Coercive Combined Field Integral Equations

Ralf Hiptmair
Seminar für Angewandte Mathematik
ETH Zürich
(e-mail: ralf@hiptmair.de)
(Homepage: http://www.sam.math.ethz.ch/hiptmair)

joint work with A. Buffa, Pavia

Coercive Variational Problems

Coercivity

$V=\mathbb{C}$-Banach space with dual space V^{\prime}, duality pairing $\langle\cdot, \cdot\rangle$.
Definition:
Linear operator $A: V \mapsto V^{\prime}$ coercive, if it satisfies a Gårding-type inequality

$$
\exists c>0: \quad|\langle A v, \bar{v}\rangle+\langle K v, \bar{v}\rangle| \geq c\|v\|_{V}^{2} \quad \forall v \in V
$$

for some compact operator $K: V \mapsto V^{\prime}$.
$\rightarrow \quad$ Coercivity of bilinear forms $V \times V \mapsto \mathbb{C}$

Coercivity

$V=\mathbb{C}$-Banach space with dual space V^{\prime}, duality pairing $\langle\cdot, \cdot\rangle$.
Definition:
Linear operator $A: V \mapsto V^{\prime}$ coercive, if it satisfies a Gårding-type inequality

$$
\exists c>0: \quad|\langle A v, \bar{v}\rangle+\langle K v, \bar{v}\rangle| \geq c\|v\|_{V}^{2} \quad \forall v \in V
$$

for some compact operator $K: V \mapsto V^{\prime}$.
$\rightarrow \quad$ Coercivity of bilinear forms $V \times V \mapsto \mathbb{C}$
Theorem:
A continuous coercive operator is Fredholm with index zero.

$$
A \text { coercive } \Rightarrow \quad(A \text { injective } \quad \Rightarrow \quad A \text { surjective })
$$

Coercivity and Galerkin Discretization

$V_{n}, n \in \mathbb{N}$, sequence of closed subspaces of V (e.g., FEM/BEM spaces)
Assumption on V_{n} : Existence of linear projectors $P_{n}: V \mapsto V_{n}$ such that

$$
\forall u \in V: \quad \lim _{n \rightarrow \infty}\left\|u-P_{n} u\right\|_{V}=0
$$

Given: Continuous, coercive and injective bilinear form $a: V \times V \mapsto \mathbb{C}$, that is $a(u, v)=0$ for all $v \in V$ implies $u=0$.

$$
\forall \varphi \in V^{\prime} \quad \exists_{1} u \in V: \quad a(u, v)=\langle\varphi, v\rangle \quad \forall v \in V
$$

For any fixed $\varphi \in V^{\prime}$ there is an $N \in \mathbb{N}$ such that the variational problems

$$
u_{n} \in V_{n}: \quad a\left(u_{n}, v_{n}\right)=\left\langle\varphi, v_{n}\right\rangle \quad \forall v_{n} \in V_{n}
$$

have unique solutions u_{n} for all $n>N$. Those are asymptotically quasioptimal in the sense that there is a constant $C>0$ independent of φ such that

$$
\left\|u-u_{n}\right\|_{V} \leq C \inf _{v_{n} \in V_{n}}\left\|u-v_{n}\right\|_{V} \quad \forall n>N
$$

Acoustic Scattering

Boundary Value Problem

Bounded Lipschitz domain/polyhedron $\Omega \subset \mathbb{R}^{3}$ (scatterer), complement $\Omega^{\prime}:=$ $\mathbb{R}^{3} \backslash \bar{\Omega}$ (air region), connected boundary $\Gamma:=\partial \Omega$, exterior unit normal vector field $\mathrm{n} \in L^{\infty}(\Gamma)$ points from Ω into Ω^{\prime}.

Exterior Dirichlet problem for Helmholtz equation

$$
\begin{gathered}
\Delta U+\kappa^{2} U=0 \quad \text { in } \Omega^{\prime} \quad, \quad U=g \in H^{\frac{1}{2}}(\Gamma) \quad \text { on } \Gamma, \\
\frac{\partial U}{\partial r}(\mathrm{x})-i \kappa U(\mathrm{x})=o\left(r^{-1}\right) \quad \text { uniformly as } r:=|\mathrm{x}| \rightarrow \infty .
\end{gathered}
$$

$\kappa>0=$ wave number, g given Dirichlet boundary value (from incident wave)
A distribution U is called a (radiating) Helmholtz solution, if it satisfies $\Delta U+\kappa^{2} U=0$ in $\Omega \cup \Omega^{\prime}$ and the Sommerfeld radiation conditions.

