

Coercive Combined Field Integral Equations

Ralf Hiptmair

Seminar für Angewandte Mathematik ETH Zürich

(e-mail: ralf@hiptmair.de)

(Homepage: http://www.sam.math.ethz.ch/~hiptmair)

joint work with A. Buffa, Pavia

Coercive Variational Problems

Coercivity

 $V = \mathbb{C}$ -Banach space with dual space V', duality pairing $\langle \cdot, \cdot \rangle$.

Definition:

Linear operator $A: V \mapsto V'$ coercive, if it satisfies a Gårding-type inequality

$$\exists c > \mathsf{0}: \quad | \left\langle Av, \overline{v}
ight
angle + \left\langle Kv, \overline{v}
ight
angle | \geq c \, \|v\|_V^2 \quad orall v \in V \; .$$

for some compact operator $K : V \mapsto V'$.

Coercivity of bilinear forms $V imes V \mapsto \mathbb{C}$

Coercivity

 $V = \mathbb{C}$ -Banach space with dual space V', duality pairing $\langle \cdot, \cdot \rangle$.

Definition:

Linear operator $A: V \mapsto V'$ coercive, if it satisfies a Gårding-type inequality

$$\exists c > \mathsf{0}: \quad | \left\langle Av, \overline{v}
ight
angle + \left\langle Kv, \overline{v}
ight
angle | \geq c \, \|v\|_V^2 \quad orall v \in V \; .$$

for some compact operator $K : V \mapsto V'$.

Coercivity of bilinear forms $V \times V \mapsto \mathbb{C}$

Theorem:

A continuous coercive operator is Fredholm with index zero.

A coercive \Rightarrow (A injective \Rightarrow A surjective)

Coercivity and Galerkin Discretization

 V_n , $n \in \mathbb{N}$, sequence of closed subspaces of V (e.g., FEM/BEM spaces) Assumption on V_n : Existence of linear projectors $P_n : V \mapsto V_n$ such that

 $\forall u \in V$: $\lim_{n \to \infty} \|u - P_n u\|_V = 0$.

Given: Continuous, coercive and injective bilinear form $a : V \times V \mapsto \mathbb{C}$, that is a(u, v) = 0 for all $v \in V$ implies u = 0.

 $\forall \varphi \in V' \quad \exists_1 u \in V \colon a(u, v) = \langle \varphi, v \rangle \quad \forall v \in V .$

For any fixed $\varphi \in V'$ there is an $N \in \mathbb{N}$ such that the variational problems

$$u_n \in V_n$$
: $a(u_n, v_n) = \langle \varphi, v_n \rangle \quad \forall v_n \in V_n$,

have unique solutions u_n for all n > N. Those are asymptotically quasioptimal in the sense that there is a constant C > 0 independent of φ such that

 $||u - u_n||_V \le C \inf_{v_n \in V_n} ||u - v_n||_V \quad \forall n > N.$

Acoustic Scattering

Boundary Value Problem

Bounded Lipschitz domain/polyhedron $\Omega \subset \mathbb{R}^3$ (scatterer), complement $\Omega' := \mathbb{R}^3 \setminus \overline{\Omega}$ (air region), connected boundary $\Gamma := \partial \Omega$, exterior unit normal vector field $\mathbf{n} \in L^{\infty}(\Gamma)$ points from Ω into Ω' .

Exterior Dirichlet problem for Helmholtz equation

$$\Delta U + \kappa^2 U = 0 \quad \text{in } \Omega' \quad , \quad U = g \in H^{\frac{1}{2}}(\Gamma) \quad \text{on } \Gamma \; ,$$
$$\frac{\partial U}{\partial r}(\mathbf{x}) - i\kappa U(\mathbf{x}) = o(r^{-1}) \quad \text{uniformly as } r := |\mathbf{x}| \to \infty$$

 $\kappa > 0$ = wave number, g given Dirichlet boundary value (from incident wave)

A distribution U is called a *(radiating)* Helmholtz solution, if it satisfies $\Delta U + \kappa^2 U = 0$ in $\Omega \cup \Omega'$ and the Sommerfeld radiation conditions.

Boundary Value Problem

Bounded Lipschitz domain/polyhedron $\Omega \subset \mathbb{R}^3$ (scatterer), complement $\Omega' := \mathbb{R}^3 \setminus \overline{\Omega}$ (air region), connected boundary $\Gamma := \partial \Omega$, exterior unit normal vector field $\mathbf{n} \in L^{\infty}(\Gamma)$ points from Ω into Ω' .

Exterior Dirichlet problem for Helmholtz equation

$$\Delta U + \kappa^2 U = 0 \quad \text{in } \Omega' \quad , \quad U = g \in H^{\frac{1}{2}}(\Gamma) \quad \text{on } \Gamma \; ,$$
$$\frac{\partial U}{\partial r}(\mathbf{x}) - i\kappa U(\mathbf{x}) = o(r^{-1}) \quad \text{uniformly as } r := |\mathbf{x}| \to \infty$$

 $\kappa > 0$ = wave number, g given Dirichlet boundary value (from incident wave)

A distribution U is called a *(radiating)* Helmholtz solution, if it satisfies $\Delta U + \kappa^2 U = 0$ in $\Omega \cup \Omega'$ and the Sommerfeld radiation conditions.

