Optimisation of the lowest eigenvalue induced by singular interactions

Vladimir Lotoreichik

Nuclear Physics Institute, Czech Academy of Sciences

TU Graz, Austria, 24.04.2017

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

Self-adjoint Dirichlet Laplacian $-\Delta_{\rm D}^{\Omega}$ in $L^2(\Omega)$

Spectrum of $-\Delta_{\mathrm{D}}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega) > 0$ – the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

Self-adjoint Dirichlet Laplacian $-\Delta_{\rm D}^{\Omega}$ in $L^2(\Omega)$

Spectrum of $-\Delta_{\mathrm{D}}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega) > 0$ – the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.

Isoperimetric inequalities

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B} \end{cases} \implies \begin{cases} |\Omega| < |\mathcal{B}| & (\text{geometric}) \\ \lambda_1^{\mathrm{D}}(\Omega) > \lambda_1^{\mathrm{D}}(\mathcal{B}) & (\text{spectral}) \end{cases}$$

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

Self-adjoint Dirichlet Laplacian $-\Delta_{\rm D}^{\Omega}$ in $L^2(\Omega)$

Spectrum of $-\Delta_{\mathrm{D}}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega) > 0$ – the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.

Isoperimetric inequalities

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B} \end{cases} \implies \begin{cases} |\Omega| < |\mathcal{B}| & \text{(geometric)} \\ \lambda_1^{\mathrm{D}}(\Omega) > \lambda_1^{\mathrm{D}}(\mathcal{B}) & \text{(spectral)} \end{cases}$$

Geometric: STEINER-1842, HURWITZ-1902 (d = 2), corollary of BRUNN-MINKOWSKI inequality ($d \ge 3$). Spectral: FABER-23, KRAHN-26.

A bounded domain $\Omega \subset \mathbb{R}^d$ $(d \ge 2)$ with smooth boundary $\partial \Omega$; ball $\mathcal{B} \subset \mathbb{R}^d$.

Self-adjoint Dirichlet Laplacian $-\Delta_{\rm D}^{\Omega}$ in $L^2(\Omega)$

Spectrum of $-\Delta_{\mathrm{D}}^{\Omega}$ is discrete. $\lambda_{1}^{\mathrm{D}}(\Omega) > 0$ – the lowest eigenvalue of $-\Delta_{\mathrm{D}}^{\Omega}$.

Isoperimetric inequalities

$$\begin{cases} |\partial \Omega| = |\partial \mathcal{B}| \\ \Omega \ncong \mathcal{B} \end{cases} \implies \begin{cases} |\Omega| < |\mathcal{B}| & \text{(geometric)} \\ \lambda_1^{\mathrm{D}}(\Omega) > \lambda_1^{\mathrm{D}}(\mathcal{B}) & \text{(spectral)} \end{cases}$$

Geometric: STEINER-1842, HURWITZ-1902 (d = 2), corollary of BRUNN-MINKOWSKI inequality ($d \ge 3$). Spectral: FABER-23, KRAHN-26.

Other boundary conditions

The Neumann Laplacian: similar spectral inequality is trivial: $\lambda_1^N(\Omega) = 0$. Non-trivial for δ -interactions on manifolds and for the Robin Laplacian.

V. Lotoreichik (NPI CAS) Optimisation of the lowest eigenvalue for...

I. Schrödinger operators with $\delta\text{-interactions}$ on hypersurfaces

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

Symmetric quadratic form in $L^2(\mathbb{R}^d)$ $H^1(\mathbb{R}^d) \ni u \mapsto \mathfrak{h}^{\Sigma}_{\alpha}[u] := \|\nabla u\|^2_{L^2(\mathbb{R}^d;\mathbb{C}^d)} - \alpha \|u|_{\Sigma}\|^2_{L^2(\Sigma)}$ for $\alpha > 0$.

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

Symmetric quadratic form in $L^2(\mathbb{R}^d)$

$$H^{1}(\mathbb{R}^{d}) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u] := \|\nabla u\|_{L^{2}(\mathbb{R}^{d};\mathbb{C}^{d})}^{2} - \alpha \|u|_{\Sigma}\|_{L^{2}(\Sigma)}^{2} \text{ for } \alpha > 0.$$

The quadratic from $\mathfrak{h}^{\Sigma}_{\alpha}$ is closed, densely defined, and semi-bounded.

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

Symmetric quadratic form in $L^2(\mathbb{R}^d)$

$$H^{1}(\mathbb{R}^{d}) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u] := \|\nabla u\|_{L^{2}(\mathbb{R}^{d};\mathbb{C}^{d})}^{2} - \alpha \|u|_{\Sigma}\|_{L^{2}(\Sigma)}^{2} \text{ for } \alpha > 0.$$

The quadratic from $\mathfrak{h}_{\alpha}^{\Sigma}$ is closed, densely defined, and semi-bounded.

Schrödinger operator with δ -interaction on Σ of strength α

 $\mathsf{H}^{\Sigma}_{\alpha}$ – self-adjoint operator in $L^{2}(\mathbb{R}^{d})$ associated to the form $\mathfrak{h}^{\Sigma}_{\alpha}$.

A Lipschitz hypersurface $\Sigma \subset \mathbb{R}^d$, not necessarily bounded or closed.

Symmetric quadratic form in $L^2(\mathbb{R}^d)$

$$H^{1}(\mathbb{R}^{d}) \ni u \mapsto \mathfrak{h}_{\alpha}^{\Sigma}[u] := \|\nabla u\|_{L^{2}(\mathbb{R}^{d};\mathbb{C}^{d})}^{2} - \alpha \|u|_{\Sigma}\|_{L^{2}(\Sigma)}^{2} \text{ for } \alpha > 0.$$

The quadratic from $\mathfrak{h}_{\alpha}^{\Sigma}$ is closed, densely defined, and semi-bounded.

