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Introduction

Fast adaptive multipole boundary element method (FAM-BEM)

Electrostatic, magnetostatic, and steady current flow field problems

Direct and indirect BEM formulations

Dirichlet and Neumann boundary conditions

8-noded, second order quadrilateral elements

20-noded, second order hexahedral elements

GMRES with Jacobi preconditioner

Fast multipole method
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Octree in practice

Adaptive meshes
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Octree in practice

Adaptive meshes
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Octree in practice

Series expansions

Multipole expansion
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Octree in practice

Convergence of the multipole expansion
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Octree in practice

Octree
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Octree in practice

Classical near- and far-field definition

considered
cube

near-field far-field



University of Stuttgart Institute for Theory of Electrical Engineering

Octree in practice

Problems caused by higher order elements

Extremely varying size of the elements

Inhomogeneous distribution of elements

Elements can jut out of a cube

Possible solutions

Ignore the problems

Cut the elements at the boundaries of the cubes

Consider real convergence radii of the cubes
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Octree in practice

Convergence radius of a cube

R

center

elements



University of Stuttgart Institute for Theory of Electrical Engineering

Octree in practice

Convergence radius of a cube

R
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Octree in practice

Near-field interactions
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Octree in practice

Far-field interactions

1R 2R
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FMM for direct and indirect BEM formulations

Direct BEM formulation
Electrostatics

Steady current flow fields

Green’s theorem
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Dirichlet boundary conditions

Neumann boundary conditions
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FMM for direct and indirect BEM formulations

Indirect BEM formulation
Electrostatics

Magnetostatics

Charge densities
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FMM for direct and indirect BEM formulations

Classical multipole expansion
Classical integral
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FMM for direct and indirect BEM formulations

Fast multipole method for double-layer potentials
Integral

( ) ( ) '
0

1 1' 'd '
4 'A

u Aτ
πε

= ∇ ⋅
−∫ rr r n
r r
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Fast series expansion transformations

Series expansion transformations

Multipole-to-multipole transformation

Multipole-to-local transformation ← large CPU-time

Local-to-local-transformation
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Fast series expansion transformations

Multipole-to-local transformation

Classical approach
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Fast series expansion transformations

Multipole-to-local transformation

Transformation in z-direction: O(L3)

Rotation about the z-axis
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Fast series expansion transformations

Multipole-to-local transformation

“Plane waves”: O(L2)

Definition of main-directions: up, down, north, south, east, west

Rotation of the coordinate system

Outgoing wave
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Fast series expansion transformations

Multipole-to-local transformation

“Plane waves”: O(L2)

Incoming wave
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Fast series expansion transformations

In practice
L = 9

Multipole-to-multipole transformation in z-direction

Local-to-local transformation in z-direction

Multipole-to-local transformation in z-direction
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Postprocessing

Classical
Potential
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Postprocessing

FMM
Octree for elements and evaluation points

Same FMM algorithm as for matrix-by-vector-product

Local expansion
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Postprocessing

Meshing strategies
Element size near evaluation points

R
evaluation
points
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Numerical results

Experiment in high voltage technique
Geometrical configuration (adaptive mesh)
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Numerical results

Experiment in high voltage technique
Geometrical configuration (fine mesh)
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Numerical results

Experiment in high voltage technique
Geometrical configuration (particle on the right spacer)
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Numerical results

Experiment in high voltage technique
Potential between the electrodes
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Numerical results

Experiment in high voltage technique
Electric field strength above the particle
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Numerical results

Experiment in high voltage technique
Computer resources

 Coarse mesh Fine mesh
Unknowns 28857 93409 
Memory 932 MByte 1.2 GByte

CPU-time 41662 s 86385 s 
Postprocessing 4324 s 1062 s 

Compression rate 85 % 98 % 
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Numerical results

Chip on a printed circuit board
Geometrical configuration
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Numerical results

Chip on a printed circuit board
Computer resources

 Coarse mesh Fine mesh
Unknowns 20964 56980 
Memory 195 MByte 832 MByte

CPU-time 25657 s 344877 s 
Compression rate 94 % 99.6 % 
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Numerical results

Contactor
Geometrical configuration
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Numerical results

Contactor

Number of unknowns: 43949

CPU time: 1 day

Non-linear iterations steps: 9

Memory requirements: 990 MByte

Compression rate: 93 %
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Numerical results

Steady current flow field problem
Geometrical configuration
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Numerical results

Steady current flow field problem
Potential inside the conductor
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Numerical results

Steady current flow field problem
3720 second order boundary elements

11244 unknowns

160 linear iteration steps

Compression rate: 88.3 %

CPU-time: 1 hour and 8 minutes (Pentium III 1 GHz)

113 MByte (instead of 965 MByte)

Computation of the potential in 17220 evaluation points in 145 s
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Conclusion

Static electric and magnetic field problems

Direct and indirect boundary element method

Volume integral equations for non-linear problems

Fast adaptive multilevel multipole method

Adaptive meshes

High compression rates and accuracy

Fast postprocessing
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