Eigenvalue inequalities for partial differential operators

Simon Stadler
joint work with Jussi Behrndt and Jonathan Rohleder

27.04.2017

Contents

(1) Motivation
(2) Operators with different boundary conditions

- The spectrum
- Inequality for eigenvalue counting functions
- Final result
(3) Operators with different coefficients
- The spectrum
- Eigenvalue inequality

Preliminaries

Let $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$ be an open set.

$$
\mathcal{L}_{i}:=-\sum_{j, k=1}^{d} \partial_{j} a_{j k, i} \partial_{k}+a_{i},
$$

$a_{j k, i}: \Omega \rightarrow \mathbb{C}, a_{i}: \Omega \rightarrow \mathbb{R}$, such that \mathcal{L}_{i} is uniformly elliptic, $i=1,2$.

Preliminaries

Let $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$ be an open set.

$$
\mathcal{L}_{i}:=-\sum_{j, k=1}^{d} \partial_{j} a_{j k, i} \partial_{k}+a_{i},
$$

$a_{j k, i}: \Omega \rightarrow \mathbb{C}, a_{i}: \Omega \rightarrow \mathbb{R}$, such that \mathcal{L}_{i} is uniformly elliptic, $i=1,2$.

$$
A_{i} u:=\mathcal{L}_{i} u, \quad \operatorname{dom} A_{i} \subseteq L^{2}(\Omega), \quad i=1,2
$$

self-adjoint operators in $L^{2}(\Omega)$ (for suitably chosen coefficient functions and domains)

Question

$\lambda_{1}\left(A_{i}\right) \leq \lambda_{2}\left(A_{i}\right) \leq \ldots<M$ discrete eigenvalues of A_{i}, counted with multiplicities, below some upper bound $M \in \mathbb{R} \cup\{\infty\}$

Question

$\lambda_{1}\left(A_{i}\right) \leq \lambda_{2}\left(A_{i}\right) \leq \ldots<M$ discrete eigenvalues of A_{i}, counted with multiplicities, below some upper bound $M \in \mathbb{R} \cup\{\infty\}$

Question:
Under what conditions does it hold

$$
\lambda_{n}\left(A_{2}\right) \leq \lambda_{n+k}\left(A_{1}\right) \quad \text { or even } \quad \lambda_{n}\left(A_{2}\right)<\lambda_{n+k}\left(A_{1}\right)
$$

for some $k \in \mathbb{N}$ and all $n \in \mathbb{N}$?

History

Results for $\mathcal{L}_{i}=-\Delta$ on bounded domain Ω subject to Dirichlet or Neumann boundary conditions:

- G. Polya (1952), G. Szegő (1954): $\lambda_{2}^{\mathcal{N}}<\lambda_{1}^{\mathcal{D}}$
- L. Payne (1955): $\lambda_{2}^{\mathcal{N}} \leq \lambda_{1}^{\mathcal{D}}$ for $\Omega \subseteq \mathbb{R}^{2}$ convex
- H. Levine \& H. Weinberger (1986): $\lambda_{n+d}^{\mathcal{N}}<\lambda_{n}^{\mathcal{D}}$ for $\Omega \subseteq \mathbb{R}^{d}$ convex with C^{∞}-boundary
- L. Friedlander (1991): $\lambda_{n+1}^{\mathcal{N}} \leq \lambda_{n}^{\mathcal{D}}$ for $\Omega \subseteq \mathbb{R}^{d}$ with C^{1}-boundary
- N. Filonov (2005): $\lambda_{n+1}^{\mathcal{N}}<\lambda_{n}^{\mathcal{D}}$ e.g. for $\Omega \subseteq \mathbb{R}^{d}$ Lipschitz domain
(2) Operators with different boundary conditions
- The spectrum
- Inequality for eigenvalue counting functions
- Final result
(3) Operators with different coefficients
- The spectrum
- Eigenvalue inequality

Assumptions

- $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$, unbounded domain with compact Lipschitz boundary (i.e. the complement of $\bar{\Omega}$ is a bounded Lipschitz domain)
- $\mathcal{L}_{1}=\mathcal{L}_{2}=-\Delta+V$, with $V \in L^{\infty}(\Omega)$ real valued