Schrödinger operator with δ -interaction on Σ of strength α

 $\mathsf{H}^{\Sigma}_{\alpha}$ – self-adjoint operator in $L^{2}(\mathbb{R}^{d})$ associated to the form $\mathfrak{h}^{\Sigma}_{\alpha}$.

The lowest spectral point for H^{Σ}_{α}

 $\mu_1^{\alpha}(\Sigma) := \inf \sigma(\mathsf{H}_{\alpha}^{\Sigma}).$

V. Lotoreichik (NPI CAS)

24.04.2017 4 / 20

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Motivations to study H^{Σ}_{α}

V. Lotoreichik (NPI CAS)

(日)

Physics

- (i) 'Leaky' quantum systems: a particle is confined to Σ but the tunneling between different parts of Σ is not neglected.
- (ii) Inverse scattering problem for ${\sf H}^{\Sigma}_{\alpha}$ is linked to the Calderon problem with non-smooth conductivity.
- (iii) Existence of spectral gaps for high-contrast photonic crystals.

Physics

- (i) 'Leaky' quantum systems: a particle is confined to Σ but the tunneling between different parts of Σ is not neglected.
- (ii) Inverse scattering problem for ${\sf H}^{\Sigma}_{\alpha}$ is linked to the Calderon problem with non-smooth conductivity.
- (iii) Existence of spectral gaps for high-contrast photonic crystals.

Spectral geometry

Characterise the spectrum of H^{Σ}_{α} in terms of Σ !

Physics

- (i) 'Leaky' quantum systems: a particle is confined to Σ but the tunneling between different parts of Σ is not neglected.
- (ii) Inverse scattering problem for ${\sf H}^{\Sigma}_{\alpha}$ is linked to the Calderon problem with non-smooth conductivity.
- (iii) Existence of spectral gaps for high-contrast photonic crystals.

Spectral geometry

Characterise the spectrum of H^{Σ}_{α} in terms of Σ !

- An explicit mapping $\Sigma \mapsto \sigma(\mathsf{H}^{\Sigma}_{\alpha})$ can not be constructed.
- Particular spectral results might be very difficult to obtain.

• • • • • • • • • • • •

δ -interactions on loops

V. Lotoreichik (NPI CAS)

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

V. Lotoreichik (NPI CAS)

 C^{∞} -smooth loop $\Sigma \subset \mathbb{R}^2$, a circle $\mathcal{C} \subset \mathbb{R}^2$. Regularity – not the main issue.

 \mathcal{C}^{∞} -smooth loop $\Sigma \subset \mathbb{R}^2$, a circle $\mathcal{C} \subset \mathbb{R}^2$. Regularity – not the main issue. С $\sigma_{\text{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+}$ and $\sigma_{d}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \emptyset$ for all $\alpha > 0$. Theorem (Exner-05, Exner-Harrell-Loss-06) $\begin{cases} |\Sigma| = |\mathcal{C}| \\ \Sigma \not\cong \mathcal{C} \end{cases} \implies \mu_1^{\alpha}(\mathcal{C}) > \mu_1^{\alpha}(\Sigma), \quad \forall \alpha > 0. \end{cases}$

 C^{∞} -smooth loop $\Sigma \subset \mathbb{R}^2$, a circle $\mathcal{C} \subset \mathbb{R}^2$. Regularity – not the main issue. $\sigma_{\text{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+}$ and $\sigma_{d}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \emptyset$ for all $\alpha > 0$. Theorem (Exner-05, Exner-Harrell-Loss-06) $\begin{cases} |\Sigma| = |\mathcal{C}| \\ \Sigma \not\cong \mathcal{C} \end{cases} \implies \mu_1^{\alpha}(\mathcal{C}) > \mu_1^{\alpha}(\Sigma), \quad \forall \, \alpha > 0. \end{cases}$ Operator theory: Birman-Schwinger and min-max principles.

Geometry: mean-chord length inequality (Lükő-66).

Classical analysis: decay and convexity of $K_0(\cdot)$, Jensen's inequality.

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

24.04.2017 6 / 20

V. Lotoreichik (NPI CAS)

 $\Sigma \subset \mathbb{R}^2$ – a C^∞ -smooth open arc. $\mathcal{S} \subset \mathbb{R}^2$ – a line segment.

- ∢ ∃ ▶

 $\Sigma \subset \mathbb{R}^2$ – a C^∞ -smooth open arc. $\mathcal{S} \subset \mathbb{R}^2$ – a line segment.

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+} \text{ and } \sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \emptyset \text{ for all } \alpha > 0.$$

I ≡ ►

 $\Sigma \subset \mathbb{R}^2$ – a C^{∞} -smooth open arc. $\mathcal{S} \subset \mathbb{R}^2$ – a line segment.

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+} \text{ and } \sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \emptyset \text{ for all } \alpha > 0.$$

Recent topic: an analogue of the result by EXNER-HARRELL-LOSS-06?

.

 $\Sigma \subset \mathbb{R}^2$ – a C^{∞} -smooth open arc. $\mathcal{S} \subset \mathbb{R}^2$ – a line segment.

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+} \text{ and } \sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \emptyset \text{ for all } \alpha > 0.$$

Recent topic: an analogue of the result by EXNER-HARRELL-LOSS-06?

Theorem (VL-16)

$$egin{cases} |\Sigma| = |\mathcal{S}| \ \Sigma \ncong \mathcal{S} & \Longrightarrow & \mu_1^lpha(\mathcal{S}) > \mu_1^lpha(\Sigma), \quad orall \, lpha > 0. \end{cases}$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

 $\Sigma \subset \mathbb{R}^2$ – a C^∞ -smooth open arc. $\mathcal{S} \subset \mathbb{R}^2$ – a line segment.