Existence and uniqueness of solutions

Potentials

Helmholtz kernel:

$$\Phi_{\kappa}(\mathbf{x},\mathbf{y}) := \frac{\exp(i\kappa|\mathbf{x}-\mathbf{y}|)}{4\pi|\mathbf{x}-\mathbf{y}|}$$

Transmission representation formula for Helmholtz solution U:

 $U = -\Psi_{\mathrm{SL}}^{\kappa}([\gamma_N U]_{\Gamma}) + \Psi_{\mathrm{DL}}^{\kappa}([\gamma_D U]_{\Gamma})$

$$\begin{split} \gamma_D &= \text{Dirichlet trace, } \gamma_N \coloneqq \frac{\partial}{\partial \mathbf{n}} \text{ Neumann trace, } [\cdot]_{\Gamma} = \text{jump across } \Gamma \\ &\text{single layer potential: } \Psi_{\text{SL}}^{\kappa}(\lambda)(\mathbf{x}) = \int_{\Gamma} \Phi_{\kappa}(\mathbf{x}, \mathbf{y})\lambda(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) \, , \\ &\text{double layer potential: } \Psi_{\text{DL}}^{\kappa}(u)(\mathbf{x}) = \int_{\Gamma} \frac{\partial \Phi_{\kappa}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}(\mathbf{y})} \, u(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) \, . \end{split}$$

Potentials

Helmholtz kernel:

$$\Phi_{\kappa}(\mathbf{x},\mathbf{y}) := \frac{\exp(i\kappa|\mathbf{x}-\mathbf{y}|)}{4\pi|\mathbf{x}-\mathbf{y}|}$$

Transmission representation formula for Helmholtz solution U:

 $U = -\Psi_{\mathrm{SL}}^{\kappa}([\gamma_N U]_{\Gamma}) + \Psi_{\mathrm{DL}}^{\kappa}([\gamma_D U]_{\Gamma})$

 $\gamma_{D} = \text{Dirichlet trace, } \gamma_{N} \coloneqq \frac{\partial}{\partial n} \text{ Neumann trace, } [\cdot]_{\Gamma} = \text{jump across } \Gamma$ single layer potential: $\Psi_{SL}^{\kappa}(\lambda)(\mathbf{x}) = \int_{\Gamma} \Phi_{\kappa}(\mathbf{x}, \mathbf{y})\lambda(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) \, \mathrm{,}$ double layer potential: $\Psi_{DL}^{\kappa}(u)(\mathbf{x}) = \int_{\Gamma} \frac{\partial \Phi_{\kappa}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}(\mathbf{y})} \, u(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) \, \mathrm{.}$

Continuity: $\Psi_{\mathrm{SL}}^{\kappa} : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{1}_{\mathrm{loc}}(\mathbb{R}^{3}), \Psi_{\mathrm{DL}}^{\kappa} : H^{\frac{1}{2}}(\Gamma) \mapsto H_{\mathrm{loc}}(\Delta, \Omega \cup \Omega')$

 $\Psi_{\rm SL}^{\kappa}$ and $\Psi_{\rm DL}^{\kappa}$ are radiating Helmholtz solutions

Potentials

Continuous boundary integral operators: $(\{\gamma \cdot\}_{\Gamma} := \frac{1}{2}(\gamma^{+} \cdot + \gamma^{-} \cdot)$ average)

 $V_{\kappa} : H^{s}(\Gamma) \mapsto H^{s+1}(\Gamma), \quad -1 \leq s \leq 0 \quad , \quad V_{\kappa} := \left\{ \gamma_{D} \Psi_{\mathrm{SL}}^{\kappa} \right\}_{\Gamma} \quad ,$ $K_{\kappa} : H^{s}(\Gamma) \mapsto H^{s}(\Gamma), \quad 0 \leq s \leq 1 \quad , \quad K_{\kappa} := \left\{ \gamma_{D} \Psi_{\mathrm{DL}}^{\kappa} \right\}_{\Gamma} \quad ,$ $D_{\kappa} : H^{s}(\Gamma) \mapsto H^{s-1}(\Gamma), \quad 0 \leq s \leq 1 \quad , \quad D_{\kappa} := \left\{ \gamma_{N} \Psi_{\mathrm{DL}}^{\kappa} \right\}_{\Gamma} \quad .$ Jump relations $\Rightarrow \qquad \gamma_{D}^{+} \Psi_{\mathrm{SL}}^{\kappa} = V_{\kappa} \quad , \quad \gamma_{D}^{+} \Psi_{\mathrm{DL}}^{\kappa} = K_{\kappa} + \frac{1}{2}Id$

Continuous boundary integral operators: $(\{\gamma \cdot\}_{\Gamma} := \frac{1}{2}(\gamma^{+} \cdot + \gamma^{-} \cdot)$ average)

