2}$ - the line segment and an arc connecting P and Q.

Proposition

$$
\left\{\begin{array}{l}
\partial \Sigma=\{P, Q\} \\
\Sigma \neq \mathcal{S}
\end{array} \quad \Longrightarrow \quad \mu_{1}^{\alpha}(\mathcal{S})>\mu_{1}^{\alpha}(\Sigma), \quad \forall \alpha>0\right.
$$

Fixed endpoints

$P, Q \in \mathbb{R}^{2}$ - points. $P \neq Q$.
$\mathcal{S}, \Sigma \subset \mathbb{R}^{2}$ - the line segment and an arc connecting P and Q.

Proposition

$$
\left\{\begin{array}{l}
\partial \Sigma=\{P, Q\} \\
\Sigma \neq \mathcal{S}
\end{array} \quad \Longrightarrow \quad \mu_{1}^{\alpha}(\mathcal{S})>\mu_{1}^{\alpha}(\Sigma), \quad \forall \alpha>0\right.
$$

Open questions

(i) Shape of the optimizer under two constraints: fixed endpoints $P, Q \in \mathbb{R}^{2}$ and fixed length $L>|P-Q|$?
(ii) A generalization for Laplace-Beltrami operator on a 2-manifold \mathcal{M} with \mathcal{S} being the geodesic connecting $P, Q \in \mathcal{M}$?

δ-interactions on truncated cones

δ-interactions on truncated cones

No direct analogue in \mathbb{R}^{3} : under the constraint $|\Sigma|=$ const, $\max \mu_{1}^{\alpha}(\Sigma)=0$ is achieved at uncountably many shapes.

δ-interactions on truncated cones

No direct analogue in \mathbb{R}^{3} : under the constraint $|\Sigma|=$ const, $\max \mu_{1}^{\alpha}(\Sigma)=0$ is achieved at uncountably many shapes.
$\mathcal{T} \subset \mathbb{S}^{2}$ - a C^{∞}-smooth loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^{2}$ - a circle. $\Sigma_{R}(\mathcal{T})=\{r \mathcal{T}: r \in[0, R)\} \subset \mathbb{R}^{3}$ - truncated cone of radius R with base \mathcal{T}.

δ-interactions on truncated cones

No direct analogue in \mathbb{R}^{3} : under the constraint $|\Sigma|=$ const, $\max \mu_{1}^{\alpha}(\Sigma)=0$ is achieved at uncountably many shapes.
$\mathcal{T} \subset \mathbb{S}^{2}$ - a \mathcal{C}^{∞}-smooth loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^{2}$ - a circle. $\Sigma_{R}(\mathcal{T})=\{r \mathcal{T}: r \in[0, R)\} \subset \mathbb{R}^{3}$ - truncated cone of radius R with base \mathcal{T}.

Discrete spectrum is non-empty if and only if $\alpha>\alpha_{*}>0$.

δ-interactions on truncated cones

No direct analogue in \mathbb{R}^{3} : under the constraint $|\Sigma|=$ const, $\max \mu_{1}^{\alpha}(\Sigma)=0$ is achieved at uncountably many shapes.
$\mathcal{T} \subset \mathbb{S}^{2}$ - a C^{∞}-smooth loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^{2}$ - a circle.
$\Sigma_{R}(\mathcal{T})=\{r \mathcal{T}: r \in[0, R)\} \subset \mathbb{R}^{3}$ - truncated cone of radius R with base \mathcal{T}.

Discrete spectrum is non-empty if and only if $\alpha>\alpha_{*}>0$.
Theorem (Exner-VL-17)

$$
\left\{\begin{array} { l }
{ | \mathcal { C } | = | \mathcal { T } | } \\
{ \mathcal { C } \neq \mathcal { T } }
\end{array} \quad \Longrightarrow \quad \left\{\begin{array}{l}
\mu_{1}^{\alpha}\left(\Sigma_{R}(\mathcal{C})\right)>\mu_{1}^{\alpha}\left(\Sigma_{R}(\mathcal{T})\right), \quad \forall \alpha>\alpha_{*}\left(\Sigma_{R}(\mathcal{C})\right) \\
\mu_{1}^{\alpha}\left(\Sigma_{R}(\mathcal{T})\right)<0 \text { for } \alpha=\alpha_{*}\left(\Sigma_{R}(\mathcal{C})\right)
\end{array}\right.\right.
$$