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Sigma}_{\alpha}) = \mathbb{R}_{+} \text{ and } \sigma_{\mathrm{d}}(\mathsf{H}^{\Sigma}_{\alpha}) \neq \emptyset \text{ for all } \alpha > 0.$$

Recent topic: an analogue of the result by EXNER-HARRELL-LOSS-06?

Theorem (VL-16)

$$egin{cases} |\Sigma| = |\mathcal{S}| \ \Sigma \ncong \mathcal{S} & \Longrightarrow & \mu_1^lpha(\mathcal{S}) > \mu_1^lpha(\Sigma), \quad orall \, lpha > \mathsf{0}. \end{cases}$$

Geometry: line segment - the shortest path between two endpoints.

V. Lotoreichik (NPI CAS) Optimisation of the lowest eigenvalue for... 24.04.2017

7 / 20

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

イロト イヨト イヨト イ

V. Lotoreichik (NPI CAS)

 $P, Q \in \mathbb{R}^2$ – points. $P \neq Q$.

 $\mathcal{S}, \Sigma \subset \mathbb{R}^2$ – the line segment and an arc connecting P and Q.

< ∃ ►

 $P, Q \in \mathbb{R}^2$ – points. $P \neq Q$.

 $\mathcal{S}, \Sigma \subset \mathbb{R}^2$ – the line segment and an arc connecting P and Q.

< 3 ×

 $P, Q \in \mathbb{R}^2$ – points. $P \neq Q$.

 $\mathcal{S}, \Sigma \subset \mathbb{R}^2$ – the line segment and an arc connecting P and Q.

Proposition

V. Lotoreichik (NPI CAS)

$$\begin{cases} \partial \Sigma = \{P, Q\} \\ \Sigma \not\cong S \end{cases} \implies \mu_1^{\alpha}(S) > \mu_1^{\alpha}(\Sigma), \quad \forall \, \alpha > 0. \end{cases}$$

★ ∃ ► ★

 $P, Q \in \mathbb{R}^2$ – points. $P \neq Q$.

 $\mathcal{S}, \Sigma \subset \mathbb{R}^2$ – the line segment and an arc connecting P and Q.

Proposition

$$\begin{cases} \partial \Sigma = \{P, Q\} \\ \Sigma \not\cong \mathcal{S} \end{cases} \implies \quad \mu_1^{\alpha}(\mathcal{S}) > \mu_1^{\alpha}(\Sigma), \quad \forall \, \alpha > 0. \end{cases}$$

Open questions

- (i) Shape of the optimizer under two constraints: fixed endpoints $P, Q \in \mathbb{R}^2$ and fixed length L > |P Q|?
- (ii) A generalization for Laplace-Beltrami operator on a 2-manifold \mathcal{M} with \mathcal{S} being the geodesic connecting $P, Q \in \mathcal{M}$?

V. Lotoreichik (NPI CAS) Optimisation of the

Optimisation of the lowest eigenvalue for...

24.04.2017 9 / 20

- 3 ► ►

$\delta\text{-interactions}$ on truncated cones

V. Lotoreichik (NPI CAS)

No direct analogue in \mathbb{R}^3 : under the constraint $|\Sigma| = \text{const}$, max $\mu_1^{\alpha}(\Sigma) = 0$ is achieved at uncountably many shapes.
$\delta\text{-interactions}$ on truncated cones

No direct analogue in \mathbb{R}^3 : under the constraint $|\Sigma| = \text{const}$, max $\mu_1^{\alpha}(\Sigma) = 0$ is achieved at uncountably many shapes.

 $\mathcal{T} \subset \mathbb{S}^2$ – a C^{∞} -smooth loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^2$ – a circle. $\Sigma_R(\mathcal{T}) = \{ r\mathcal{T} : r \in [0, R) \} \subset \mathbb{R}^3$ – truncated cone of radius R with base \mathcal{T} .

$\delta\text{-interactions}$ on truncated cones

No direct analogue in \mathbb{R}^3 : under the constraint $|\Sigma| = \text{const}$, max $\mu_1^{\alpha}(\Sigma) = 0$ is achieved at uncountably many shapes.

 $\mathcal{T} \subset \mathbb{S}^2$ – a C^{∞} -smooth loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^2$ – a circle. $\Sigma_R(\mathcal{T}) = \{ r\mathcal{T} : r \in [0, R) \} \subset \mathbb{R}^3$ – truncated cone of radius R with base \mathcal{T} .

Discrete spectrum is non-empty if and only if $\alpha > \alpha_* > 0$.

$\delta\text{-interactions}$ on truncated cones

No direct analogue in \mathbb{R}^3 : under the constraint $|\Sigma| = \text{const}$, max $\mu_1^{\alpha}(\Sigma) = 0$ is achieved at uncountably many shapes.

 $\mathcal{T} \subset \mathbb{S}^2$ – a C^{∞} -smooth loop on the unit sphere. $\mathcal{C} \subset \mathbb{S}^2$ – a circle. $\Sigma_R(\mathcal{T}) = \{ r\mathcal{T} : r \in [0, R) \} \subset \mathbb{R}^3$ – truncated cone of radius R with base \mathcal{T} .

Discrete spectrum is non-empty if and only if $\alpha > \alpha_* > 0$.