 $V_{\kappa} : H^{s}(\Gamma) \mapsto H^{s+1}(\Gamma), \quad -1 \leq s \leq 0 \quad , \quad V_{\kappa} := \left\{ \gamma_{D} \Psi_{SL}^{\kappa} \right\}_{\Gamma} \quad ,$ $K_{\kappa} : H^{s}(\Gamma) \mapsto H^{s}(\Gamma), \quad 0 \leq s \leq 1 \quad , \quad K_{\kappa} := \left\{ \gamma_{D} \Psi_{DL}^{\kappa} \right\}_{\Gamma} \quad ,$ $D_{\kappa} : H^{s}(\Gamma) \mapsto H^{s-1}(\Gamma), \quad 0 \leq s \leq 1 \quad , \quad D_{\kappa} := \left\{ \gamma_{N} \Psi_{DL}^{\kappa} \right\}_{\Gamma} \quad .0 < s <$ Jump relations $\Rightarrow \qquad \gamma_{D}^{+} \Psi_{SL}^{\kappa} = V_{\kappa} \quad , \quad \gamma_{D}^{+} \Psi_{DL}^{\kappa} = K_{\kappa} + \frac{1}{2}Id$

Compactness:

 $V_{\kappa} - V_0 : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$ is compact.

Continuous boundary integral operators: $(\{\gamma\cdot\}_{\Gamma} := \frac{1}{2}(\gamma^+ \cdot + \gamma^- \cdot)$ average)

$$\begin{split} \mathsf{V}_{\kappa} &: H^{s}(\Gamma) \mapsto H^{s+1}(\Gamma), \quad -1 \leq s \leq 0 \quad , \quad \mathsf{V}_{\kappa} := \left\{ \gamma_{D} \Psi_{\mathrm{SL}}^{\kappa} \right\}_{\Gamma} \; , \\ \mathsf{K}_{\kappa} &: H^{s}(\Gamma) \mapsto H^{s}(\Gamma), \quad 0 \leq s \leq 1 \quad , \quad \mathsf{K}_{\kappa} := \left\{ \gamma_{D} \Psi_{\mathrm{DL}}^{\kappa} \right\}_{\Gamma} \; , \\ \mathsf{D}_{\kappa} &: H^{s}(\Gamma) \mapsto H^{s-1}(\Gamma), \quad 0 \leq s \leq 1 \quad , \quad \mathsf{D}_{\kappa} &:= \left\{ \gamma_{N} \Psi_{\mathrm{DL}}^{\kappa} \right\}_{\Gamma} \; .0 < s < \\ \mathsf{Jump relations} \; \Rightarrow \qquad \gamma_{D}^{+} \Psi_{\mathrm{SL}}^{\kappa} = \mathsf{V}_{\kappa} \; , \; \gamma_{D}^{+} \Psi_{\mathrm{DL}}^{\kappa} = \mathsf{K}_{\kappa} + \frac{1}{2} I d \\ \mathsf{Compactness:} \qquad \mathsf{V}_{\kappa} - \mathsf{V}_{0} : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \text{ is compact.} \\ \mathsf{Symmetry:} \qquad \langle \psi, \mathsf{V}_{\kappa} \varphi \rangle_{\Gamma} = \langle \varphi, \mathsf{V}_{\kappa} \psi \rangle_{\Gamma} \quad \forall \varphi, \psi \in H^{-\frac{1}{2}}(\Gamma). \end{split}$$

Continuous boundary integral operators: $(\{\gamma \cdot\}_{\Gamma} := \frac{1}{2}(\gamma^{+} \cdot + \gamma^{-} \cdot)$ average)

$$\begin{split} \mathsf{V}_{\kappa} &: H^{s}(\Gamma) \mapsto H^{s+1}(\Gamma), \quad -1 \leq s \leq 0 \quad , \quad \mathsf{V}_{\kappa} := \left\{ \gamma_{D} \Psi_{\mathrm{SL}}^{\kappa} \right\}_{\Gamma} \; , \\ \mathsf{K}_{\kappa} &: H^{s}(\Gamma) \mapsto H^{s}(\Gamma), \quad 0 \leq s \leq 1 \quad , \qquad \mathsf{K}_{\kappa} := \left\{ \gamma_{D} \Psi_{\mathrm{DL}}^{\kappa} \right\}_{\Gamma} \; , \\ \mathsf{D}_{\kappa} &: H^{s}(\Gamma) \mapsto H^{s-1}(\Gamma), \quad 0 \leq s \leq 1 \quad , \qquad \mathsf{D}_{\kappa} := \left\{ \gamma_{N} \Psi_{\mathrm{DL}}^{\kappa} \right\}_{\Gamma} \; .0 < s < \\ \mathsf{Jump relations} \; \Rightarrow \qquad \gamma_{D}^{+} \Psi_{\mathrm{SL}}^{\kappa} = \mathsf{V}_{\kappa} \; , \; \gamma_{D}^{+} \Psi_{\mathrm{DL}}^{\kappa} = \mathsf{K}_{\kappa} + \frac{1}{2} I d \\ \mathsf{Compactness:} \qquad \mathsf{V}_{\kappa} - \mathsf{V}_{0} : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \text{ is compact.} \\ \mathsf{Symmetry:} \qquad \langle \psi, \mathsf{V}_{\kappa} \varphi \rangle_{\Gamma} = \langle \varphi, \mathsf{V}_{\kappa} \psi \rangle_{\Gamma} \quad \forall \varphi, \psi \in H^{-\frac{1}{2}}(\Gamma). \\ \mathsf{Ellipticity:} \qquad \langle \bar{\varphi}, \mathsf{V}_{0} \varphi \rangle_{\Gamma} \geq c_{V} \left\| \varphi \right\|_{H^{-\frac{1}{2}}(\Gamma)}^{2} \quad \forall \varphi \in H^{-\frac{1}{2}}(\Gamma). \end{split}$$