Schrödinger operator with Dirichlet boundary condition

Definition

$$
\begin{aligned}
A_{\mathcal{D}} u & =(-\Delta+V) u \\
\operatorname{dom}\left(A_{\mathcal{D}}\right) & =\left\{u \in H^{1}(\Omega) \mid \Delta u \in L^{2}(\Omega) \text { and }\left.u\right|_{\partial \Omega}=0\right\}
\end{aligned}
$$

Schrödinger operator with Robin/mixed boundary condition

Definition

$$
\begin{aligned}
& A_{\mathcal{R}} u=(-\Delta+V) u \\
& \operatorname{dom}\left(A_{\mathcal{R}}\right)=\left\{u \in H^{1}(\Omega)\left|\Delta u \in L^{2}(\Omega), u\right|_{\omega^{\prime}}=0\right. \\
&\text { and } \left.\left.\alpha u\right|_{\omega}+\left.\frac{\partial u}{\partial \nu}\right|_{\omega}=0\right\}
\end{aligned}
$$

where $\alpha \in \mathbb{R}, \varnothing \neq \omega \subseteq \partial \Omega$ open and $\omega^{\prime}=\partial \Omega \backslash \omega$.

Schrödinger operator with Robin/mixed boundary condition

Definition

$$
\begin{aligned}
& A_{\mathcal{R}} u=(-\Delta+V) u \\
& \operatorname{dom}\left(A_{\mathcal{R}}\right)=\left\{u \in H^{1}(\Omega)\left|\Delta u \in L^{2}(\Omega), u\right|_{\omega^{\prime}}=0\right. \\
&\text { and } \left.\left.\alpha u\right|_{\omega}+\left.\frac{\partial u}{\partial \nu}\right|_{\omega}=0\right\}
\end{aligned}
$$

where $\alpha \in \mathbb{R}, \varnothing \neq \omega \subseteq \partial \Omega$ open and $\omega^{\prime}=\partial \Omega \backslash \omega$.

Special case: Neumann b.c. ($\alpha=0$ and $\omega=\partial \Omega$)

The spectra of $A_{\mathcal{D}}$ and $A_{\mathcal{R}}$

- Operators selfadjoint in $L^{2}(\Omega)$.

The spectra of $A_{\mathcal{D}}$ and $A_{\mathcal{R}}$

- Operators selfadjoint in $L^{2}(\Omega)$.
- The essential spectra of $A_{\mathcal{D}}$ and $A_{\mathcal{R}}$ coincide.

The spectra of $A_{\mathcal{D}}$ and $A_{\mathcal{R}}$

- Operators selfadjoint in $L^{2}(\Omega)$.
- The essential spectra of $A_{\mathcal{D}}$ and $A_{\mathcal{R}}$ coincide.
- For $V \in L^{2}(\Omega)$ their essential spectrum is equal to $[0, \infty)$.

The spectra of $A_{\mathcal{D}}$ and $A_{\mathcal{R}}$

- Operators selfadjoint in $L^{2}(\Omega)$.
- The essential spectra of $A_{\mathcal{D}}$ and $A_{\mathcal{R}}$ coincide.
- For $V \in L^{2}(\Omega)$ their essential spectrum is equal to $[0, \infty)$.

For $M:=\inf \sigma_{\text {ess }}\left(A_{\mathcal{D}}\right)=\inf \sigma_{\text {ess }}\left(A_{\mathcal{R}}\right)$ denote by

- $\lambda_{1}\left(A_{\mathcal{D}}\right) \leq \lambda_{2}\left(A_{\mathcal{D}}\right) \leq \cdots<M$ the discrete eigenvalues of $A_{\mathcal{D}}$ in $(-\infty, M)$ counted with multiplicity
- $\lambda_{1}\left(A_{\mathcal{R}}\right) \leq \lambda_{2}\left(A_{\mathcal{R}}\right) \leq \cdots<M$ the discrete eigenvalues of $A_{\mathcal{R}}$ in $(-\infty, M)$ counted with multiplicity