Theorem (Exner-VL-17)

$$egin{cases} |\mathcal{C}| = |\mathcal{T}| \ \mathcal{C} \ncong \mathcal{T} \end{cases}$$

$$\begin{cases} \mu_1^{\alpha}(\Sigma_R(\mathcal{C})) > \mu_1^{\alpha}(\Sigma_R(\mathcal{T})), & \forall \, \alpha > \alpha_*(\Sigma_R(\mathcal{C})) \\ \mu_1^{\alpha}(\Sigma_R(\mathcal{T})) < 0 \text{ for } \alpha = \alpha_*(\Sigma_R(\mathcal{C})). \end{cases}$$

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

V. Lotoreichik (NPI CAS)

< ∃ ►

V. Lotoreichik (NPI CAS)

 $\mathcal{T} \subset \mathbb{S}^2$ – a C^∞ -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle. $|\mathcal{T}| = |\mathcal{C}| < 2\pi$

→ < Ξ → <</p>

V. Lotoreichik (NPI CAS)

 $\mathcal{T} \subset \mathbb{S}^2$ – a C^∞ -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle. $|\mathcal{T}| = |\mathcal{C}| < 2\pi$

 $\Sigma(\mathcal{T}) = \{ r\mathcal{T} : r \in [0,\infty) \} \subset \mathbb{R}^3$ – infinite cone with the base \mathcal{T} .

• • = • • = •

$$\mathcal{T} \subset \mathbb{S}^2$$
 – a \mathcal{C}^∞ -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle. $|\mathcal{T}| = |\mathcal{C}| < 2\pi$

 $\Sigma(\mathcal{T}) = \{ r\mathcal{T} : r \in [0,\infty) \} \subset \mathbb{R}^3$ – infinite cone with the base \mathcal{T} .

Proposition (Behrndt-VL-Exner-14, Ourmières-Bonafos-Pankrashkin-16)

(i)
$$\sigma_{\text{ess}}(\mathsf{H}^{\Sigma(\mathcal{T})}_{\alpha}) = \left[-\frac{1}{4}\alpha^2, +\infty\right).$$

(ii)
$$\#\sigma_{\mathrm{d}}(\mathsf{H}_{\alpha}^{\Sigma(\mathcal{T})}) = \infty$$
.

Refinements: VL-OURMIÈRES-BONAFOS-16, BRUNEAU-POPOFF-15

• • = • • = •

$$\mathcal{T} \subset \mathbb{S}^2$$
 – a \mathcal{C}^∞ -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle. $|\mathcal{T}| = |\mathcal{C}| < 2\pi$

 $\Sigma(\mathcal{T}) = \{ r\mathcal{T} : r \in [0,\infty) \} \subset \mathbb{R}^3$ – infinite cone with the base \mathcal{T} .

Proposition (Behrndt-VL-Exner-14, Ourmières-Bonafos-Pankrashkin-16)

(i)
$$\sigma_{\text{ess}}(\mathsf{H}^{\Sigma(\mathcal{T})}_{\alpha}) = \left[-\frac{1}{4}\alpha^2, +\infty\right).$$

(ii)
$$\#\sigma_{\mathrm{d}}(\mathsf{H}_{\alpha}^{\Sigma(\mathcal{T})}) = \infty.$$

Refinements: VL-OURMIÈRES-BONAFOS-16, BRUNEAU-POPOFF-15

Theorem (Exner-VL-17)

$$egin{cases} |\mathcal{C}| = |\mathcal{T}| < 2\pi \ \mathcal{C} \ncong \mathcal{T} & \Longrightarrow \quad \mu_1^lpha(\Sigma(\mathcal{C})) \geq \mu_1^lpha(\Sigma(\mathcal{T})), \ \ orall \, lpha > 0. \end{cases}$$

< □ > < □ > < □ > < □ >

$$\mathcal{T} \subset \mathbb{S}^2$$
 – a \mathcal{C}^∞ -smooth loop. $\mathcal{C} \subset \mathbb{S}^2$ – a circle. $|\mathcal{T}| = |\mathcal{C}| < 2\pi$

 $\Sigma(\mathcal{T}) = \{ r\mathcal{T} : r \in [0,\infty) \} \subset \mathbb{R}^3$ – infinite cone with the base \mathcal{T} .

Proposition (Behrndt-VL-Exner-14, Ourmières-Bonafos-Pankrashkin-16)

(i)
$$\sigma_{\text{ess}}(\mathsf{H}^{\Sigma(\mathcal{T})}_{\alpha}) = \left[-\frac{1}{4}\alpha^2, +\infty\right).$$

(ii)
$$\#\sigma_{\mathrm{d}}(\mathsf{H}_{\alpha}^{\Sigma(\mathcal{T})}) = \infty.$$

Refinements: VL-OURMIÈRES-BONAFOS-16, BRUNEAU-POPOFF-15

Theorem (Exner-VL-17)

$$egin{cases} |\mathcal{C}| = |\mathcal{T}| < 2\pi \ \mathcal{C} \ncong \mathcal{T} & \Longrightarrow & \mu_1^lpha(\Sigma(\mathcal{C})) \geq \mu_1^lpha(\Sigma(\mathcal{T})), \ \ orall \, lpha > 0. \end{cases}$$

Passing in the result for truncated cones to the limit $R \rightarrow +\infty$.

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

э 24.04.2017 11 / 20

< (T) >

-

Star-graph Σ_N with $N \ge 3$ leads

V. Lotoreichik (NPI CAS)

N leads meeting at the origin and forming angles $\phi(\Sigma_N) = \{\phi_1, \dots, \phi_N\}$ in the counterclockwise enumeration: $\sum_{n=1}^N \phi_n = 2\pi$.

Star-graph Σ_N with $N \geq 3$ leads

N leads meeting at the origin and forming angles $\phi(\Sigma_N) = \{\phi_1, \dots, \phi_N\}$ in the counterclockwise enumeration: $\sum_{n=1}^{N} \phi_n = 2\pi$.