Boundary Value Problem

Bounded Lipschitz domain/polyhedron $\Omega \subset \mathbb{R}^{3}$ (scatterer), complement $\Omega^{\prime}:=$ $\mathbb{R}^{3} \backslash \bar{\Omega}$ (air region), connected boundary $\Gamma:=\partial \Omega$, exterior unit normal vector field $\mathrm{n} \in L^{\infty}(\Gamma)$ points from Ω into Ω^{\prime}.

Exterior Dirichlet problem for Helmholtz equation

$$
\begin{gathered}
\Delta U+\kappa^{2} U=0 \quad \text { in } \Omega^{\prime} \quad, \quad U=g \in H^{\frac{1}{2}}(\Gamma) \quad \text { on } \Gamma, \\
\frac{\partial U}{\partial r}(\mathrm{x})-i \kappa U(\mathrm{x})=o\left(r^{-1}\right) \quad \text { uniformly as } r:=|\mathrm{x}| \rightarrow \infty .
\end{gathered}
$$

$\kappa>0=$ wave number, g given Dirichlet boundary value (from incident wave)

A distribution U is called a (radiating) Helmholtz solution, if it satisfies $\Delta U+\kappa^{2} U=0$ in $\Omega \cup \Omega^{\prime}$ and the Sommerfeld radiation conditions.

Existence and uniqueness of solutions

Potentials

Helmholtz kernel:

$$
\Phi_{\kappa}(\mathrm{x}, \mathrm{y}):=\frac{\exp (i \kappa|\mathrm{x}-\mathrm{y}|)}{4 \pi|\mathrm{x}-\mathrm{y}|}
$$

Transmission representation formula for Helmholtz solution U :

$$
U=-\Psi_{\mathrm{SL}}^{\kappa}\left(\left[\gamma_{N} U\right]_{\Gamma}\right)+\psi_{\mathrm{DL}}^{\kappa}\left(\left[\gamma_{D} U\right]_{\Gamma}\right)
$$

$\gamma_{D}=$ Dirichlet trace, $\gamma_{N}:=\frac{\partial}{\partial \mathrm{n}}$ Neumann trace, $[\cdot]_{\Gamma}=$ jump across Γ single layer potential: $\quad \Psi_{\mathrm{SL}}^{\kappa}(\lambda)(\mathrm{x})=\int_{\Gamma} \Phi_{\kappa}(\mathrm{x}, \mathrm{y}) \lambda(\mathrm{y}) \mathrm{d} S(\mathrm{y})$,
double layer potential: $\quad \Psi_{\mathrm{DL}}^{\kappa}(u)(\mathrm{x})=\int_{\Gamma} \frac{\partial \Phi_{\kappa}(\mathbf{x}, \mathrm{y})}{\partial \mathbf{n}(\mathbf{y})} u(\mathrm{y}) \mathrm{d} S(\mathrm{y})$.

Potentials

Helmholtz kernel:

$$
\Phi_{\kappa}(\mathrm{x}, \mathrm{y}):=\frac{\exp (i \kappa|\mathrm{x}-\mathrm{y}|)}{4 \pi|\mathrm{x}-\mathrm{y}|}
$$

Transmission representation formula for Helmholtz solution U :

$$
U=-\psi_{\mathrm{SL}}^{\kappa}\left(\left[\gamma_{N} U\right]_{\Gamma}\right)+\psi_{\mathrm{DL}}^{\kappa}\left(\left[\gamma_{D} U\right]_{\Gamma}\right)
$$