δ-interactions on infinite cones

δ-interactions on infinite cones

$\mathcal{T} \subset \mathbb{S}^{2}$ - a \mathcal{C}^{∞}-smooth loop. $\mathcal{C} \subset \mathbb{S}^{2}$ - a circle. $|\mathcal{T}|=|\mathcal{C}|<2 \pi$

δ-interactions on infinite cones

$$
\mathcal{T} \subset \mathbb{S}^{2} \text { - a } \mathcal{C}^{\infty} \text {-smooth loop. } \mathcal{C} \subset \mathbb{S}^{2} \text { - a circle. }|\mathcal{T}|=|\mathcal{C}|<2 \pi
$$

$$
\Sigma(\mathcal{T})=\{r \mathcal{T}: r \in[0, \infty)\} \subset \mathbb{R}^{3}-\text { infinite cone with the base } \mathcal{T} .
$$

δ-interactions on infinite cones

$\mathcal{T} \subset \mathbb{S}^{2}$ - a \mathcal{C}^{∞}-smooth loop. $\mathcal{C} \subset \mathbb{S}^{2}$ - a circle. $|\mathcal{T}|=|\mathcal{C}|<2 \pi$
$\Sigma(\mathcal{T})=\{r \mathcal{T}: r \in[0, \infty)\} \subset \mathbb{R}^{3}$ - infinite cone with the base \mathcal{T}.
Proposition (Behrndt-VL-Exner-14, Ourmières-Bonafos-Pankrashkin-16)
(i) $\sigma_{\text {ess }}\left(\mathrm{H}_{\alpha}^{\Sigma(\mathcal{T})}\right)=\left[-\frac{1}{4} \alpha^{2},+\infty\right)$.
(ii) $\# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma(\mathcal{T})}\right)=\infty$.

Refinements: VL-Ourmières-Bonafos-16, Bruneau-Popoff-15

δ-interactions on infinite cones

$\mathcal{T} \subset \mathbb{S}^{2}$ - a \mathcal{C}^{∞}-smooth loop. $\mathcal{C} \subset \mathbb{S}^{2}$ - a circle. $|\mathcal{T}|=|\mathcal{C}|<2 \pi$
$\Sigma(\mathcal{T})=\{r \mathcal{T}: r \in[0, \infty)\} \subset \mathbb{R}^{3}$ - infinite cone with the base \mathcal{T}.
Proposition (Behrndt-VL-Exner-14, Ourmières-Bonafos-Pankrashkin-16)
(i) $\sigma_{\mathrm{ess}}\left(\mathrm{H}_{\alpha}^{\Sigma(\mathcal{T})}\right)=\left[-\frac{1}{4} \alpha^{2},+\infty\right)$.
(ii) $\# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma(\mathcal{T})}\right)=\infty$.

Refinements: VL-Ourmières-Bonafos-16, Bruneau-Popoff-15

Theorem (Exner-VL-17)

$$
\left\{\begin{array}{l}
|\mathcal{C}|=|\mathcal{T}|<2 \pi \\
\mathcal{C} \neq \mathcal{T}
\end{array} \quad \Longrightarrow \quad \mu_{1}^{\alpha}(\Sigma(\mathcal{C})) \geq \mu_{1}^{\alpha}(\Sigma(\mathcal{T})), \quad \forall \alpha>0 .\right.
$$

δ-interactions on infinite cones

$\mathcal{T} \subset \mathbb{S}^{2}$ - a \mathcal{C}^{∞}-smooth loop. $\mathcal{C} \subset \mathbb{S}^{2}$ - a circle. $|\mathcal{T}|=|\mathcal{C}|<2 \pi$
$\Sigma(\mathcal{T})=\{r \mathcal{T}: r \in[0, \infty)\} \subset \mathbb{R}^{3}$ - infinite cone with the base \mathcal{T}.
Proposition (Behrndt-VL-Exner-14, Ourmières-Bonafos-Pankrashkin-16)
(i) $\sigma_{\mathrm{ess}}\left(\mathrm{H}_{\alpha}^{\Sigma(\mathcal{T})}\right)=\left[-\frac{1}{4} \alpha^{2},+\infty\right)$.
(ii) $\# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma(\mathcal{T})}\right)=\infty$.