 $\phi(\Gamma_N) = \{\frac{2\pi}{N}, \frac{2\pi}{N}, \dots, \frac{2\pi}{N}\}$ for symmetric star-graph Γ_N .

Star-graph Σ_N with $N \geq 3$ leads

N leads meeting at the origin and forming angles $\phi(\Sigma_N) = \{\phi_1, \dots, \phi_N\}$ in the counterclockwise enumeration: $\sum_{n=1}^{N} \phi_n = 2\pi$.

 $\phi(\Gamma_N) = \{\frac{2\pi}{N}, \frac{2\pi}{N}, \dots, \frac{2\pi}{N}\}$ for symmetric star-graph Γ_N .

Theorem (Exner-Ichinose-01, Khalile-Pankrashkin-17, Exner-VL-17)

(i) $\sigma_{\text{ess}}(\mathsf{H}_{\alpha}^{\Sigma_N}) = \left[-\frac{1}{4}\alpha^2, +\infty\right) \text{ and } 1 \leq \#\sigma_{\mathrm{d}}(\mathsf{H}_{\alpha}^{\Sigma_N}) < \infty.$ (ii) $\mu_1^{\alpha}(\Sigma_N) \leq \mu_1^{\alpha}(\Gamma_N) \text{ for all } \alpha > 0 \text{ (EXNER-VL-17).}$

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

V. Lotoreichik (NPI CAS) Optimisation of the lowest eigenvalue for...

< 4[™] >

-

Optimisation with magnetic fields

Homogeneous magnetic field $B \neq 0$ in \mathbb{R}^2

V. Lotoreichik (NPI CAS)

 $A = \frac{1}{2}B(-x_2, x_1)^{\top}$ – vector potential. $\nabla_A := i\nabla + A$ – magnetic gradient.

< ロト < 同ト < 三ト < 三

Optimisation with magnetic fields

Homogeneous magnetic field $B \neq 0$ in \mathbb{R}^2

 $A = \frac{1}{2}B(-x_2, x_1)^{\top}$ – vector potential. $\nabla_A := i\nabla + A$ – magnetic gradient.

 δ -interaction on a loop in \mathbb{R}^2 + homogeneous magnetic field $B \neq 0$

The quadratic form

$$\{u: u, |\nabla_A u| \in L^2(\mathbb{R}^2)\} \ni u \mapsto \mathfrak{h}_{\alpha, B}^{\Sigma}[u] := \|\nabla_A u\|_{L^2(\mathbb{R}^2; \mathbb{C}^2)}^2 - \alpha \|u|_{\Sigma}\|_{L^2(\Sigma)}^2$$

defines self-adjoint operator $\mathsf{H}_{\alpha,B}^{\Sigma}$ in $L^2(\mathbb{R}^2)$ with $\mu_1^{\alpha,B}(\Sigma) := \inf \sigma(\mathsf{H}_{\alpha,B}^{\Sigma})$.

Optimisation with magnetic fields

Homogeneous magnetic field $B \neq 0$ in \mathbb{R}^2

 $A = \frac{1}{2}B(-x_2, x_1)^{\top}$ – vector potential. $\nabla_A := i\nabla + A$ – magnetic gradient.

 δ -interaction on a loop in \mathbb{R}^2 + homogeneous magnetic field $B \neq 0$

The quadratic form

$$\{u: u, |\nabla_A u| \in L^2(\mathbb{R}^2)\} \ni u \mapsto \mathfrak{h}_{\alpha, B}^{\Sigma}[u] := \|\nabla_A u\|_{L^2(\mathbb{R}^2; \mathbb{C}^2)}^2 - \alpha \|u|_{\Sigma}\|_{L^2(\Sigma)}^2$$

defines self-adjoint operator $\mathsf{H}_{\alpha,B}^{\Sigma}$ in $L^2(\mathbb{R}^2)$ with $\mu_1^{\alpha,\beta}(\Sigma) := \inf \sigma(\mathsf{H}_{\alpha,B}^{\Sigma})$.

Questions

(i) Is the circle a local optimiser under fixed length constraint? Shape derivative of $\mu_1^{\alpha,B}(\Sigma)$ with respect to Σ .

 (ii) Is the circle still a global optimiser under fixed length constraint?

 (iii) Does the "non-magnetic" strategy of the proof apply?

II. The Robin Laplacian on exterior domains

V. Lotoreichik (NPI CAS) Optimisation of the

Optimisation of the lowest eigenvalue for...

24.04.2017 14 / 20

V. Lotoreichik (NPI CAS)

 $G \subset \mathbb{R}^d$ – an unbounded Lipschitz domain with compact boundary ∂G .

• Exterior domain. • Complement of a hypersurface.

 $G \subset \mathbb{R}^d$ – an unbounded Lipschitz domain with compact boundary ∂G .

Exterior domain.
 Complement of a hypersurface.

Closed, symmetric, semi-bounded quadratic form in $L^2(G)$

 $H^1(G) \ni u \mapsto \mathfrak{h}_{\beta}^{G}[u] := \|\nabla u\|_{L^2(G;\mathbb{C}^d)}^2 - \beta \|u|_{\partial G}\|_{L^2(\partial G)}^2 \text{ for } \beta > 0.$

 $G \subset \mathbb{R}^d$ – an unbounded Lipschitz domain with compact boundary ∂G . • Exterior domain. • Complement of a hypersurface.