$\gamma_{D}=$ Dirichlet trace, $\gamma_{N}:=\frac{\partial}{\partial \mathrm{n}}$ Neumann trace, $[\cdot]_{\Gamma}=$ jump across Γ single layer potential: $\Psi_{\mathrm{SL}}^{\kappa}(\lambda)(\mathrm{x})=\int_{\Gamma} \Phi_{\kappa}(\mathrm{x}, \mathrm{y}) \lambda(\mathrm{y}) \mathrm{d} S(\mathrm{y})$,
double layer potential: $\quad \Psi_{\mathrm{DL}}^{\kappa}(u)(\mathrm{x})=\int_{\Gamma} \frac{\partial \Phi_{\kappa}(\mathbf{x}, \mathrm{y})}{\partial \mathbf{n}(\mathrm{y})} u(\mathrm{y}) \mathrm{d} S(\mathrm{y})$.
Continuity: $\Psi_{\mathrm{SL}}^{\kappa}: H^{-\frac{1}{2}}\left(\ulcorner) \mapsto H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{3}\right), \Psi_{\mathrm{DL}}^{\kappa}: H^{\frac{1}{2}}(\Gamma) \mapsto H_{\mathrm{loc}}\left(\Delta, \Omega \cup \Omega^{\prime}\right)\right.$
$\Psi_{\mathrm{SL}}^{\kappa}$ and $\Psi_{\mathrm{DL}}^{\kappa}$ are radiating Helmholtz solutions

Boundary Integral Operators

Continuous boundary integral operators: $\quad\left(\left\{\gamma^{\cdot}\right\}_{\Gamma}:=\frac{1}{2}\left(\gamma^{+} \cdot+\gamma^{-}\right)\right.$average)

$$
\begin{aligned}
& \mathrm{V}_{\kappa}: H^{s}(\Gamma) \mapsto H^{s+1}\left(\ulcorner), \quad-1 \leq s \leq 0 \quad, \quad \mathrm{~V}_{\kappa}:=\left\{\gamma_{D} \Psi_{\mathrm{SL}}^{\kappa}\right\}_{\Gamma},\right. \\
& \mathrm{K}_{\kappa}: H^{s}\left(\ulcorner) \mapsto H ^ { s } \left(\ulcorner), \quad 0 \leq s \leq 1, \quad \mathrm{~K}_{\kappa}:=\left\{\gamma_{D} \Psi_{\mathrm{DL}}^{\kappa}\right\}_{\Gamma},\right.\right. \\
& \mathrm{D}_{\kappa}: H^{s}\left(\ulcorner) \mapsto H ^ { s - 1 } \left(\ulcorner), \quad 0 \leq s \leq 1, \quad \mathrm{D}_{\kappa}:=\left\{\gamma_{N} \psi_{\mathrm{DL}}^{\kappa}\right\}_{\Gamma} .\right.\right. \\
& \text { Jump relations } \quad \Rightarrow \quad \gamma_{D}^{+} \Psi_{\mathrm{SL}}^{\kappa}=\mathrm{V}_{\kappa} \quad, \quad \gamma_{D}^{+} \Psi_{\mathrm{DL}}^{\kappa}=\mathrm{K}_{\kappa}+\frac{1}{2} I d
\end{aligned}
$$

Boundary Integral Operators

Continuous boundary integral operators: $\quad\left(\{\gamma \cdot\}_{\Gamma}:=\frac{1}{2}\left(\gamma^{+} \cdot+\gamma^{-}\right)\right.$average)

$$
\begin{array}{llll}
\mathrm{V}_{\kappa}: H^{s}\left(\ulcorner) \mapsto H^{s+1}(\ulcorner),\right. & -1 \leq s \leq 0, & \mathrm{~V}_{\kappa}:=\left\{\gamma_{D} \Psi_{\mathrm{SL}}^{\kappa}\right\}_{\Gamma}, \\
\mathrm{K}_{\kappa}: H^{s}\left(\ulcorner) \mapsto H^{s}(\ulcorner),\right. & 0 \leq s \leq 1, & \mathrm{~K}_{\kappa}:=\left\{\gamma_{D} \Psi_{\mathrm{DL}}^{\kappa}\right\}_{\Gamma}, \\
\mathrm{D}_{\kappa}: H^{s}\left(\ulcorner) \mapsto H^{s-1}(\ulcorner),\right. & 0 \leq s \leq 1, & \mathrm{D}_{\kappa}:=\left\{\gamma_{N} \Psi_{\mathrm{DL}}^{\kappa}\right\}_{\Gamma} .0<s< \\
\text { Jump relations } \Rightarrow & \gamma_{D}^{+} \Psi_{\mathrm{SL}}^{\kappa}=\mathrm{V}_{\kappa} & , & \gamma_{D}^{+} \Psi_{\mathrm{DL}}^{\kappa}=\mathrm{K}_{\kappa}+\frac{1}{2} I d
\end{array}
$$

Compactness: $\quad \mathrm{V}_{\kappa}-\mathrm{V}_{0}: H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$ is compact.

