A Lieb-Thirring inequality for Schrödinger operators with δ-potentials supported on a hyperplane

Peter Schlosser

Institute of Numerical Mathematics, TU Graz
April 26, 2017

LT-inequality for classical Potentials

For a regular potential $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$, consider
Schrödinger operator

$$
H_{v}=-\Delta+V
$$

LT-inequality for classical Potentials

For a regular potential $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$, consider

Schrödinger operator

$$
H_{v}=-\Delta+V
$$

Let $\left(E_{i}\right)_{i}$ be the negative eigenvalues of H_{V}, then

Lieb-Thirring Inequaltiy, 1976

$$
\sum_{i}\left|E_{i}\right|^{\gamma} \leq c_{\gamma} \int_{\mathbb{R}^{d}} V_{-}^{\frac{d}{2}+\gamma} d x
$$

$$
\begin{array}{rll}
\text { for } \gamma>\frac{1}{2} & \text { if } & d=1 \\
\gamma>0 & \text { if } & d \geq 2
\end{array}
$$

Also $\gamma=\frac{1}{2}$ if $d=1$ (Weidl 1996)

$$
\gamma=0 \text { if } d \geq 3 \text { (Cwikel 1977, Lieb 1980, Rosenblum 1976) }
$$

Schrödinger operator with δ-potential

Let $\Sigma \subseteq \mathbb{R}^{d}$ a hypersurface and $\alpha: \Sigma \rightarrow \mathbb{R}$. Then consider
Schrödinger operator with δ-potential

$$
-\Delta_{\alpha}=-\Delta+\alpha \delta_{\Sigma}
$$

Schrödinger operator with δ-potential

Let $\Sigma \subseteq \mathbb{R}^{d}$ a hypersurface and $\alpha: \Sigma \rightarrow \mathbb{R}$. Then consider
Schrödinger operator with δ-potential

$$
-\Delta_{\alpha}=-\Delta+\alpha \delta_{\Sigma}
$$

defined by the bilinear form

$$
a_{\alpha}(f, g)=\langle\nabla f, \nabla g\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}-\left.\left.\int_{\Sigma} \alpha f\right|_{\Sigma} \bar{g}\right|_{\Sigma} d \sigma
$$

Goal: For $\gamma>0$ (maybe $\gamma \geq 0$) an inequaltiy of the form

$$
\sum_{i}\left|E_{i}\right|^{\gamma} \leq c_{\gamma} \int_{\Sigma} \alpha_{-}^{\frac{d}{2}+\gamma} d \sigma
$$

with $\left(E_{i}\right)_{i}$ the negative eigenvalues of $-\Delta_{\alpha}$.

Weyl-function and number of eigenvalues

For $\lambda<0$, the Weyl-function looks like

$$
M_{\lambda} f(x)=\int_{\Sigma} G_{\lambda}(x-y) f(y) d \sigma(y): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma)
$$

with $G_{\lambda}: \mathbb{R}^{d} \rightarrow \mathbb{C}$, the integral kernel of the resolvent of the laplacian.

Weyl-function and number of eigenvalues

For $\lambda<0$, the Weyl-function looks like

$$
M_{\lambda} f(x)=\int_{\Sigma} G_{\lambda}(x-y) f(y) d \sigma(y): L^{2}(\Sigma) \rightarrow L^{2}(\Sigma)
$$

with $G_{\lambda}: \mathbb{R}^{d} \rightarrow \mathbb{C}$, the integral kernel of the resolvent of the laplacian.

Consider now the number of eigenvalues

- $N_{\varepsilon}=$ number of eigenvalues of $-\Delta_{\alpha}$ smaller than $(-\varepsilon)$.
- $B_{\varepsilon}=$ number of eigenvalues of $\alpha M_{-\varepsilon}$ larger than 1 .