Boundary Integral Operators

Indirect CFIE

Spurious Resonances

Derivation of indirect boundary integral equations (BIE):

- Use potentials as trial expression for solution of exterior Helmholtz BVP.
- Apply jump relations + boundary values

Indirect approach based on trial expression

 $U = \Psi_{\mathrm{DL}}^{\kappa}(u) + i\eta \Psi_{\mathrm{SL}}^{\kappa}(u) , \quad \eta \in \mathbb{R} \setminus \{0\} .$

Indirect approach based on trial expression

$$U = \Psi_{\mathrm{DL}}^{\kappa}(u) + i\eta \Psi_{\mathrm{SL}}^{\kappa}(u) , \quad \eta \in \mathbb{R} \setminus \{0\} .$$

Boundary integral equation for unknown density $u \in L^2(\Gamma)$:

 $g = (\frac{1}{2}Id + \mathsf{K}_{\kappa})u + i\eta \mathsf{V}_{\kappa}u$

Indirect approach based on trial expression

$$U = \Psi_{\mathrm{DL}}^{\kappa}(u) + i\eta \Psi_{\mathrm{SL}}^{\kappa}(u) , \quad \eta \in \mathbb{R} \setminus \{0\} .$$

Boundary integral equation for unknown density $u \in L^2(\Gamma)$:

 $g = (\frac{1}{2}Id + \mathsf{K}_{\kappa})u + i\eta\mathsf{V}_{\kappa}u$

The classical CFIE has at most one solution

Indirect approach based on trial expression

$$U = \Psi_{\mathrm{DL}}^{\kappa}(u) + i\eta \Psi_{\mathrm{SL}}^{\kappa}(u) , \quad \eta \in \mathbb{R} \setminus \{0\} .$$

Boundary integral equation for unknown density $u \in L^2(\Gamma)$:

 $g = (\frac{1}{2}Id + \mathsf{K}_{\kappa})u + i\eta \mathsf{V}_{\kappa}u$

The classical CFIE has at most one solution

Lemma: If ΓC^2 -smooth then $K_{\kappa} : L^2(\Gamma) \mapsto H^1(\Gamma)$ continuous

- L²(Γ)-coercivity of bilinear form associated with classical CFIE on smooth surfaces.
- Problems: Variational formulation lifted out of natural trace spaces - No coercivity on non-smooth boundaries

Double Layer Regularization

Devise CFIE set in natural trace spaces! Tool: Compact regularizing operator M : $H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$ Requirement: $\operatorname{Re}\{\langle \varphi, M\overline{\varphi} \rangle_{\Gamma}\} > 0 \quad \forall \varphi \in H^{-\frac{1}{2}}(\Gamma) \setminus \{0\}$

Trial expression:

$$U = \Psi_{\mathrm{DL}}^{\kappa}(\mathsf{M}\varphi) + i\eta\Psi_{\mathrm{SL}}^{\kappa}(\varphi), \quad \varphi \in H^{-\frac{1}{2}}(\Gamma)$$

Double Layer Regularization

Devise CFIE set in natural trace spaces!Devise CFIE set in natural trace spaces!Tool: Compact regularizing operator $M : H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$ Requirement: $\operatorname{Re}\{\langle \varphi, M\overline{\varphi} \rangle_{\Gamma}\} > 0 \quad \forall \varphi \in H^{-\frac{1}{2}}(\Gamma) \setminus \{0\}$ Trial expression: $U = \Psi_{\mathrm{DL}}^{\kappa}(M\varphi) + i\eta \Psi_{\mathrm{SL}}^{\kappa}(\varphi), \quad \varphi \in H^{-\frac{1}{2}}(\Gamma)$ New CFIE: $g = ((\frac{1}{2}Id + K_{\kappa}) \circ M)(\varphi) + i\eta V_{\kappa}\varphi$

Double Layer Regularization

Regularizing Operator

 \blacktriangleright M : $H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$ compact by Rellich's embedding theorem.

Remark. For piecewise smooth smooth Γ it is possible to choose product of Δ_{Dir}^{-1} on faces as M (*cf.* Maxwell case).