Closed, symmetric, semi-bounded quadratic form in $L^2(G)$

$$H^1(G) \ni u \mapsto \mathfrak{h}_{\beta}^{G}[u] := \|\nabla u\|_{L^2(G;\mathbb{C}^d)}^2 - \beta \|u|_{\partial G}\|_{L^2(\partial G)}^2 \text{ for } \beta > 0.$$

The Robin Laplacian on ${\it G}$ with the boundary parameter eta

 H^{G}_{β} – the self-adjoint operator in $L^{2}(G)$ associated with the form \mathfrak{h}^{G}_{β} .

14 / 20

 $G \subset \mathbb{R}^d$ – an unbounded Lipschitz domain with compact boundary ∂G . • Exterior domain. • Complement of a hypersurface.

Closed, symmetric, semi-bounded quadratic form in $L^2(G)$

$$H^1(G) \ni u \mapsto \mathfrak{h}_{\beta}^{G}[u] := \|\nabla u\|_{L^2(G;\mathbb{C}^d)}^2 - \beta \|u|_{\partial G}\|_{L^2(\partial G)}^2 \text{ for } \beta > 0.$$

The Robin Laplacian on ${\it G}$ with the boundary parameter eta

 $\mathsf{H}^{\mathsf{G}}_{\beta}$ – the self-adjoint operator in $L^2(\mathsf{G})$ associated with the form $\mathfrak{h}^{\mathsf{G}}_{\beta}$.

$$\nu_1^\beta(G) := \inf \sigma(\mathsf{H}_\beta^G).$$

V. Lotoreichik (NPI CAS)

 $G \subset \mathbb{R}^d$ – an unbounded Lipschitz domain with compact boundary ∂G . • Exterior domain. • Complement of a hypersurface.

Closed, symmetric, semi-bounded quadratic form in $L^2(G)$

$$H^1(G) \ni u \mapsto \mathfrak{h}_{\beta}^{G}[u] := \|\nabla u\|_{L^2(G;\mathbb{C}^d)}^2 - \beta \|u|_{\partial G}\|_{L^2(\partial G)}^2 \text{ for } \beta > 0.$$

The Robin Laplacian on ${\it G}$ with the boundary parameter eta

 $\mathsf{H}^{\mathsf{G}}_{\beta}$ – the self-adjoint operator in $L^2(\mathsf{G})$ associated with the form $\mathfrak{h}^{\mathsf{G}}_{\beta}$.

$$\nu_1^\beta(G) := \inf \sigma(\mathsf{H}_\beta^G).$$

Applications in physics

- (i) Oscillating, elastically supported membranes in mechanics.
- (ii) Linearized Ginzburg-Landau equation in superconductivity.
- (iii) Thin layers with impedance BC condition in electromagnetism.

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for ...

24.04.2017 14 / 20

 $\Omega \subset \mathbb{R}^2$ – bounded, simply connected, C^{∞} -smooth. $\Omega^{\text{ext}} := \mathbb{R}^2 \setminus \overline{\Omega}$.

V. Lotoreichik (NPI CAS)

 $\Omega \subset \mathbb{R}^2$ – bounded, simply connected, C^{∞} -smooth. $\Omega^{\text{ext}} := \mathbb{R}^2 \setminus \overline{\Omega}$.

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Omega^{\mathrm{ext}}}_\beta) = [0,+\infty) \text{ and } 1 \leq \#\sigma_{\mathrm{d}}(\mathsf{H}^{\Omega^{\mathrm{ext}}}_\beta) < \infty.$$

 $\Omega \subset \mathbb{R}^2$ – bounded, simply connected, C^{∞} -smooth. $\Omega^{\text{ext}} := \mathbb{R}^2 \setminus \overline{\Omega}$.

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Omega^{\mathrm{ext}}}_\beta) = [0,+\infty) \text{ and } 1 \leq \#\sigma_{\mathrm{d}}(\mathsf{H}^{\Omega^{\mathrm{ext}}}_\beta) < \infty.$$

Theorem (Krejčiřík-VL-16, d = 2)

 $\begin{cases} \text{either } |\partial \Omega| = |\partial \mathcal{B}| \text{ or } |\Omega| = |\mathcal{B}| \\ \Omega \ncong \mathcal{B}, \ \Omega \text{ convex} \end{cases}$

$$\implies \nu_1^\beta(\mathcal{B}^{\mathrm{ext}}) > \nu_1^\beta(\Omega^{\mathrm{ext}}), \ \forall \, \beta > 0.$$

 $\Omega \subset \mathbb{R}^2$ – bounded, simply connected, C^{∞} -smooth. $\Omega^{\text{ext}} := \mathbb{R}^2 \setminus \overline{\Omega}$.

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Omega^{\mathrm{ext}}}_\beta) = [0,+\infty) \text{ and } 1 \leq \#\sigma_{\mathrm{d}}(\mathsf{H}^{\Omega^{\mathrm{ext}}}_\beta) < \infty.$$

Theorem (Krejčiřík-VL-16, d = 2)

$$\begin{array}{l} \text{(either } |\partial \Omega| = |\partial \mathcal{B}| \text{ or } |\Omega| = |\mathcal{B}| \\ \Omega \ncong \mathcal{B}, \ \Omega \text{ convex} \end{array} \implies \nu_1^\beta(\mathcal{B}^{\text{ext}}) > \nu_1^\beta(\Omega^{\text{ext}}), \ \forall \beta > \mathbf{0}. \end{array}$$

• Min-max principle. • Method of parallel coordinates. • $\int_{\partial\Omega} \kappa = 2\pi$.

(4) (日本)

 $\Omega \subset \mathbb{R}^2$ – bounded, simply connected, C^{∞} -smooth. $\Omega^{\text{ext}} := \mathbb{R}^2 \setminus \overline{\Omega}$.