Characterization of the discrete eigenvalues

- Bilinear form corresponding to $A_{\mathcal{D}}$

$$
\begin{aligned}
a_{\mathcal{D}}(u, v) & =(\nabla u, \nabla v)_{\left(L^{2}(\Omega)\right)^{d}}+(V u, v)_{L^{2}(\Omega)} \\
\operatorname{dom}\left(a_{\mathcal{D}}\right) & =H_{0}^{1}(\Omega)
\end{aligned}
$$

- Bilinear form corresponding to $A_{\mathcal{R}}$

$$
\begin{aligned}
a_{\mathcal{R}}(u, v) & =(\nabla u, \nabla v)_{\left(L^{2}(\Omega)\right)^{d}}+(V u, v)_{L^{2}(\Omega)}+\alpha\left(\left.\left.u\right|_{\partial \Omega,} v\right|_{\partial \Omega}\right) \\
\operatorname{dom}\left(a_{\mathcal{D}}\right) & =\left\{u \in H^{1}(\Omega)|u|_{\omega^{\prime}}=0\right\}
\end{aligned}
$$

Characterization of the discrete eigenvalues

- Bilinear form corresponding to $A_{\mathcal{D}}$

$$
\begin{aligned}
a_{\mathcal{D}}(u, v) & =(\nabla u, \nabla v)_{\left(L^{2}(\Omega)\right)^{d}}+(V u, v)_{L^{2}(\Omega)} \\
\operatorname{dom}\left(a_{\mathcal{D}}\right) & =H_{0}^{1}(\Omega)
\end{aligned}
$$

- Bilinear form corresponding to $A_{\mathcal{R}}$

$$
\begin{aligned}
a_{\mathcal{R}}(u, v) & =(\nabla u, \nabla v)_{\left(L^{2}(\Omega)\right)^{d}}+(V u, v)_{L^{2}(\Omega)}+\alpha\left(\left.u\right|_{\partial \Omega},\left.v\right|_{\partial \Omega}\right) \\
\operatorname{dom}\left(a_{\mathcal{D}}\right) & =\left\{u \in H^{1}(\Omega)|u|_{\omega^{\prime}}=0\right\}
\end{aligned}
$$

Theorem (min-max principle)

$$
\lambda_{n}\left(A_{i}\right)=\min _{\substack{L \text { subspace of } \operatorname{dom}\left(a_{i}\right) \\ \operatorname{dim} L=n}}\left\{\max _{u \in L \backslash\{0\}} \frac{a_{i}(u, u)}{(u, u)}\right\}, \quad i \in\{\mathcal{D}, \mathcal{R}\}
$$

An inequality for eigenvalue counting functions

For an interval $\mathcal{I} \subseteq \mathbb{R}$ define the eigenvalue counting functions

- $N_{\mathcal{D}}(\mathcal{I}):=\operatorname{dim} \operatorname{ran} E_{\mathcal{D}}(\mathcal{I})$,
- $N_{\mathcal{R}}(\mathcal{I}):=\operatorname{dim} \operatorname{ran} E_{\mathcal{R}}(\mathcal{I})$,
$E_{\mathcal{D}}, E_{\mathcal{R}}$ spectral measures of $A_{\mathcal{D}}$ and $A_{\mathcal{R}}$ respectively.

An inequality for eigenvalue counting functions

For an interval $\mathcal{I} \subseteq \mathbb{R}$ define the eigenvalue counting functions

- $N_{\mathcal{D}}(\mathcal{I}):=\operatorname{dim} \operatorname{ran} E_{\mathcal{D}}(\mathcal{I})$,
- $N_{\mathcal{R}}(\mathcal{I}):=\operatorname{dim} \operatorname{ran} E_{\mathcal{R}}(\mathcal{I})$,
$E_{\mathcal{D}}, E_{\mathcal{R}}$ spectral measures of $A_{\mathcal{D}}$ and $A_{\mathcal{R}}$ respectively.
Theorem
Let $M=\inf \sigma_{\text {ess }}\left(A_{\mathcal{D}}\right)=\inf \sigma_{\text {ess }}\left(A_{\mathcal{R}}\right)$. Then for each $\mu<M$ the inequality

$$
N_{\mathcal{R}}((-\infty, \mu)) \geq N_{\mathcal{D}}((-\infty, \mu])
$$

holds.