Mixed Variational Problem

Avoid operator products by introducing new unknown $u := M\varphi \in H^1(\Gamma)$

Saddle point problem: seek $\varphi \in H^{-\frac{1}{2}}(\Gamma), u \in H^{1}(\Gamma),$ $i\eta \langle V_{\kappa}\varphi, \xi \rangle_{\Gamma} + \langle (\frac{1}{2}Id + K_{\kappa})u, \xi \rangle_{\Gamma} = \langle g, \xi \rangle_{\Gamma} \quad \forall \xi \in H^{-\frac{1}{2}}(\Gamma)$ $-\langle \varphi, v \rangle_{\Gamma} + \langle \operatorname{grad}_{\Gamma} u, \operatorname{grad}_{\Gamma} v \rangle_{\Gamma} + \langle u, v \rangle_{\Gamma} = 0 \quad \forall v \in H^{1}(\Gamma).$

Mixed Variational Problem

Avoid operator products by introducing new unknown $u := M\varphi \in H^1(\Gamma)$

Off-diagonal terms in the variational problem are compact!

 $H^{-\frac{1}{2}}(\Gamma) \times H^{1}(\Gamma)$ -coercivity follows from coercivity of diagonal terms

Asymptotically optimal convergence of conforming Galerkin-BEM

Regularity

By jump relations: if $U = \Psi_{\rm DL}^{\kappa}(M\varphi) + i\eta \Psi_{\rm SL}^{\kappa}(\varphi)$, then

$$[\gamma_D U]_{\Gamma} = \mathsf{M}\varphi \quad , \quad [\gamma_N U]_{\Gamma} = -i\eta\varphi \; .$$

Elimination of unknown φ

$$\gamma_D^- U = i\eta^{-1} \mathsf{M}(\gamma_N^- U) + (g - i\eta^{-1} \mathsf{M}(\gamma_N^+ U)) .$$

Assume: $g - i\eta^{-1} \mathsf{M}(\gamma_N^+ U) \in H^r(\Gamma), \quad r > \frac{1}{2},$ $M: H^{s-1}(\Gamma) \mapsto H^{s+1}(\Gamma), \quad \forall 0 < s < s^*, \text{ for some } s^* > 0.$

"Bootstrap argument": first we see

$$\gamma_D^- U \in H^t(\Gamma), \quad \frac{1}{2} \le t \le \min\{\frac{3}{2}, s^* + 1, r\}$$

Next, use regularity of $-\Delta$ in Ω to gain more smoothness of $\gamma_N^- U$.

Extra smoothness of φ from $[\gamma_N U]_{\Gamma} = -i\eta\varphi$

Regularity

Direct CFIE

Classical CFIE

Exterior Helmholtz Calderón projector:

$$\gamma_{D}^{+}U = (\mathsf{K}_{\kappa} + \frac{1}{2}Id)(\gamma_{D}^{+}U) - \mathsf{V}_{\kappa}(\gamma_{N}^{+}U) , \qquad (1)$$

$$\gamma_{N}^{+}U = -\mathsf{D}_{\kappa}(\gamma_{D}^{+}U) - (\mathsf{K}_{\kappa}^{*} - \frac{1}{2}Id)(\gamma_{N}^{+}U) . \qquad (2)$$

Burton & Miller 1971:
$$i\eta \cdot (1) + (2)$$
 \triangleright CFIE:

$$(i\eta(\mathsf{K}_{\kappa}-\frac{1}{2}Id)-\mathsf{D}_{\kappa})(\gamma_{D}^{+}U)-(i\eta\mathsf{V}_{\kappa}+\frac{1}{2}Id+\mathsf{K}_{\kappa}^{*})(\gamma_{N}^{+}U)=0$$

 $i\eta V_{\kappa} + \frac{1}{2}Id + K_{\kappa}^{*}$

Uniqueness of solutions of CFIE Coercivity in $L^2(\Gamma)$ on smooth Γ Lack of coercivity in natural trace spaces

Regularization

Mixed Variational Formulation

Concrete choice:

$$\mathsf{M} = (-\Delta_{\Gamma} + Id)^{-1}$$

Introduce new "unknown" $u := M((\frac{1}{2}Id + K_{\kappa}^*)\varphi + D_{\kappa}g) \in H^{\frac{1}{2}}(\Gamma).$

Note: u = 0 (dummy variable), because from second equation of Calderón projector $\gamma_N^+ U = -D_{\kappa}(\gamma_D^+ U) - (K_{\kappa}^* - \frac{1}{2}Id)(\gamma_N^+ U)$.

Saddle point problem: seek $\varphi \in H^{-\frac{1}{2}}(\Gamma)$, $u \in H^{1}(\Gamma)$,

 $i\eta \langle \xi, \mathsf{V}_{\kappa}\varphi \rangle_{\Gamma} + \langle \xi, u \rangle_{\Gamma} = i\eta \left\langle \xi, (\mathsf{K}_{\kappa} - \frac{1}{2}Id)g \right\rangle_{\Gamma}, \\ - \left\langle (\frac{1}{2}Id + \mathsf{K}_{\kappa}^{*})\varphi, v \right\rangle_{\Gamma} + \langle \operatorname{grad}_{\Gamma} u, \operatorname{grad}_{\Gamma} v \rangle_{\Gamma} + \langle u, v \rangle_{\Gamma} = \langle \mathsf{D}_{\kappa}g, v \rangle_{\Gamma}.$

 $H^{-\frac{1}{2}}(\Gamma) \times H^{1}(\Gamma)$ -coercivity & asymptotically optimal convergence of conforming Galerkin-BEM

Summary and References

New direct/indirect CFIE for acoustic scattering have been obtrained that possess coercive mixed variational formulations.