Refinements: VL-Ourmières-Bonafos-16, Bruneau-Popoff-15

Theorem (Exner-VL-17)

$$
\left\{\begin{array}{l}
|\mathcal{C}|=|\mathcal{T}|<2 \pi \\
\mathcal{C} \neq \mathcal{T}
\end{array} \quad \Longrightarrow \quad \mu_{1}^{\alpha}(\Sigma(\mathcal{C})) \geq \mu_{1}^{\alpha}(\Sigma(\mathcal{T})), \quad \forall \alpha>0\right.
$$

Passing in the result for truncated cones to the limit $R \rightarrow+\infty$.

δ-interactions on star-graphs

δ-interactions on star-graphs

Star-graph Σ_{N} with $N \geq 3$ leads

N leads meeting at the origin and forming angles $\phi\left(\Sigma_{N}\right)=\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ in the counterclockwise enumeration: $\sum_{n=1}^{N} \phi_{n}=2 \pi$.

δ-interactions on star-graphs

Star-graph Σ_{N} with $N \geq 3$ leads

N leads meeting at the origin and forming angles $\phi\left(\Sigma_{N}\right)=\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ in the counterclockwise enumeration: $\sum_{n=1}^{N} \phi_{n}=2 \pi$.
$\phi\left(\Gamma_{N}\right)=\left\{\frac{2 \pi}{N}, \frac{2 \pi}{N}, \ldots, \frac{2 \pi}{N}\right\}$ for symmetric star-graph Γ_{N}.

δ-interactions on star-graphs

Star-graph Σ_{N} with $N \geq 3$ leads

N leads meeting at the origin and forming angles $\phi\left(\Sigma_{N}\right)=\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ in the counterclockwise enumeration: $\sum_{n=1}^{N} \phi_{n}=2 \pi$.
$\phi\left(\Gamma_{N}\right)=\left\{\frac{2 \pi}{N}, \frac{2 \pi}{N}, \ldots, \frac{2 \pi}{N}\right\}$ for symmetric star-graph Γ_{N}.

Theorem (Exner-Ichinose-01, Khalile-Pankrashkin-17, Exner-VL-17)
(i) $\sigma_{\text {ess }}\left(\mathrm{H}_{\alpha}^{\Sigma_{N}}\right)=\left[-\frac{1}{4} \alpha^{2},+\infty\right)$ and $1 \leq \# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\alpha}^{\Sigma_{N}}\right)<\infty$.
(ii) $\mu_{1}^{\alpha}\left(\Sigma_{N}\right) \leq \mu_{1}^{\alpha}\left(\Gamma_{N}\right)$ for all $\alpha>0$ (EXNER-VL-17).

Optimisation with magnetic fields

Optimisation with magnetic fields

Homogeneous magnetic field $B \neq 0$ in \mathbb{R}^{2}

$A=\frac{1}{2} B\left(-x_{2}, x_{1}\right)^{\top}-$ vector potential. $\nabla_{A}:=\mathrm{i} \nabla+A$ - magnetic gradient.

Optimisation with magnetic fields

Homogeneous magnetic field $B \neq 0$ in \mathbb{R}^{2}

$A=\frac{1}{2} B\left(-x_{2}, x_{1}\right)^{\top}-$ vector potential. $\nabla_{A}:=\mathrm{i} \nabla+A-$ magnetic gradient.
δ-interaction on a loop in $\mathbb{R}^{2}+$ homogeneous magnetic field $B \neq 0$
The quadratic form

$$
\left\{u: u,\left|\nabla_{A} u\right| \in L^{2}\left(\mathbb{R}^{2}\right)\right\} \ni u \mapsto \mathfrak{h}_{\alpha, B}^{\Sigma}[u]:=\left\|\nabla_{A} u\right\|_{L^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{2}\right)}^{2}-\alpha\left\|\left.u\right|_{\Sigma}\right\|_{L^{2}(\Sigma)}^{2}
$$

defines self-adjoint operator $\mathrm{H}_{\alpha, B}^{\Sigma}$ in $L^{2}\left(\mathbb{R}^{2}\right)$ with $\mu_{1}^{\alpha, B}(\Sigma):=\inf \sigma\left(\mathrm{H}_{\alpha, B}^{\Sigma}\right)$.