Idea of the proof 1
Let $\mu<M$. Then we have

$$
\begin{aligned}
& N_{\mathcal{D}}((-\infty, \mu])=\max \left\{\operatorname{dim} L: L \subset \operatorname{dom}\left(a_{\mathcal{D}}\right)\right. \text { subspace, } \\
&\left.a_{\mathcal{D}}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}, u \in L\right\}
\end{aligned}
$$

Idea of the proof 1

Let $\mu<M$. Then we have

$$
\begin{aligned}
& N_{\mathcal{D}}((-\infty, \mu])=\max \left\{\operatorname{dim} L: L \subset \operatorname{dom}\left(a_{\mathcal{D}}\right)\right. \text { subspace, } \\
&\left.a_{\mathcal{D}}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}, u \in L\right\}
\end{aligned}
$$

Let $F \subseteq \operatorname{dom}\left(a_{\mathcal{D}}\right)$ be such that $\operatorname{dim} F=N_{\mathcal{D}}((-\infty, \mu])$ and $a_{\mathcal{D}}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}$, for all $u \in F$.

It holds for $u \in F$ and $v \in \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right)$:

$$
a_{\mathcal{R}}(u+v) \leq \mu\|u+v\|_{L^{2}(\Omega)}^{2} .
$$

Idea of the proof 1

Let $\mu<M$. Then we have

$$
\begin{aligned}
& N_{\mathcal{D}}((-\infty, \mu])=\max \left\{\operatorname{dim} L: L \subset \operatorname{dom}\left(a_{\mathcal{D}}\right)\right. \text { subspace, } \\
&\left.a_{\mathcal{D}}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}, u \in L\right\}
\end{aligned}
$$

Let $F \subseteq \operatorname{dom}\left(a_{\mathcal{D}}\right)$ be such that $\operatorname{dim} F=N_{\mathcal{D}}((-\infty, \mu])$ and $a_{\mathcal{D}}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}$, for all $u \in F$.

It holds for $u \in F$ and $v \in \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right)$:

$$
a_{\mathcal{R}}(u+v) \leq \mu\|u+v\|_{L^{2}(\Omega)}^{2}
$$

The sum $F+\operatorname{ker}\left(A_{\mathcal{R}}-\mu\right)$ is direct and hence

$$
\begin{aligned}
N_{\mathcal{R}}((-\infty, \mu]) & \geq \operatorname{dim}(F)+\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right) \\
& =N_{\mathcal{D}}((-\infty, \mu])+\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right)
\end{aligned}
$$

Idea of the proof 2

$$
\begin{aligned}
N_{\mathcal{R}}((-\infty, \mu]) & \geq \operatorname{dim}(F)+\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right) \\
& =N_{\mathcal{D}}((-\infty, \mu])+\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right)
\end{aligned}
$$

Idea of the proof 2

$$
\begin{aligned}
N_{\mathcal{R}}((-\infty, \mu]) & \geq \operatorname{dim}(F)+\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right) \\
& =N_{\mathcal{D}}((-\infty, \mu])+\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right)
\end{aligned}
$$

$$
N_{\mathcal{R}}((-\infty, \mu])-\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right) \geq N_{\mathcal{D}}((-\infty, \mu])
$$

Idea of the proof 2

$$
\begin{aligned}
& N_{\mathcal{R}}((-\infty, \mu]) \geq \operatorname{dim}(F)+\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right) \\
& \\
& =N_{\mathcal{D}}((-\infty, \mu])+\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right) \\
& N_{\mathcal{R}}((-\infty, \mu])-\operatorname{dim} \operatorname{ker}\left(A_{\mathcal{R}}-\mu\right) \geq N_{\mathcal{D}}((-\infty, \mu]) \\
& N_{\mathcal{R}}((-\infty, \mu)) \geq N_{\mathcal{D}}((-\infty, \mu])
\end{aligned}
$$

The corresponding eigenvalue inequality

Inserting $\mu=\lambda_{k}\left(A_{\mathcal{D}}\right)$ one obtains the following result