Dummy multiplier & potential of FEM-BEM coupling makes direct CFIE particularly attractive.

References:

A. BUFFA AND R. HIPTMAIR, A coercive combined field integral equation for electromagnetic scattering, Preprint NI03003-CPD, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 2003. Submitted.

R. HIPTMAIR, Coercive combined field integral equations, J. Numer. Math., 11 (2003), pp. 115–134.

R. HIPTMAIR AND A. BUFFA, *Coercive combined field integral equations*, Report 2003-06, SAM, ETH Zürich, Zürich, Switzerland, 2003. Submitted.

Electromagnetic Scattering

Scattering at PEC Obstacle

Existence and uniqueness of solution for all \mathbf{E}_i

A distribution U is called a radiating Maxwell solution, if it satisfies $\operatorname{curl}\operatorname{curl} U - \kappa^2 U = 0$ in $\Omega \cup \Omega'$ and the Silver-Müller radiation conditions at infinity.

Cauchy Data

Transmission conditions for electromagnetic fields:

 $[\gamma_t \mathbf{E}]_{\Gamma} = 0$, $[\mathbf{H} \times \mathbf{n}]_{\Gamma} = 0$.

Ensure continuity of Poynting-flux $\mathbf{E} \cdot (\mathbf{\overline{H}} \times \mathbf{n})$

Cauchy data for electric wave equation $\operatorname{curl}\operatorname{curl}\operatorname{E} - \kappa^2 \operatorname{E} = 0$:

"Electric trace" (Dirichlet data): $\gamma_D \mathbf{E}(\mathbf{x}) := \mathbf{n}(\mathbf{x}) \times (\mathbf{E}(\mathbf{x}) \times \mathbf{n}(\mathbf{x}))$ "Magnetic trace" (Neumann data): $\gamma_N \mathbf{E}(\mathbf{x}) := \mathbf{curl} \mathbf{E}(\mathbf{x}) \times \mathbf{n}(\mathbf{x})$

Integration by parts formula for $\operatorname{\mathbf{curl}}$ -operator

Traces

[Surface differential operators: $div_{\Gamma} := grad^*_{\Gamma}$, $curl_{\Gamma} := (n \times grad_{\Gamma})^*$]

Trace theorem (Buffa, Ciarlet, 1999; Buffa, Costabel, Sheen, 2000):

$$\begin{split} \gamma_D &: \boldsymbol{H}_{\mathsf{loc}}(\mathsf{curl};\Omega) \mapsto \boldsymbol{T}_{\mathsf{el}}, \\ \gamma_\mathbf{t} &:= \gamma_D \times \mathbf{n} : \boldsymbol{H}_{\mathsf{loc}}(\mathsf{curl};\Omega) \mapsto \boldsymbol{T}_{\mathsf{mag}} \end{split} \text{ are } \begin{array}{l} \mathsf{continuous,} \\ \mathsf{surjective.} \end{array}$$

Magnetic traces ($\mathbf{H} \times \mathbf{n} \doteq \mathbf{curl} \mathbf{E} \times \mathbf{n}$) : $\gamma_N \mathbf{u} = \mathbf{curl} \mathbf{u} \times \mathbf{n}$, weakly defined

 $\mp \int_{\Omega} \operatorname{curl} \mathbf{u} \cdot \operatorname{curl} \overline{\mathbf{v}} - \operatorname{curl} \operatorname{curl} \mathbf{u} \cdot \overline{\mathbf{v}} \, d\mathbf{x} = \langle \gamma_N \mathbf{u}, \gamma_D \mathbf{v} \rangle_{\boldsymbol{\tau}} \, \forall \mathbf{v} \in \boldsymbol{H}(\operatorname{curl}; \Omega)$

 γ_N : $H_{\text{loc}}(\text{curl curl}, \Omega) \mapsto T_{\text{mag}}$ continuous, surjective

Potentials

Stratton-Chu representation formula for radiating solution \mathbf{E} of electric wave equation in Ω' :

$$\mathbf{E} = -\Psi_{\mathsf{SL}}^{\kappa}(\gamma_N^+ \mathbf{E}) + \Psi_{\mathsf{DL}}^{\kappa}(\gamma_D^+ \mathbf{E}) \quad \text{in } \Omega'$$

Helmholtz kernel: $\Phi_{\kappa}(\mathbf{x}, \mathbf{y}) := \frac{\exp(i\kappa|\mathbf{x}-\mathbf{y}|)}{4\pi|\mathbf{x}-\mathbf{y}|}$ Single layer potential $: \Psi_{V}^{\kappa}(\phi)(\mathbf{x}) := \int_{\Gamma} \Phi_{\kappa}(\mathbf{x}, \mathbf{y})\phi(\mathbf{y}) dS(\mathbf{y})$ Vectorial single layer potential $: \Psi_{A}^{\kappa}(\lambda)(\mathbf{x}) := \int_{\Gamma} \Phi_{\kappa}(\mathbf{x}, \mathbf{y})\lambda(\mathbf{y}) dS(\mathbf{y})$ Maxwell double layer potential $: \Psi_{DL}^{\kappa}(u)(\mathbf{x}) := \operatorname{curl}_{\mathbf{x}} \Psi_{A}^{\kappa}(\mathbf{n} \times u)(\mathbf{x})$ Maxwell single layer potential $: \Psi_{SL}^{\kappa}(\lambda) := \Psi_{A}^{\kappa}(\lambda) + \operatorname{grad}_{\Gamma} \Psi_{V}^{\kappa}(\operatorname{div}_{\Gamma}\lambda)$