Boundary Integral Operators

Continuous boundary integral operators: $\quad\left(\{\gamma \cdot\}_{\Gamma}:=\frac{1}{2}\left(\gamma^{+} \cdot+\gamma^{-}\right)\right.$average)

$$
\begin{array}{llll}
\mathrm{V}_{\kappa}: H^{s}(\Gamma) \mapsto H^{s+1}(\Gamma), & -1 \leq s \leq 0, & \mathrm{~V}_{\kappa}:=\left\{\gamma_{D} \Psi_{\mathrm{SL}}^{\kappa}\right\}_{\Gamma}, \\
\mathrm{K}_{\kappa}: H^{s}\left(\ulcorner) \mapsto H^{s}(\Gamma),\right. & 0 \leq s \leq 1, & \mathrm{~K}_{\kappa}:=\left\{\gamma_{D} \Psi_{\mathrm{DL}}^{\kappa}\right\}_{\Gamma}, \\
\mathrm{D}_{\kappa}: H^{s}(\Gamma) \mapsto H^{s-1}(\ulcorner), & 0 \leq s \leq 1, & \mathrm{D}_{\kappa}:=\left\{\gamma_{N} \Psi_{\mathrm{DL}}^{\kappa}\right\}_{\Gamma} .0<s< \\
\text { Jump relations } \Rightarrow & \gamma_{D}^{+} \Psi_{\mathrm{SL}}^{\kappa}=\mathrm{V}_{\kappa} & , & \gamma_{D}^{+} \Psi_{\mathrm{DL}}^{\kappa}=\mathrm{K}_{\kappa}+\frac{1}{2} I d
\end{array}
$$

Compactness:

$$
\mathrm{V}_{\kappa}-\mathrm{V}_{0}: H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \text { is compact. }
$$

Symmetry:

$$
\left\langle\psi, \vee_{\kappa} \varphi\right\rangle_{\Gamma}=\left\langle\varphi, \vee_{\kappa} \psi\right\rangle_{\Gamma} \quad \forall \varphi, \psi \in H^{-\frac{1}{2}}(\ulcorner) .
$$

Boundary Integral Operators

Continuous boundary integral operators: $\quad\left(\{\gamma \cdot\}_{\Gamma}:=\frac{1}{2}\left(\gamma^{+} \cdot+\gamma^{-}\right)\right.$average)

$$
\begin{array}{llll}
\mathrm{V}_{\kappa}: H^{s}(\Gamma) \mapsto H^{s+1}(\ulcorner), & -1 \leq s \leq 0, & \mathrm{~V}_{\kappa}:=\left\{\gamma_{D} \Psi_{\mathrm{SL}}^{\kappa}\right\}_{\Gamma}, \\
\mathrm{K}_{\kappa}: H^{s}\left(\ulcorner) \mapsto H^{s}(\Gamma),\right. & 0 \leq s \leq 1, & \mathrm{~K}_{\kappa}:=\left\{\gamma_{D} \Psi_{\mathrm{DL}}^{\kappa}\right\}_{\Gamma}, \\
\mathrm{D}_{\kappa}: H^{s}(\Gamma) \mapsto H^{s-1}(\ulcorner), & 0 \leq s \leq 1, & \mathrm{D}_{\kappa}:=\left\{\gamma_{N} \Psi_{\mathrm{DL}}^{\kappa}\right\}_{\Gamma} .0<s< \\
\text { Jump relations } \Rightarrow & \gamma_{D}^{+} \Psi_{\mathrm{SL}}^{\kappa}=\mathrm{V}_{\kappa} & , & \gamma_{D}^{+} \Psi_{\mathrm{DL}}^{\kappa}=\mathrm{K}_{\kappa}+\frac{1}{2} I d
\end{array}
$$

Compactness:

$$
\mathrm{V}_{\kappa}-\mathrm{V}_{0}: H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma) \text { is compact. }
$$