Optimisation with magnetic fields

Homogeneous magnetic field $B \neq 0$ in \mathbb{R}^{2}

$A=\frac{1}{2} B\left(-x_{2}, x_{1}\right)^{\top}$ - vector potential. $\nabla_{A}:=i \nabla+A$ - magnetic gradient.
δ-interaction on a loop in $\mathbb{R}^{2}+$ homogeneous magnetic field $B \neq 0$
The quadratic form

$$
\left\{u: u,\left|\nabla_{A} u\right| \in L^{2}\left(\mathbb{R}^{2}\right)\right\} \ni u \mapsto \mathfrak{h}_{\alpha, B}^{\Sigma}[u]:=\left\|\nabla_{A} u\right\|_{L^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{2}\right)}^{2}-\alpha\left\|\left.u\right|_{\Sigma}\right\|_{L^{2}(\Sigma)}^{2}
$$

defines self-adjoint operator $\mathrm{H}_{\alpha, B}^{\Sigma}$ in $L^{2}\left(\mathbb{R}^{2}\right)$ with $\mu_{1}^{\alpha, B}(\Sigma):=\inf \sigma\left(\mathrm{H}_{\alpha, B}^{\Sigma}\right)$.

Questions

(i) Is the circle a local optimiser under fixed length constraint? Shape derivative of $\mu_{1}^{\alpha, B}(\Sigma)$ with respect to Σ.
(ii) Is the circle still a global optimiser under fixed length constraint?
(iii) Does the "non-magnetic" strategy of the proof apply?

II. The Robin Laplacian on exterior domains

Definition of the Robin Laplacian

Definition of the Robin Laplacian

$G \subset \mathbb{R}^{d}$ - an unbounded Lipschitz domain with compact boundary ∂G.

- Exterior domain. - Complement of a hypersurface.

Definition of the Robin Laplacian

$G \subset \mathbb{R}^{d}$ - an unbounded Lipschitz domain with compact boundary ∂G.

- Exterior domain. - Complement of a hypersurface.

Closed, symmetric, semi-bounded quadratic form in $L^{2}(G)$
$H^{1}(G) \ni u \mapsto \mathfrak{h}_{\beta}^{G}[u]:=\|\nabla u\|_{L^{2}\left(G ; \mathbb{C}^{d}\right)}^{2}-\beta\left\|\left.u\right|_{\partial G}\right\|_{L^{2}(\partial G)}^{2}$ for $\beta>0$.

Definition of the Robin Laplacian

$G \subset \mathbb{R}^{d}$ - an unbounded Lipschitz domain with compact boundary ∂G.

- Exterior domain. - Complement of a hypersurface.

Closed, symmetric, semi-bounded quadratic form in $L^{2}(G)$
$H^{1}(G) \ni u \mapsto \mathfrak{h}_{\beta}^{G}[u]:=\|\nabla u\|_{L^{2}\left(G ; \mathbb{C}^{d}\right)}^{2}-\beta\left\|\left.u\right|_{\partial G}\right\|_{L^{2}(\partial G)}^{2}$ for $\beta>0$.
The Robin Laplacian on G with the boundary parameter β H_{β}^{G} - the self-adjoint operator in $L^{2}(G)$ associated with the form \mathfrak{h}_{β}^{G}.

Definition of the Robin Laplacian

$G \subset \mathbb{R}^{d}$ - an unbounded Lipschitz domain with compact boundary ∂G.

- Exterior domain. - Complement of a hypersurface.

Closed, symmetric, semi-bounded quadratic form in $L^{2}(G)$
$H^{1}(G) \ni u \mapsto \mathfrak{h}_{\beta}^{G}[u]:=\|\nabla u\|_{L^{2}\left(G ; \mathbb{C}^{d}\right)}^{2}-\beta\left\|\left.u\right|_{\partial G}\right\|_{L^{2}(\partial G)}^{2}$ for $\beta>0$.
The Robin Laplacian on G with the boundary parameter β H_{β}^{G} - the self-adjoint operator in $L^{2}(G)$ associated with the form \mathfrak{h}_{β}^{G}.
$\nu_{1}^{\beta}(G):=\inf \sigma\left(\mathrm{H}_{\beta}^{G}\right)$.