Both Ψ_{DL}^{κ} and Ψ_{SL}^{κ} provide radiating Maxwell solutions

Potentials

Traces + potentials \Rightarrow continuous boundary integral operators:

$$\begin{aligned} \mathbf{S}_{\kappa} &:= \gamma_D \Psi_{\mathsf{SL}}^{\kappa} &: \mathbf{T}_{\mathsf{mag}} \mapsto \mathbf{T}_{\mathsf{el}} , \\ \mathbf{C}_{\kappa} &:= \frac{1}{2} (\gamma_D^+ + \gamma_D^-) \Psi_{\mathsf{DL}}^{\kappa} &: \mathbf{T}_{\mathsf{el}} \mapsto \mathbf{T}_{\mathsf{el}} . \end{aligned}$$

Jump relations: $[\gamma_D \Psi_{SL}^{\kappa}(\lambda)]_{\Gamma} = 0$, $[\gamma_D \Psi_{DL}^{\kappa}(u)]_{\Gamma} = u$ $\gamma_D^+ \Psi_{SL}^{\kappa} = \mathbf{S}_{\kappa}$, $\gamma_D^+ \Psi_{DL}^{\kappa} = \mathbf{C}_{\kappa} + \frac{1}{2}Id$

Compactness:

$$\mathbf{S}_{\kappa} - \mathbf{S}_{\mathsf{0}}$$
 : $oldsymbol{T}_{\mathsf{mag}} \mapsto oldsymbol{T}_{\mathsf{el}}$ compact

BUT

S_0 is **not** T_{mag} -elliptic

Boundary Integral Operators

Generalized Coercivity

There is an isomorphism X : $T_{mag} \mapsto T_{mag}$ and a compact operator K : $T_{mag} \mapsto T_{el}$ such that

 $\exists c > 0: \quad |\langle \mathbf{S}_{\kappa} \boldsymbol{\mu}, \mathsf{X} \overline{\boldsymbol{\mu}} \rangle_{\boldsymbol{\tau}} + \langle \mathsf{K} \boldsymbol{\mu}, \overline{\boldsymbol{\mu}} \rangle_{\boldsymbol{\tau}} | \geq c \, \|\boldsymbol{\mu}\|_{\boldsymbol{T}_{\mathsf{el}}}^2 \quad \forall \boldsymbol{\mu} \in \boldsymbol{T}_{\mathsf{mag}} \; .$

 S_{κ} is Fredholm with index zero

Construction of X based on stable Hodge-type decomposition

 $T_{\mathsf{mag}} = \mathbf{X} \oplus \mathbf{N} \quad , \quad \mathbf{N} \subset \mathsf{Ker}(\mathsf{div}_{\mathsf{\Gamma}}) \quad , \quad \mathbf{X} \subset \gamma_{\mathsf{t}} \boldsymbol{H}^{1}(\Omega) \; .$

Associated continuous projectors P_X , P_N : $P_X + P_N = Id$ $X = P_X - P_N$

 $\mathbf{X} \hookrightarrow \boldsymbol{L}^2(\Gamma)$ compact

Note:

Generalized Coercivity

Regularized CFIE

Combined field trial expression $U = \Psi_{DL}^{\kappa}(M\zeta) + i\eta\Psi_{SL}^{\kappa}(\zeta)$, $\zeta \in T_{mag}$. (with regularizing operator M : $T_{mag} \mapsto T_{el}$)

$$\mathbf{g} = \left(\left(\frac{1}{2} Id + \mathbf{C}_{\kappa} \right) \circ \mathsf{M} \right) (\boldsymbol{\zeta}) + i\eta \mathbf{S}_{\kappa} \boldsymbol{\zeta}$$

If $\eta \neq 0$ and M : $T_{mag} \mapsto T_{el}$ satisfies $\langle M\mu, \overline{\mu} \rangle_{\tau} > 0 \quad \forall \mu \in T_{mag} \setminus \{0\}$, then the above regularized combined field integral equation has at most one solution for any $\kappa > 0$.

If $\eta \neq 0$ and M : $T_{mag} \mapsto T_{el}$ is compact, then the operator mapping $T_{mag} \mapsto T_{el}$ associated with the above regularized combined field integral equation is Fredholm with index zero.

Existence and uniqueness of solutions for any g, κ

Regularizing Operator

Assume that Ω is polyhedron with flat (smooth) faces $\Gamma_1, \ldots, \Gamma_p, p \in \mathbb{N}$. Write Σ for the union of all edges of Ω .