Birman-Schwinger principle

$$
N_{\varepsilon}=B_{\varepsilon}
$$

Birman-Schwinger bound

Brasche, Exner, Kuperin, Seba,1994

$$
\begin{aligned}
& N_{\varepsilon} \leq\left(\sup _{x \in \mathbb{R}^{d}} \int_{\Sigma} G_{-\varepsilon}(x-y)^{q}|\alpha(y)| d \sigma(y)\right)^{\frac{1}{q-1}} \int_{\Sigma} \alpha_{-} d \sigma \\
& N_{0} \leq\left(\sup _{x \in \mathbb{R}^{d}} \int_{\Sigma} G_{0}(x-y)^{q}|\alpha(y)| d \sigma(y)\right)^{\frac{1}{q-1}} \int_{\Sigma} \alpha_{-} d \sigma
\end{aligned}
$$

for any $q \in(1,2]$.

Birman-Schwinger bound

Brasche, Exner, Kuperin, Seba,1994

$$
\begin{aligned}
& N_{\varepsilon} \leq\left(\sup _{x \in \mathbb{R}^{d}} \int_{\Sigma} G_{-\varepsilon}(x-y)^{q}|\alpha(y)| d \sigma(y)\right)^{\frac{1}{q-1}} \int_{\Sigma} \alpha_{-} d \sigma \\
& N_{0} \leq\left(\sup _{x \in \mathbb{R}^{d}} \int_{\Sigma} G_{0}(x-y)^{q}|\alpha(y)| d \sigma(y)\right)^{\frac{1}{q-1}} \int_{\Sigma} \alpha_{-} d \sigma
\end{aligned}
$$

for any $q \in(1,2]$.

$$
\sum_{i}\left|E_{i}\right|^{\gamma} \leq c_{\gamma} \int_{\Sigma} \alpha_{-}^{\frac{d}{2}+\gamma} d \sigma
$$

with $\left(E_{i}\right)_{i}$ the negative eigenvalues of $-\Delta_{\alpha}$.

Way to achieve this

The way to the inequality is mainly splitted into three steps

$$
\sum_{i}\left|E_{i}\right|^{\gamma} \stackrel{(1)}{\longleftrightarrow} N_{\varepsilon} \stackrel{(2)}{\longleftrightarrow} B_{\varepsilon} \stackrel{(3)}{\longleftrightarrow} \int_{\Sigma}|\alpha|^{\frac{d}{2}+\gamma} d \sigma
$$

Way to achieve this

The way to the inequality is mainly splitted into three steps

$$
\begin{aligned}
& \sum_{i}\left|E_{i}\right|^{\gamma} \stackrel{(1)}{\longleftrightarrow} N_{\varepsilon} \stackrel{(2)}{\longleftrightarrow} B_{\varepsilon} \stackrel{(3)}{\longleftrightarrow} \int_{\Sigma}|\alpha|^{\frac{d}{2}+\gamma} d \sigma \\
& \text { (1) } \sum_{i}\left|E_{i}\right|^{\gamma}=\gamma \int_{0}^{\infty} \varepsilon^{\gamma-1} N_{\varepsilon} d \varepsilon \quad \text { easy }
\end{aligned}
$$

Way to achieve this

The way to the inequality is mainly splitted into three steps

$$
\sum_{i}\left|E_{i}\right|^{\gamma} \stackrel{(1)}{\longleftrightarrow} N_{\varepsilon} \stackrel{(2)}{\longleftrightarrow} B_{\varepsilon} \stackrel{(3)}{\longleftrightarrow} \int_{\Sigma}|\alpha|^{\frac{d}{2}+\gamma} d \sigma
$$

(1) $\sum_{i}\left|E_{i}\right|^{\gamma}=\gamma \int_{0}^{\infty} \varepsilon^{\gamma-1} N_{\varepsilon} d \varepsilon \quad$ easy
(2) $N_{\varepsilon}=B_{\varepsilon}$

Birman-Schwinger principle

Way to achieve this

The way to the inequality is mainly splitted into three steps

$$
\sum_{i}\left|E_{i}\right|^{\gamma} \stackrel{(1)}{\longleftrightarrow} N_{\varepsilon} \stackrel{(2)}{\longleftrightarrow} B_{\varepsilon} \stackrel{(3)}{\longleftrightarrow} \int_{\Sigma}|\alpha|^{\frac{d}{2}+\gamma} d \sigma
$$

(1) $\sum_{i}\left|E_{i}\right|^{\gamma}=\gamma \int_{0}^{\infty} \varepsilon^{\gamma-1} N_{\varepsilon} d \varepsilon \quad$ easy
(2) $N_{\varepsilon}=B_{\varepsilon}$
(3) $B_{\varepsilon} \leq \operatorname{tr}\left(\alpha^{\eta} M_{-\varepsilon}^{\eta}\right)$

Birman-Schwinger principle difficult
for some specific $\eta \geq 1$.