Symmetry:

$$
\left\langle\psi, \vee_{k} \varphi\right\rangle_{\Gamma}=\left\langle\varphi, V_{k} \psi\right\rangle_{\Gamma} \quad \forall \varphi, \psi \in H^{-\frac{1}{2}}(\Gamma) .
$$

Ellipticity:

$$
\left\langle\bar{\varphi}, V_{0} \varphi\right\rangle_{\Gamma} \geq c_{V}\|\varphi\|_{H^{-\frac{1}{2}}(\Gamma)}^{2} \quad \forall \varphi \in H^{-\frac{1}{2}}(\Gamma) .
$$

Indirect CFIE

Spurious Resonances

Derivation of indirect boundary integral equations (BIE):

- Use potentials as trial expression for solution of exterior Helmholtz BVP.
- Apply jump relations + boundary values

Trial expression

$$
\begin{gathered}
U=\Psi_{\mathrm{SL}}^{\kappa}(\varphi), \quad \varphi \in H^{-\frac{1}{2}}(\ulcorner) \\
g=\mathrm{V}_{\kappa} \varphi \quad \text { in } H^{\frac{1}{2}}(\ulcorner)
\end{gathered}
$$

If κ^{2} is Dirichlet eigenvalue of $-\Delta$ in Ω, then $\operatorname{Ker}\left(\mathrm{V}_{\kappa}\right) \neq\{0\}$

Trial expression

$$
\begin{gathered}
U=\Psi_{\mathrm{DL}}^{\kappa}(u), \quad u \in H^{\frac{1}{2}}(\ulcorner) \\
g=\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}\right) u \quad \text { in } H^{\frac{1}{2}}(\ulcorner)
\end{gathered}
$$

If κ^{2} is Neumann eigenvalue of $-\Delta$ in Ω, then $\operatorname{Ker}\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}\right) \neq\{0\}$

Classical Indirect CFIE

Indirect approach based on trial expression

$$
U=\Psi_{\mathrm{DL}}^{\kappa}(u)+i \eta \Psi_{\mathrm{SL}}^{\kappa}(u), \quad \eta \in \mathbb{R} \backslash\{0\} .
$$

Classical Indirect CFIE

Indirect approach based on trial expression

$$
U=\Psi_{\mathrm{DL}}^{\kappa}(u)+i \eta \Psi_{\mathrm{SL}}^{\kappa}(u), \quad \eta \in \mathbb{R} \backslash\{0\}
$$

D
Boundary integral equation for unknown density $u \in L^{2}(\Gamma)$:

$$
g=\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}\right) u+i \eta \mathrm{~V}_{\kappa} u
$$

Classical Indirect CFIE

Indirect approach based on trial expression

$$
U=\Psi_{\mathrm{DL}}^{\kappa}(u)+i \eta \Psi_{\mathrm{SL}}^{\kappa}(u), \quad \eta \in \mathbb{R} \backslash\{0\}
$$

Boundary integral equation for unknown density $u \in L^{2}(\Gamma)$:

$$
g=\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}\right) u+i \eta \mathrm{~V}_{\kappa} u
$$

The classical CFIE has at most one solution

Classical Indirect CFIE

Indirect approach based on trial expression

$$
U=\Psi_{\mathrm{DL}}^{\kappa}(u)+i \eta \Psi_{\mathrm{SL}}^{\kappa}(u), \quad \eta \in \mathbb{R} \backslash\{0\}
$$

Boundary integral equation for unknown density $u \in L^{2}(\Gamma)$:

$$
g=\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}\right) u+i \eta \mathrm{~V}_{\kappa} u
$$

The classical CFIE has at most one solution

Lemma: If ΓC^{2}-smooth then $\mathrm{K}_{\kappa}: L^{2}(\Gamma) \mapsto H^{1}(\Gamma)$ continuous $L^{2}(\Gamma)$-coercivity of bilinear form associated with classical CFIE on smooth surfaces.