Theorem

If there exist m eigenvalues of $A_{\mathcal{D}}$ in $(-\infty, M)$ then there exist at least m eigenvalues of $A_{\mathcal{R}}$ in $(-\infty, M)$ and the strict inequality

$$
\lambda_{k}\left(A_{\mathcal{R}}\right)<\lambda_{k}\left(A_{\mathcal{D}}\right)
$$

holds for all $k \in\{1, \ldots, m\}$.
2) Operators with different boundary conditions

- The spectrum
- Inequality for eigenvalue counting functions
- Final result
(3) Operators with different coefficients
- The spectrum
- Eigenvalue inequality

Assumptions

- $\Omega \subseteq \mathbb{R}^{d}, d \geq 2$, open, nonempty and (for simplicity) connected
- $\mathcal{L}_{i}:=-\sum_{j, k=1}^{d} \partial_{j} a_{j k, i} \partial_{k}+a_{i}$,
- $a_{j k, i}: \bar{\Omega} \rightarrow \mathbb{C}$ bounded Lipschitz functions such that $a_{j k, i}(x)=\overline{a_{k j, i}(x)}$ for all $x \in \bar{\Omega}$
- $a_{i}: \Omega \rightarrow \mathbb{R}$ bounded and measurable
such that \mathcal{L}_{i} is uniformly elliptic, $i=1,2$.

Associated linear operators and bilinear forms

Definition

$$
\begin{aligned}
A_{i} u & =-\sum_{j, k=1}^{d} \partial_{j} a_{j k, i} \partial_{k} u+a_{i} u \\
\operatorname{dom}\left(A_{i}\right) & =\left\{u \in H_{0}^{1}(\Omega) \mid \mathcal{L}_{i} u \in L^{2}(\Omega)\right\}
\end{aligned}
$$

Bilinear form corresponding to A_{i}

$$
\begin{aligned}
\mathfrak{a}_{i}(u, v) & =\sum_{j, k=1}^{d} \int_{\Omega} a_{j k, i} \partial_{k} u \overline{j_{j} v} \mathrm{~d} x+\int_{\Omega} a_{i} u \bar{v} \mathrm{~d} x \\
\operatorname{dom}\left(\mathfrak{a}_{\mathfrak{i}}\right) & =H_{0}^{1}(\Omega)
\end{aligned}
$$

Additional assumptions

- The essential spectra of A_{1} and A_{2} coincide
- $\sum_{j, k=1}^{d} a_{j k, 1}(x) \xi_{j} \overline{\xi_{k}} \leq \sum_{j, k=1}^{d} a_{j k, 2}(x) \xi_{j} \overline{\xi_{k}}$,
for any $x \in \bar{\Omega}$ and $\xi \in \mathbb{R}^{d}$
(i.e. $\left.\left(a_{j k, 2}(x)-a_{j k, 1}(x)\right)_{j, k=1}^{d} \geq 0, \forall x \in \bar{\Omega}\right)$
- $a_{1}(x) \leq a_{2}(x)$ for all $x \in \Omega$
(in particular $\mathfrak{a}_{1}(u, u) \leq \mathfrak{a}_{2}(u, u)$ for any $u \in H_{0}^{1}(\Omega)$)

The spectra of A_{1} and A_{2}

A_{1} and A_{2} are selfadjoint in $L^{2}(\Omega)$.

Define:

- $M:=\inf \sigma_{\text {ess }}\left(A_{1}\right)=\inf \sigma_{\text {ess }}\left(A_{2}\right)$
- $\lambda_{1}\left(A_{i}\right) \leq \lambda_{2}\left(A_{i}\right) \leq \cdots<M$ discrete eigenvalues of A_{i} in $(-\infty, M)$ counted with multiplicity
- $N_{i}(\mathcal{I}):=\operatorname{dim} \operatorname{ran} E_{i}(\mathcal{I}), \mathcal{I} \subseteq \mathbb{R}$ interval, where E_{i} is the spectral measure of A_{i}.

Eigenvalue inequality for different coefficients

Theorem

Assume there exists an open ball $\mathcal{O} \subseteq \Omega$ such that at least one of the following conditions is satisfied:

- $a_{1}(x)<a_{2}(x)$ for all $x \in \mathcal{O}$,
- the matrix $\left(a_{j k, 2}(x)-a_{j k, 1}(x)\right)_{j, k}$ is invertible for all $x \in \mathcal{O}$.