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\Omega^{\mathrm{ext}}}_\beta) = [0,+\infty) \text{ and } 1 \leq \#\sigma_{\mathrm{d}}(\mathsf{H}^{\Omega^{\mathrm{ext}}}_\beta) < \infty.$$

Theorem (Krejčiřík-VL-16, d = 2)

 $\begin{cases} \text{either } |\partial \Omega| = |\partial \mathcal{B}| \text{ or } |\Omega| = |\mathcal{B}| \\ \Omega \ncong \mathcal{B}, \ \Omega \text{ convex} \end{cases} \implies$

$$\implies \nu_1^{\beta}(\mathcal{B}^{\mathrm{ext}}) > \nu_1^{\beta}(\Omega^{\mathrm{ext}}), \ \forall \beta > 0.$$

• Min-max principle. • Method of parallel coordinates. • $\int_{\partial\Omega} \kappa = 2\pi$.

Non-convex case: joint work in progress with D. Krejčiřík.

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

V. Lotoreichik (NPI CAS) Optimisation of the lowest eigenvalue for...

- (日)

Connectedness is important

Two disjoint discs

V. Lotoreichik (NPI CAS)

 $\Omega_r = \mathcal{B}'_r \cup \mathcal{B}''_r$ where $\overline{\mathcal{B}'_r} \cap \overline{\mathcal{B}''_r} = \emptyset$.

★ ∃ ►

Two disjoint discs

$$\Omega_r = \mathcal{B}'_r \cup \mathcal{B}''_r$$
 where $\overline{\mathcal{B}'_r} \cap \overline{\mathcal{B}''_r} = \varnothing$.

A simple computation gives

$$|\Omega_r| = |\mathcal{B}_R| \implies r = R/\sqrt{2},$$

 $|\partial \Omega_r| = |\partial \mathcal{B}_R| \implies r = R/2.$

Two disjoint discs

$$\Omega_r = \mathcal{B}'_r \cup \mathcal{B}''_r$$
 where $\overline{\mathcal{B}'_r} \cap \overline{\mathcal{B}''_r} = \varnothing$.

A simple computation gives

$$|\Omega_r| = |\mathcal{B}_R| \implies r = R/\sqrt{2},$$

 $|\partial\Omega_r| = |\partial\mathcal{B}_R| \implies r = R/2.$

Strong coupling (Kovařík-Pankrashkin-16)

$$u_1^{eta}(\Omega_r^{\mathrm{ext}}) - \nu_1^{eta}(\mathcal{B}_R^{\mathrm{ext}}) = \beta\left(\frac{1}{r} - \frac{1}{R}\right) + o(\beta) \text{ as } \beta \to \infty.$$

∃ >

Two disjoint discs

$$\Omega_r = \mathcal{B}'_r \cup \mathcal{B}''_r$$
 where $\overline{\mathcal{B}'_r} \cap \overline{\mathcal{B}''_r} = \varnothing$.

A simple computation gives

$$|\Omega_r| = |\mathcal{B}_R| \implies r = R/\sqrt{2},$$

 $|\partial\Omega_r| = |\partial\mathcal{B}_R| \implies r = R/2.$

Strong coupling (Kovařík-Pankrashkin-16)

$$u_1^{\beta}(\Omega_r^{\text{ext}}) - \nu_1^{\beta}(\mathcal{B}_R^{\text{ext}}) = \beta\left(\frac{1}{r} - \frac{1}{R}\right) + o(\beta) \text{ as } \beta \to \infty.$$

For all $\beta > 0$ large enough

 $u_1^{\beta}(\Omega_r^{\mathrm{ext}}) > \nu_1^{\beta}(\mathcal{B}_R^{\mathrm{ext}}) \text{ (the inequality is reversed).}$

V. Lotoreichik (NPI CAS)

24.04.2017 16 / 20

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

No direct analogue for $d \ge 3$

V. Lotoreichik (NPI CAS)

• • • • • • • • • • • •
Dumbbell-type domain

V. Lotoreichik (NPI CAS)

 $\Omega_{r,s} = \operatorname{Conv}(\mathcal{B}_r(x_0) \cup \mathcal{B}_r(x_1))$ where $|x_0 - x_1| = s$.

< /⊒ ► < Ξ ► <

Dumbbell-type domain

V. Lotoreichik (NPI CAS)

 $\Omega_{r,s} = \operatorname{Conv}(\mathcal{B}_r(x_0) \cup \mathcal{B}_r(x_1))$ where $|x_0 - x_1| = s$.

 $\forall r > 0: \exists s > 0$ such that either $|\Omega_{r,s}| = |\mathcal{B}_R|$ or $|\partial \Omega_{r,s}| = |\partial \mathcal{B}_R|$

.

Dumbbell-type domain

$$\Omega_{r,s} = \operatorname{Conv}(\mathcal{B}_r(x_0) \cup \mathcal{B}_r(x_1)) \text{ where } |x_0 - x_1| = s.$$

$$orall r>0:\ \exists s>0$$
 such that either $|\Omega_{r,s}|=|\mathcal{B}_R|$ or $|\partial\Omega_{r,s}|=|\partial\mathcal{B}_R|$

Strong coupling

V. Lotoreichik (NPI CAS)

$$u_1^{eta}(\Omega_{r,s}^{\mathrm{ext}}) - \nu_1^{eta}(\mathcal{B}_R^{\mathrm{ext}}) = \beta\left(rac{d-2}{r} - rac{d-1}{R}
ight) + o(eta) ext{ as } eta o \infty.$$

< ∃ >

Dumbbell-type domain

$$\Omega_{r,s} = \operatorname{Conv}(\mathcal{B}_r(x_0) \cup \mathcal{B}_r(x_1)) \text{ where } |x_0 - x_1| = s.$$

$$orall r>0:\ \exists s>0$$
 such that either $|\Omega_{r,s}|=|\mathcal{B}_{\mathcal{R}}|$ or $|\partial\Omega_{r,s}|=|\partial\mathcal{B}_{\mathcal{R}}|$