Problems: - Variational formulation lifted out of natural trace spaces

- No coercivity on non-smooth boundaries

Double Layer Regularization

Devise CFIE set in natural trace spaces!
Tool: Compact regularizing operator $\mathrm{M}: H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$
Requirement: $\operatorname{Re}\left\{\langle\varphi, \mathrm{M} \bar{\varphi}\rangle_{\Gamma}\right\}>0 \quad \forall \varphi \in H^{-\frac{1}{2}}(\Gamma) \backslash\{0\}$

Trial expression:

$$
U=\Psi_{\mathrm{DL}}^{\kappa}(\mathrm{M} \varphi)+i \eta \Psi_{\mathrm{SL}}^{\kappa}(\varphi), \quad \varphi \in H^{-\frac{1}{2}}(\Gamma)
$$

Double Layer Regularization

Devise CFIE set in natural trace spaces!
Tool: Compact regularizing operator $\mathrm{M}: H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$ Requirement: $\operatorname{Re}\left\{\langle\varphi, \mathrm{M} \bar{\varphi}\rangle_{\Gamma}\right\}>0 \quad \forall \varphi \in H^{-\frac{1}{2}}(\Gamma) \backslash\{0\}$

Trial expression:

$$
U=\Psi_{\mathrm{DL}}^{\kappa}(\mathrm{M} \varphi)+i \eta \Psi_{\mathrm{SL}}^{\kappa}(\varphi), \quad \varphi \in H^{-\frac{1}{2}}(\Gamma)
$$

$$
g=\left(\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}\right) \circ \mathrm{M}\right)(\varphi)+i \eta \mathrm{~V}_{\kappa} \varphi
$$

Double Layer Regularization

Devise CFIE set in natural trace spaces!
Tool: Compact regularizing operator $\mathrm{M}: H^{-\frac{1}{2}}(\Gamma) \mapsto H^{\frac{1}{2}}(\Gamma)$
Requirement: $\operatorname{Re}\left\{\langle\varphi, \mathrm{M} \bar{\varphi}\rangle_{\Gamma}\right\}>0 \quad \forall \varphi \in H^{-\frac{1}{2}}(\Gamma) \backslash\{0\}$

Trial expression:

$$
U=\Psi_{\mathrm{DL}}^{\kappa}(\mathrm{M} \varphi)+i \eta \Psi_{\mathrm{SL}}^{\kappa}(\varphi), \quad \varphi \in H^{-\frac{1}{2}}(\Gamma)
$$

$$
g=\left(\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}\right) \circ \mathrm{M}\right)(\varphi)+i \eta \mathrm{~V}_{\kappa} \varphi
$$

New CFIE:

Lemma:
Uniqueness of solutions of new CFIE

Lemma: The operator associated with the new CFIE is $H^{-\frac{1}{2}}(\Gamma)$-coercive.

Unique solvability of new CFIE for all κ, g

Regularizing Operator

Idea:

$$
\mathrm{M}=\left(-\Delta_{\Gamma}+I d\right)^{-1}
$$

Define $\mathrm{M}: H^{-1}(\Gamma) \mapsto H^{1}(\Gamma)$ by

$$
\left\langle\operatorname{grad}_{\Gamma} \mathrm{M} \varphi, \operatorname{grad}_{\Gamma} v\right\rangle_{\Gamma}+\langle\mathrm{M} \varphi, v\rangle_{\Gamma}=\langle\varphi, v\rangle_{\Gamma} \quad \forall v \in H^{1}(\ulcorner) .
$$

$\Delta \mathrm{M}: H^{-1}(\Gamma) \mapsto H^{1}(\Gamma)$ isomorphism and

$$
\langle\varphi, \mathrm{M} \bar{\varphi}\rangle_{\Gamma}=\|\mathrm{M} \varphi\|_{H^{1}(\Gamma)}^{2} \geq c\|\varphi\|_{H^{-1}(\Gamma)}^{2} \forall \varphi \in H^{-1}(\ulcorner) .
$$

$\Delta \mathrm{M}: H^{-\frac{1}{2}}\left(\ulcorner) \mapsto H^{\frac{1}{2}}(\ulcorner)\right.$ compact by Rellich's embedding theorem.
Remark. For piecewise smooth smooth Γ it is possible to choose product of $\Delta_{\text {Dir }}^{-1}$ on faces as M (cf. Maxwell case).