 $\boldsymbol{H}_{\boldsymbol{\Sigma}}(\operatorname{curl}_{\boldsymbol{\Gamma}},\boldsymbol{\Gamma}) := \{ \mathbf{u} \in \boldsymbol{H}(\operatorname{curl}_{\boldsymbol{\Gamma}},\boldsymbol{\Gamma}), \, \gamma_{\mathbf{t}}\mathbf{u} = 0 \text{ on } \boldsymbol{\Sigma} \}$

Lemma:

 $H_{\Sigma}(\operatorname{curl}_{\Gamma}, \Gamma)$ is dense in T_{el} with compact embedding $H_{\Sigma}(\operatorname{curl}_{\Gamma}, \Gamma) \hookrightarrow T_{mag}$

Define M : $T_{mag} \mapsto H_{\Sigma}(\operatorname{curl}_{\Gamma}, \Gamma)$ by

 $\langle \operatorname{curl}_{\Gamma} \mathsf{M} \mu, \operatorname{curl}_{\Gamma} \mathbf{v} \rangle_{\Gamma} + \langle \mathsf{M} \mu, \mathbf{v} \rangle_{\tau} = \langle \mu, \mathbf{v} \rangle_{\tau} \quad \forall \mathbf{v} \in H_{\Sigma}(\operatorname{curl}_{\Gamma}, \Gamma) .$

 $\blacktriangleright \mathsf{M} \mu = 0 \quad \Rightarrow \quad \mu = 0 \quad , \quad \langle \mathsf{M} \mu, \overline{\mu} \rangle_{\tau} = \{ \mathsf{M} \mu \}_{\operatorname{curl}_{\Gamma}, \Gamma} > 0 \text{ if } \mu \neq 0.$

Remark. Split regularizing operator enjoys better lifting properties $\rightarrow \zeta$ more regular Regularizing Operator

Mixed Variational Formulation

Get rid of operator products by introducing new unknown $\mathbf{u} := M\zeta$, $\mathbf{u} \in H_{\Sigma}(\operatorname{curl}_{\Gamma}, \Gamma)$, and incorporate variational definition of M:

Seek
$$\zeta \in T_{mag}$$
, $\mathbf{u} \in H_{\Sigma}(\operatorname{curl}_{\Gamma}, \Gamma)$ such that
 $i\eta \langle \mathbf{S}_{\kappa}\zeta, \mu \rangle_{\tau} + \langle (\frac{1}{2}Id + \mathbf{C}_{\kappa})\mathbf{u}, \mu \rangle_{\tau} = \langle \mathbf{g}, \mu \rangle_{\tau},$ (1)
 $\langle \operatorname{curl}_{\Gamma}\mathbf{u}, \operatorname{curl}_{\Gamma}\mathbf{v} \rangle_{\Gamma} + \langle \mathbf{u}, \mathbf{v} \rangle_{\tau} - \langle \mu, \mathbf{v} \rangle_{\tau} = 0,$
for all $\mu \in T_{mag}$, $\mathbf{v} \in H_{\Sigma}(\operatorname{curl}_{\Gamma}, \Gamma)$.

Lemma:

The off-diagonal forms in (1) are compact

The bilinear form associated with (1) is coercive in the generalized sense.

Natural Boundary Elements

E, **H** require curl-conforming elements (e.g. edge element space \mathcal{V}_h) **D** iscretize $\gamma_D \mathbf{E}$, $\gamma_N \mathbf{E} = \gamma_t \mathbf{H}$ in $\gamma_D \mathcal{V}_h$, $\gamma_t \mathcal{V}_h$ (on Γ -restricted mesh) Example: Lowest order elements on simplicial triangulations of Ω (Γ):

A Priori Error Estimates

Challenge: Mismatch of continuous and discrete Hodge-type decompositions

 $T_{mag} = X \oplus N \quad \leftrightarrow \quad T_{h,m} = X_h \oplus N_h : \quad X_h \not\subset X.$

Special properties of BEM-space T_{mag} ensure " $X_h \rightarrow X$ " as $h \rightarrow 0$:

A Priori Error Estimates

Summary and References

Now a rigorous theoretical foundation for Galerkin-BEM for the CFIEs of direct acoustic and electromagnetic scattering has become available.

References:

A. BUFFA, Remarks on the discretization of some non-positive operators with application to heterogeneous Maxwell problems, preprint, IMATI-CNR, Pavia, Pavia, Italy, 2003.

A. BUFFA AND R. HIPTMAIR, A coercive combined field integral equation for electromagnetic scattering, Preprint NI03003-CPD, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 2003.

_____, *Galerkin boundary element methods for electromagnetic scattering*, in Computational Methods in Wave Propagation, M. Ainsworth, ed., Springer, New York, 2003, pp. 85–126. In print.

A. BUFFA, R. HIPTMAIR, T. VON PETERSDORFF, AND C. SCHWAB, *Boundary element methods for Maxwell equations* on *Lipschitz domains*, Numer. Math., (2002). To appear.

R. HIPTMAIR AND C. SCHWAB, Natural boundary element methods for the electric field integral equation on polyhedra, SIAM J. Numer. Anal., 40 (2002), pp. 66–86.