Strong coupling

$$u_1^{\beta}(\Omega_{r,s}^{\text{ext}}) - \nu_1^{\beta}(\mathcal{B}_R^{\text{ext}}) = \beta\left(\frac{d-2}{r} - \frac{d-1}{R}\right) + o(\beta) \text{ as } \beta \to \infty.$$

For $r < \frac{d-2}{d-1}R$ and all $\beta > 0$ large enough

 $\nu_1^{\beta}(\Omega_{r,s}^{\text{ext}}) > \nu_1^{\beta}(\mathcal{B}_R^{\text{ext}})$ (the inequality is reversed).

《曰》《聞》《臣》《臣》 三臣

Dumbbell-type domain

$$\Omega_{r,s} = \operatorname{Conv}(\mathcal{B}_r(x_0) \cup \mathcal{B}_r(x_1)) \text{ where } |x_0 - x_1| = s.$$

$$orall r > 0$$
: $\exists s > 0$ such that either $|\Omega_{r,s}| = |\mathcal{B}_R|$ or $|\partial \Omega_{r,s}| = |\partial \mathcal{B}_R|$

Strong coupling

$$u_1^{\beta}(\Omega_{r,s}^{\mathrm{ext}}) - \nu_1^{\beta}(\mathcal{B}_R^{\mathrm{ext}}) = \beta\left(\frac{d-2}{r} - \frac{d-1}{R}\right) + o(\beta) \text{ as } \beta \to \infty.$$

For $r < \frac{d-2}{d-1}R$ and all $\beta > 0$ large enough

 $\nu_1^{\beta}(\Omega_{r,s}^{\text{ext}}) > \nu_1^{\beta}(\mathcal{B}_R^{\text{ext}})$ (the inequality is reversed).

Curvature constraints for $d \ge 3$: joint work in progress with D. Krejčiřík.

V. Lotoreichik (NPI CAS)

24.04.2017 17 / 20

 $\Sigma \subset \mathbb{R}^2$ – a $\mathit{C}^\infty\text{-smooth}$ open arc. $\mathcal{S} \subset \mathbb{R}^2$ – a line segment.

V. Lotoreichik (NPI CAS)

 $\Sigma \subset \mathbb{R}^2$ – a C^∞ -smooth open arc. $\mathcal{S} \subset \mathbb{R}^2$ – a line segment.

 $\Sigma \subset \mathbb{R}^2$ – a C^{∞} -smooth open arc. $S \subset \mathbb{R}^2$ – a line segment.

$$\mathbb{R}^2 \setminus \Sigma$$

$$\mathbb{R}^2 \setminus S$$

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\mathbb{R}^2 \setminus \Sigma}_\beta) = [0, +\infty) \text{ and } 1 \leq \#\sigma_{\mathrm{d}}(\mathsf{H}^{\mathbb{R}^2 \setminus \Sigma}_\beta) < \infty.$$

V. Lotoreichik (NPI CAS)

 $\Sigma \subset \mathbb{R}^2$ – a C^{∞} -smooth open arc. $\mathcal{S} \subset \mathbb{R}^2$ – a line segment.

$$\mathbb{R}^2 \setminus \Sigma$$

$$\mathbb{R}^2 \setminus S$$

$$\sigma_{\mathrm{ess}}(\mathsf{H}^{\mathbb{R}^2 \setminus \Sigma}_\beta) = [0, +\infty) \text{ and } 1 \leq \#\sigma_{\mathrm{d}}(\mathsf{H}^{\mathbb{R}^2 \setminus \Sigma}_\beta) < \infty.$$

Theorem (VL-16)

$$egin{cases} |\Sigma| = |\mathcal{S}| \ \Sigma \ncong \mathcal{S} & \Longrightarrow \quad
u_1^eta(\mathbb{R}^2 \setminus \mathcal{S}) >
u_1^eta(\mathbb{R}^2 \setminus \Sigma), \quad orall eta > 0. \end{cases}$$

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

24.04.2017 18 / 20

V. Lotoreichik (NPI CAS)

Optimisation of the lowest eigenvalue for...

イロト イヨト イヨト イ

V. Lotoreichik (NPI CAS)

Optimisation results for other boundary conditions

4-parametric family of self-adjoint realisations (EXNER-ROHLEDER-16).

Optimisation results for other boundary conditions

4-parametric family of self-adjoint realisations (EXNER-ROHLEDER-16).

Dirac operators

ARRIZABALAGA-MAS-VEGA-16. Still a lot of open questions.

Optimisation results for other boundary conditions

4-parametric family of self-adjoint realisations (EXNER-ROHLEDER-16).

Dirac operators

ARRIZABALAGA-MAS-VEGA-16. Still a lot of open questions.

Interactions supported on manifolds of higher co-dimensions

Loops in \mathbb{R}^3 (Behrndt-Frank-Kühn-VL-Rohleder-17)

Optimisation results for other boundary conditions

4-parametric family of self-adjoint realisations (EXNER-ROHLEDER-16).

Dirac operators

ARRIZABALAGA-MAS-VEGA-16. Still a lot of open questions.

Interactions supported on manifolds of higher co-dimensions

Loops in \mathbb{R}^3 (Behrndt-Frank-Kühn-VL-Rohleder-17)

Robin cones

An analogue of the optimisation result for δ -interactions supported on conical surfaces in the Robin setting.

V. Lotoreichik (NPI CAS)

Thank you for your attention!

- ∢ 🗗 ▶