Definition of the Robin Laplacian

$G \subset \mathbb{R}^{d}$ - an unbounded Lipschitz domain with compact boundary ∂G.

- Exterior domain. - Complement of a hypersurface.

Closed, symmetric, semi-bounded quadratic form in $L^{2}(G)$
$H^{1}(G) \ni u \mapsto \mathfrak{h}_{\beta}^{G}[u]:=\|\nabla u\|_{L^{2}\left(G ; \mathbb{C}^{d}\right)}^{2}-\beta\left\|\left.u\right|_{\partial G}\right\|_{L^{2}(\partial G)}^{2}$ for $\beta>0$.
The Robin Laplacian on G with the boundary parameter β
H_{β}^{G} - the self-adjoint operator in $L^{2}(G)$ associated with the form \mathfrak{h}_{β}^{G}.
$\nu_{1}^{\beta}(G):=\inf \sigma\left(\mathrm{H}_{\beta}^{G}\right)$.
Applications in physics
(i) Oscillating, elastically supported membranes in mechanics.
(ii) Linearized Ginzburg-Landau equation in superconductivity.
(iii) Thin layers with impedance BC condition in electromagnetism.

Complement of a bounded convex planar set

Complement of a bounded convex planar set

$$
\Omega \subset \mathbb{R}^{2} \text { - bounded, simply connected, } C^{\infty} \text {-smooth. } \Omega^{\mathrm{ext}}:=\mathbb{R}^{2} \backslash \bar{\Omega} .
$$

Complement of a bounded convex planar set

$\Omega \subset \mathbb{R}^{2}$ - bounded, simply connected, C^{∞}-smooth. $\Omega^{\mathrm{ext}}:=\mathbb{R}^{2} \backslash \bar{\Omega}$.

$$
\sigma_{\mathrm{ess}}\left(\mathrm{H}_{\beta}^{\Omega^{\mathrm{ext}}}\right)=[0,+\infty) \text { and } 1 \leq \# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\beta}^{\Omega^{\mathrm{ext}}}\right)<\infty .
$$

Complement of a bounded convex planar set

$\Omega \subset \mathbb{R}^{2}$ - bounded, simply connected, C^{∞}-smooth. $\Omega^{\text {ext }}:=\mathbb{R}^{2} \backslash \bar{\Omega}$.

$$
\sigma_{\mathrm{ess}}\left(\mathrm{H}_{\beta}^{\Omega^{\mathrm{ext}}}\right)=[0,+\infty) \text { and } 1 \leq \# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\beta}^{\Omega^{\mathrm{ext}}}\right)<\infty .
$$

Theorem (KrejčiríḱkL-16, $d=2$)

$$
\left\{\begin{array}{l}
\text { either }|\partial \Omega|=|\partial \mathcal{B}| \text { or }|\Omega|=|\mathcal{B}| \\
\Omega \nsupseteq \mathcal{B}, \Omega \text { convex }
\end{array}\right.
$$

Complement of a bounded convex planar set

$\Omega \subset \mathbb{R}^{2}$ - bounded, simply connected, C^{∞}-smooth. $\Omega^{\text {ext }}:=\mathbb{R}^{2} \backslash \bar{\Omega}$.

$\sigma_{\text {ess }}\left(\mathrm{H}_{\beta}^{\Omega^{\text {ext }}}\right)=[0,+\infty)$ and $1 \leq \# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\beta}^{\Omega^{\text {ext }}}\right)<\infty$.
Theorem (Krejčiřík-VL-16, $d=2$)

$$
\left\{\begin{array}{l}
\text { either }|\partial \Omega|=|\partial \mathcal{B}| \text { or }|\Omega|=|\mathcal{B}| \Longrightarrow \nu_{1}^{\beta}\left(\mathcal{B}^{\text {ext }}\right)>\nu_{1}^{\beta}\left(\Omega^{\text {ext }}\right), \forall \beta>0 . \\
0 \nsim \mathcal{R} 0 \text { ronvey }
\end{array}\right.
$$

- Min-max principle. - Method of parallel coordinates. $\bullet \int_{\partial \Omega} \kappa=2 \pi$.