Powers of the Weyl-function

Weyl-function

$$
M_{-\varepsilon} f(x)=\int_{\Sigma} G_{-\varepsilon}(x-y) f(y) d \sigma(y)
$$

Powers of the Weyl-function

Weyl-function

$$
M_{-\varepsilon} f(x)=\int_{\Sigma} G_{-\varepsilon}(x-y) f(y) d \sigma(y)
$$

Power of Weyl-function

$$
M_{-\varepsilon}^{\eta} f(x) \stackrel{?}{=} \int_{\Sigma} G_{-\varepsilon}^{(\eta)}(x-y) f(y) d \sigma(y)
$$

For some integral kernel $G_{-\varepsilon}^{(\eta)}$ depending on ε and η.

Powers of the Weyl-function

Weyl-function

$$
M_{-\varepsilon} f(x)=\int_{\Sigma} G_{-\varepsilon}(x-y) f(y) d \sigma(y)
$$

Power of Weyl-function

$$
M_{-\varepsilon}^{\eta} f(x) \stackrel{?}{=} \int_{\Sigma} G_{-\varepsilon}^{(\eta)}(x-y) f(y) d \sigma(y)
$$

For some integral kernel $G_{-\varepsilon}^{(\eta)}$ depending on ε and η.
Needed property

$$
G_{-\varepsilon}^{(\eta)}(0) \stackrel{?}{=} \mathcal{O}\left(\varepsilon^{\frac{d}{2}-\eta}\right)
$$

Special case: Hyperplane

Consider the
Hyperplane

$$
\Sigma=\left\{x \in \mathbb{R}^{d} \mid x_{d}=0\right\}
$$

Special case: Hyperplane

Consider the
Hyperplane

$$
\Sigma=\left\{x \in \mathbb{R}^{d} \mid x_{d}=0\right\}
$$

and the
Interaction strength

$$
\alpha(x)=\alpha_{0}+\alpha_{1}(x)
$$

with $\alpha_{0}<0$ constant and $\operatorname{supp}\left(\alpha_{1}\right)$ compact.

Special case: Hyperplane

Consider the
Hyperplane

$$
\Sigma=\left\{x \in \mathbb{R}^{d} \mid x_{d}=0\right\}
$$

and the
Interaction strength

$$
\alpha(x)=\alpha_{0}+\alpha_{1}(x)
$$

with $\alpha_{0}<0$ constant and $\operatorname{supp}\left(\alpha_{1}\right)$ compact.

$$
-\Delta_{\alpha}=-\Delta+\underbrace{\left(\alpha_{0}+\alpha_{1}\right) \delta_{\Sigma}}_{\text {not compact }}
$$

New Weyl-function

$$
-\Delta_{\alpha}=\left(-\Delta+\alpha_{0} \delta_{\Sigma}\right)+\underbrace{\alpha_{1} \delta_{\Sigma}}_{\text {compact }}
$$

New Weyl-function

$$
-\Delta_{\alpha}=\left(-\Delta+\alpha_{0} \delta_{\Sigma}\right)+\underbrace{\alpha_{1} \delta_{\Sigma}}_{\text {compact }}
$$

New Boundary triplet

$$
\Gamma_{0}^{\prime}=\Gamma_{0}+\alpha_{0} \Gamma_{1} \quad \text { and } \quad \Gamma_{1}^{\prime}=\Gamma_{1}
$$

is a boundary triplet of $-\Delta+\alpha_{0} \delta_{\Sigma}$

New Weyl-function

$$
-\Delta_{\alpha}=\left(-\Delta+\alpha_{0} \delta_{\Sigma}\right)+\underbrace{\alpha_{1} \delta_{\Sigma}}_{\text {compact }}
$$