Then for all $\mu<M$ the inequality

$$
N_{1}((-\infty, \mu)) \geq N_{2}((-\infty, \mu])
$$

holds. In particular, if there exist I eigenvalues of A_{2} in $(-\infty, M)$ then

$$
\lambda_{k}\left(A_{1}\right)<\lambda_{k}\left(A_{2}\right)
$$

holds for all $k \in\{1, \ldots, I\}$.

Idea of the proof

Let $\mu<M$. Then we have

$$
\begin{aligned}
& N_{2}((-\infty, \mu])=\max \left\{\operatorname{dim} L: L \subset \operatorname{dom}\left(\mathfrak{a}_{2}\right)\right. \text { subspace, } \\
&\left.\mathfrak{a}_{2}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}, u \in L\right\} .
\end{aligned}
$$

Idea of the proof

Let $\mu<M$. Then we have

$$
\begin{array}{r}
N_{2}((-\infty, \mu])=\max \left\{\operatorname{dim} L: L \subset \operatorname{dom}\left(\mathfrak{a}_{2}\right)\right. \text { subspace, } \\
\left.\qquad \mathfrak{a}_{2}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}, u \in L\right\}
\end{array}
$$

Let $F \subseteq \operatorname{dom}\left(\mathfrak{a}_{2}\right)$ be such that $\operatorname{dim} F=N_{2}((-\infty, \mu])$ and $\mathfrak{a}_{2}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}$, $\forall u \in F$.
It holds for $u \in F$ and $v \in \operatorname{ker}\left(A_{1}-\mu\right)$:

$$
\mathfrak{a}_{1}(u+v) \leq \mu\|u+v\|_{L^{2}(\Omega)}^{2}
$$

Idea of the proof

Let $\mu<M$. Then we have

$$
\begin{aligned}
& N_{2}((-\infty, \mu])=\max \left\{\operatorname{dim} L: L \subset \operatorname{dom}\left(\mathfrak{a}_{2}\right)\right. \text { subspace, } \\
&\left.\mathfrak{a}_{2}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}, u \in L\right\} .
\end{aligned}
$$

Let $F \subseteq \operatorname{dom}\left(\mathfrak{a}_{2}\right)$ be such that $\operatorname{dim} F=N_{2}((-\infty, \mu])$ and $\mathfrak{a}_{2}(u, u) \leq \mu\|u\|_{L^{2}(\Omega)}^{2}$, $\forall u \in F$.
It holds for $u \in F$ and $v \in \operatorname{ker}\left(A_{1}-\mu\right)$:

$$
\mathfrak{a}_{1}(u+v) \leq \mu\|u+v\|_{L^{2}(\Omega)}^{2} .
$$

The sum $F+\operatorname{ker}\left(A_{1}-\mu\right)$ is direct and hence

$$
\begin{aligned}
N_{1}((-\infty, \mu]) & \geq \operatorname{dim}(F)+\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right) \\
& =N_{2}((-\infty, \mu])+\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right)
\end{aligned}
$$

Idea of the proof

$$
\begin{aligned}
N_{1}((-\infty, \mu]) & \geq \operatorname{dim}(F)+\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right) \\
& =N_{2}((-\infty, \mu])+\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right)
\end{aligned}
$$

Idea of the proof

$$
\begin{aligned}
& \begin{aligned}
N_{1}((-\infty, \mu]) & \geq \operatorname{dim}(F)+\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right) \\
& =N_{2}((-\infty, \mu])+\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right)
\end{aligned} \\
& N_{1}((-\infty, \mu])-\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right) \geq N_{2}((-\infty, \mu])
\end{aligned}
$$

Idea of the proof

$$
\begin{aligned}
& \begin{aligned}
N_{1}((-\infty, \mu]) & \geq \operatorname{dim}(F)+\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right) \\
& =N_{2}((-\infty, \mu])+\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right)
\end{aligned} \\
& N_{1}((-\infty, \mu])-\operatorname{dim} \operatorname{ker}\left(A_{1}-\mu\right) \geq N_{2}((-\infty, \mu]) \\
& N_{1}((-\infty, \mu)) \geq N_{2}((-\infty, \mu])
\end{aligned}
$$

Thank you for your attention.