Complement of a bounded convex planar set

$\Omega \subset \mathbb{R}^{2}$ - bounded, simply connected, C^{∞}-smooth. $\Omega^{\text {ext }}:=\mathbb{R}^{2} \backslash \bar{\Omega}$.

$$
\sigma_{\mathrm{ess}}\left(\mathrm{H}_{\beta}^{\Omega^{\mathrm{ext}}}\right)=[0,+\infty) \text { and } 1 \leq \# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\beta}^{\Omega^{\mathrm{ext}}}\right)<\infty
$$

Theorem (Krejčiř̌̌k-VL-16, $d=2$)

$$
\left\{\begin{array}{l}
\text { either }|\partial \Omega|=|\partial \mathcal{B}| \text { or }|\Omega|=|\mathcal{B}| \Longrightarrow \nu_{1}^{\beta}\left(\mathcal{B}^{\mathrm{ext}}\right)>\nu_{1}^{\beta}\left(\Omega^{\mathrm{ext}}\right), \forall \beta>0 . \\
0 \nsim \mathcal{R} \cap \text { anyyey }
\end{array}\right.
$$

- Min-max principle. - Method of parallel coordinates. - $\int_{\partial \Omega} \kappa=2 \pi$. Non-convex case: joint work in progress with D. Krejčirík.

Connectedness is important

Connectedness is important

Two disjoint discs
 $\Omega_{r}=\mathcal{B}_{r}^{\prime} \cup \mathcal{B}_{r}^{\prime \prime}$ where $\overline{\overline{\mathcal{B}_{r}^{\prime}}} \cap \overline{\mathcal{B}_{r}^{\prime \prime}}=\varnothing$.

Connectedness is important

Two disjoint discs

$\Omega_{r}=\mathcal{B}_{r}^{\prime} \cup \mathcal{B}_{r}^{\prime \prime}$ where $\overline{\mathcal{B}_{r}^{\prime}} \cap \overline{\mathcal{B}_{r}^{\prime \prime}}=\varnothing$.
A simple computation gives

$$
\begin{array}{rll}
\left|\Omega_{r}\right|=\left|\mathcal{B}_{R}\right| & \Longrightarrow & r=R / \sqrt{2} \\
\left|\partial \Omega_{r}\right|=\left|\partial \mathcal{B}_{R}\right| & \Longrightarrow \quad r=R / 2
\end{array}
$$

Connectedness is important

Two disjoint discs

$\Omega_{r}=\mathcal{B}_{r}^{\prime} \cup \mathcal{B}_{r}^{\prime \prime}$ where $\overline{\mathcal{B}_{r}^{\prime}} \cap \overline{\mathcal{B}_{r}^{\prime \prime}}=\varnothing$.
A simple computation gives

$$
\begin{array}{rll}
\left|\Omega_{r}\right|=\left|\mathcal{B}_{R}\right| & \Longrightarrow & r=R / \sqrt{2} \\
\left|\partial \Omega_{r}\right|=\left|\partial \mathcal{B}_{R}\right| & \Longrightarrow \quad r=R / 2
\end{array}
$$

Strong coupling (Kovařík-Pankrashkin-16)

$\nu_{1}^{\beta}\left(\Omega_{r}^{\text {ext }}\right)-\nu_{1}^{\beta}\left(\mathcal{B}_{R}^{\text {ext }}\right)=\beta\left(\frac{1}{r}-\frac{1}{R}\right)+o(\beta)$ as $\beta \rightarrow \infty$.

Connectedness is important

Two disjoint discs

$\Omega_{r}=\mathcal{B}_{r}^{\prime} \cup \mathcal{B}_{r}^{\prime \prime}$ where $\overline{\mathcal{B}_{r}^{\prime}} \cap \overline{\mathcal{B}_{r}^{\prime \prime}}=\varnothing$.
A simple computation gives

$$
\begin{array}{rll}
\left|\Omega_{r}\right|=\left|\mathcal{B}_{R}\right| & \Longrightarrow & r=R / \sqrt{2} \\
\left|\partial \Omega_{r}\right|=\left|\partial \mathcal{B}_{R}\right| & \Longrightarrow \quad r=R / 2
\end{array}
$$

Strong coupling (Kovařík-Pankrashkin-16)
$\nu_{1}^{\beta}\left(\Omega_{r}^{\mathrm{ext}}\right)-\nu_{1}^{\beta}\left(\mathcal{B}_{R}^{\mathrm{ext}}\right)=\beta\left(\frac{1}{r}-\frac{1}{R}\right)+o(\beta)$ as $\beta \rightarrow \infty$.
For all $\beta>0$ large enough
$\nu_{1}^{\beta}\left(\Omega_{r}^{\text {ext }}\right)>\nu_{1}^{\beta}\left(\mathcal{B}_{R}^{\text {ext }}\right)$ (the inequality is reversed).