New Boundary triplet

$$
\Gamma_{0}^{\prime}=\Gamma_{0}+\alpha_{0} \Gamma_{1} \quad \text { and } \quad \Gamma_{1}^{\prime}=\Gamma_{1}
$$

is a boundary triplet of $-\Delta+\alpha_{0} \delta_{\Sigma}$

Weyl-function

$$
M_{\lambda}^{\prime}=M_{\lambda}\left(1+\alpha_{0} M_{\lambda}\right)^{-1}=\frac{1}{2}\left(\left(-\Delta_{d-1}-\lambda\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{-1}
$$

Powers of the Weyl-function

Using Fourier transformation to calculate powers of $M_{-\varepsilon}^{\prime}$.

$$
\Rightarrow M_{-\varepsilon}^{\prime \eta}=\frac{1}{2^{\eta}}\left(\left(-\Delta_{d-1}+\varepsilon\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{-\eta}
$$

Powers of the Weyl-function

Using Fourier transformation to calculate powers of $M_{-\varepsilon}^{\prime}$.

$$
\begin{aligned}
& \Rightarrow M_{-\varepsilon}^{\prime \eta}=\frac{1}{2^{\eta}}\left(\left(-\Delta_{d-1}+\varepsilon\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{-\eta} \\
& \Rightarrow F M_{-\varepsilon}^{\prime \prime} F^{-1}=\frac{1}{2^{\eta}}\left(\left(|k|^{2}+\varepsilon\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{-\eta}
\end{aligned}
$$

Powers of the Weyl-function

Using Fourier transformation to calculate powers of $M_{-\varepsilon}^{\prime}$.

$$
\begin{aligned}
& \Rightarrow M_{-\varepsilon}^{\prime \eta}=\frac{1}{2^{\eta}}\left(\left(-\Delta_{d-1}+\varepsilon\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{-\eta} \\
& \Rightarrow F M_{-\varepsilon}^{\prime \eta} F^{-1}=\frac{1}{2^{\eta}}\left(\left(|k|^{2}+\varepsilon\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{-\eta} \\
& \Rightarrow M_{-\varepsilon}^{\prime \eta} f(x)=\int_{\mathbb{R}^{d-1}} G_{-\varepsilon}^{\prime(\eta)}(x-y) f(y) d y
\end{aligned}
$$

Powers of the Weyl-function

Using Fourier transformation to calculate powers of $M_{-\varepsilon}^{\prime}$.

$$
\begin{aligned}
& \Rightarrow M_{-\varepsilon}^{\prime \eta}=\frac{1}{2^{\eta}}\left(\left(-\Delta_{d-1}+\varepsilon\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{-\eta} \\
& \Rightarrow F M_{-\varepsilon}^{\prime \eta} F^{-1}=\frac{1}{2^{\eta}}\left(\left(|k|^{2}+\varepsilon\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{-\eta} \\
& \Rightarrow M_{-\varepsilon}^{\prime \eta} f(x)=\int_{\mathbb{R}^{d-1}} G_{-\varepsilon}^{\prime(\eta)}(x-y) f(y) d y
\end{aligned}
$$

with

Integral kernel of Weyl-function

$$
G_{-\varepsilon}^{\prime(\eta)}(x)=\frac{1}{2^{\eta}(2 \pi)^{d-1}} \int_{\mathbb{R}^{d-1}} \frac{1}{\left(\left(|k|^{2}+\varepsilon\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{\pi}} e^{i k x} d k
$$

Lieb-Thirring inequality for Hyperplane

For $\varepsilon>\frac{\alpha_{0}^{2}}{4}$ we get as before

$$
B_{\varepsilon} \leq \operatorname{tr}\left(\alpha_{1}^{\eta} M_{-\varepsilon}^{\prime \eta}\right)=G_{-\varepsilon}^{(\eta)}(0) \int_{\mathbb{R}^{d-1}}\left|\alpha_{1}\right|^{\eta} d \sigma
$$

with

$$
G_{-\varepsilon}^{\prime(\eta)}(0)=\frac{1}{2^{\eta}(2 \pi)^{d-1}} \int_{\mathbb{R}^{d-1}} \frac{1}{\left(\left(|k|^{2}+\varepsilon\right)^{\frac{1}{2}}+\frac{\alpha_{0}}{2}\right)^{\eta}} d k
$$

Open question

What is $G_{-\varepsilon}^{(\eta)}$ for general Σ ?