No direct analogue for $d \geq 3$

No direct analogue for $d \geq 3$

Dumbbell-type domain
 $\Omega_{r, s}=\operatorname{Conv}\left(\mathcal{B}_{r}\left(x_{0}\right) \cup \mathcal{B}_{r}\left(x_{1}\right)\right)$ where $\left|x_{0}-x_{1}\right|=s$.

No direct analogue for $d \geq 3$

Dumbbell-type domain
 $\Omega_{r, s}=\operatorname{Conv}\left(\mathcal{B}_{r}\left(x_{0}\right) \cup \mathcal{B}_{r}\left(x_{1}\right)\right)$ where $\left|x_{0}-x_{1}\right|=s$.

$$
\forall r>0: \exists s>0 \text { such that either }\left|\Omega_{r, s}\right|=\left|\mathcal{B}_{R}\right| \text { or }\left|\partial \Omega_{r, s}\right|=\left|\partial \mathcal{B}_{R}\right|
$$

No direct analogue for $d \geq 3$

Dumbbell-type domain

$\Omega_{r, s}=\operatorname{Conv}\left(\mathcal{B}_{r}\left(x_{0}\right) \cup \mathcal{B}_{r}\left(x_{1}\right)\right)$ where $\left|x_{0}-x_{1}\right|=s$.

$$
\forall r>0: \exists s>0 \text { such that either }\left|\Omega_{r, s}\right|=\left|\mathcal{B}_{R}\right| \text { or }\left|\partial \Omega_{r, s}\right|=\left|\partial \mathcal{B}_{R}\right|
$$

Strong coupling

$\nu_{1}^{\beta}\left(\Omega_{r, s}^{\text {ext }}\right)-\nu_{1}^{\beta}\left(\mathcal{B}_{R}^{\text {ext }}\right)=\beta\left(\frac{d-2}{r}-\frac{d-1}{R}\right)+o(\beta)$ as $\beta \rightarrow \infty$.

No direct analogue for $d \geq 3$

Dumbbell-type domain

$\Omega_{r, s}=\operatorname{Conv}\left(\mathcal{B}_{r}\left(x_{0}\right) \cup \mathcal{B}_{r}\left(x_{1}\right)\right)$ where $\left|x_{0}-x_{1}\right|=s$.

$$
\forall r>0: \exists s>0 \text { such that either }\left|\Omega_{r, s}\right|=\left|\mathcal{B}_{R}\right| \text { or }\left|\partial \Omega_{r, s}\right|=\left|\partial \mathcal{B}_{R}\right|
$$

Strong coupling

$\nu_{1}^{\beta}\left(\Omega_{r, s}^{\text {ext }}\right)-\nu_{1}^{\beta}\left(\mathcal{B}_{R}^{\text {ext }}\right)=\beta\left(\frac{d-2}{r}-\frac{d-1}{R}\right)+o(\beta)$ as $\beta \rightarrow \infty$.

For $r<\frac{d-2}{d-1} R$ and all $\beta>0$ large enough
$\nu_{1}^{\beta}\left(\Omega_{r, s}^{\text {ext }}\right)>\nu_{1}^{\beta}\left(\mathcal{B}_{R}^{\text {ext }}\right)$ (the inequality is reversed).

No direct analogue for $d \geq 3$

Dumbbell-type domain

$\Omega_{r, s}=\operatorname{Conv}\left(\mathcal{B}_{r}\left(x_{0}\right) \cup \mathcal{B}_{r}\left(x_{1}\right)\right)$ where $\left|x_{0}-x_{1}\right|=s$.
$\forall r>0: \exists s>0$ such that either $\left|\Omega_{r, s}\right|=\left|\mathcal{B}_{R}\right|$ or $\left|\partial \Omega_{r, s}\right|=\left|\partial \mathcal{B}_{R}\right|$

Strong coupling

$\nu_{1}^{\beta}\left(\Omega_{r, s}^{\text {ext }}\right)-\nu_{1}^{\beta}\left(\mathcal{B}_{R}^{\text {ext }}\right)=\beta\left(\frac{d-2}{r}-\frac{d-1}{R}\right)+o(\beta)$ as $\beta \rightarrow \infty$.

For $r<\frac{d-2}{d-1} R$ and all $\beta>0$ large enough
$\nu_{1}^{\beta}\left(\Omega_{r, s}^{\text {ext }}\right)>\nu_{1}^{\beta}\left(\mathcal{B}_{R}^{\text {ext }}\right)$ (the inequality is reversed).

Curvature constraints for $d \geq 3$: joint work in progress with D. Krejčirík.

The Robin Laplacian on a plane with a screen

The Robin Laplacian on a plane with a screen

$\Sigma \subset \mathbb{R}^{2}$ - a C^{∞}-smooth open arc. $\mathcal{S} \subset \mathbb{R}^{2}$ - a line segment.

The Robin Laplacian on a plane with a screen

$\Sigma \subset \mathbb{R}^{2}$ - a C^{∞}-smooth open arc. $\mathcal{S} \subset \mathbb{R}^{2}$ - a line segment.

The Robin Laplacian on a plane with a screen

$\Sigma \subset \mathbb{R}^{2}$ - a C^{∞}-smooth open arc. $\mathcal{S} \subset \mathbb{R}^{2}$ - a line segment.

$\sigma_{\text {ess }}\left(\mathrm{H}_{\beta}^{\mathbb{R}^{2} \backslash \Sigma}\right)=[0,+\infty)$ and $1 \leq \# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\beta}^{\mathbb{R}^{2} \backslash \Sigma}\right)<\infty$.

The Robin Laplacian on a plane with a screen

$\Sigma \subset \mathbb{R}^{2}$ - a C^{∞}-smooth open arc. $\mathcal{S} \subset \mathbb{R}^{2}$ - a line segment.

$\sigma_{\text {ess }}\left(\mathrm{H}_{\beta}^{\mathbb{R}^{2} \backslash \Sigma}\right)=[0,+\infty)$ and $1 \leq \# \sigma_{\mathrm{d}}\left(\mathrm{H}_{\beta}^{\mathbb{R}^{2} \backslash \Sigma}\right)<\infty$.

Theorem (VL-16)

$$
\left\{\begin{array}{l}
|\Sigma|=|\mathcal{S}| \\
\Sigma \not \equiv \mathcal{S}
\end{array} \quad \Longrightarrow \quad \nu_{1}^{\beta}\left(\mathbb{R}^{2} \backslash \mathcal{S}\right)>\nu_{1}^{\beta}\left(\mathbb{R}^{2} \backslash \Sigma\right), \quad \forall \beta>0\right.
$$

Related settings

Related settings

Optimisation results for other boundary conditions

 4-parametric family of self-adjoint realisations (Exner-Rohleder-16).
Related settings

Optimisation results for other boundary conditions

 4-parametric family of self-adjoint realisations (Exner-Rohleder-16).
Dirac operators

Arrizabalaga-Mas-Vega-16. Still a lot of open questions.

Related settings

Optimisation results for other boundary conditions

4-parametric family of self-adjoint realisations (Exner-Rohleder-16).

Dirac operators

Arrizabalaga-Mas-Vega-16. Still a lot of open questions.

Interactions supported on manifolds of higher co-dimensions

Loops in \mathbb{R}^{3} (Behrndt-Frank-Kühn-VL-Rohleder-17)

Related settings

Optimisation results for other boundary conditions

4-parametric family of self-adjoint realisations (Exner-Rohleder-16).

Dirac operators

Arrizabalaga-Mas-Vega-16. Still a lot of open questions.

Interactions supported on manifolds of higher co-dimensions

Loops in \mathbb{R}^{3} (Behrndt-Frank-Kühn-VL-Rohleder-17)

Robin cones

An analogue of the optimisation result for δ-interactions supported on conical surfaces in the Robin setting.

Thank you

Thank you for your attention!