Mixed Variational Problem

Avoid operator products by introducing new unknown $u:=\mathrm{M} \varphi \in H^{1}(\Gamma)$

Saddle point problem: seek $\varphi \in H^{-\frac{1}{2}}\left(\ulcorner), u \in H^{1}(\ulcorner)\right.$,

$$
\begin{array}{rlll}
i \eta\left\langle\mathrm{~V}_{\kappa} \varphi, \xi\right\rangle_{\Gamma}+\quad\left\langle\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}\right) u, \xi\right\rangle_{\Gamma} & =\langle g, \xi\rangle_{\Gamma} \quad \forall \xi \in H^{-\frac{1}{2}}(\Gamma) \\
-\langle\varphi, v\rangle_{\Gamma}+\left\langle\operatorname{grad}_{\Gamma} u, \operatorname{grad}_{\Gamma} v\right\rangle_{\Gamma}+\langle u, v\rangle_{\Gamma} & =0 & \forall v \in H^{1}(\Gamma) .
\end{array}
$$

Mixed Variational Problem

Avoid operator products by introducing new unknown $u:=\mathrm{M} \varphi \in H^{1}(\Gamma)$

$$
\begin{aligned}
& \text { Saddle point problem: seek } \varphi \in H^{-\frac{1}{2}}\left(\ulcorner), u \in H^{1}(\ulcorner) \text {, }\right. \\
& i \eta\left\langle\mathrm{~V}_{\kappa} \varphi, \xi\right\rangle_{\Gamma}+\quad\left\langle\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}\right) u, \xi\right\rangle_{\Gamma} \quad=\langle g, \xi\rangle_{\Gamma} \quad \forall \xi \in H^{-\frac{1}{2}}(\Gamma) \\
& -\langle\varphi, v\rangle_{\Gamma}+\left\langle\operatorname{grad}_{\Gamma} u, \operatorname{grad}_{\Gamma} v\right\rangle_{\Gamma}+\langle u, v\rangle_{\Gamma}=0 \quad \forall v \in H^{1}(\Gamma) .
\end{aligned}
$$

Off-diagonal terms in the variational problem are compact!

- $H^{-\frac{1}{2}}(\Gamma) \times H^{1}(\Gamma)$-coercivity follows from coercivity of diagonal terms

Asymptotically optimal convergence of conforming Galerkin-BEM

Regularity

By jump relations: if $U=\Psi_{\mathrm{DL}}^{\kappa}(\mathrm{M} \varphi)+i \eta \Psi_{\mathrm{SL}}^{\kappa}(\varphi)$, then

$$
\left[\gamma_{D} U\right]_{\Gamma}=\mathrm{M} \varphi \quad, \quad\left[\gamma_{N} U\right]_{\Gamma}=-i \eta \varphi
$$

Δ Elimination of unknown φ

$$
\begin{aligned}
& \gamma_{D}^{-} U=i \eta^{-1} \mathrm{M}\left(\gamma_{N}^{-} U\right)+\left(g-i \eta^{-1} \mathrm{M}\left(\gamma_{N}^{+} U\right)\right) . \\
& g-i \eta^{-1} \mathrm{M}\left(\gamma_{N}^{+} U\right) \in H^{r}(\Gamma), \quad r>\frac{1}{2} \\
& \mathrm{M}: H^{s-1}(\Gamma) \mapsto H^{s+1}(\Gamma), \quad \forall 0 \leq s \leq s^{*}, \text { for some } s^{*}>0
\end{aligned}
$$

D "Bootstrap argument": first we see

$$
\gamma_{D}^{-} U \in H^{t}(\Gamma), \quad \frac{1}{2} \leq t \leq \min \left\{\frac{3}{2}, s^{*}+1, r\right\}
$$

Next, use regularity of $-\Delta$ in Ω to gain more smoothness of $\gamma_{N}^{-} U$.
∇ Extra smoothness of φ from $\left[\gamma_{N} U\right]_{\Gamma}=-i \eta \varphi$

Direct CFIE

Classical CFIE

Exterior Helmholtz Calderón projector:

$$
\begin{align*}
& \gamma_{D}^{+} U=\left(\mathrm{K}_{\kappa}+\frac{1}{2} I d\right)\left(\gamma_{D}^{+} U\right)-\mathrm{V}_{\kappa}\left(\gamma_{N}^{+} U\right) \tag{1}\\
& \gamma_{N}^{+} U=-\mathrm{D}_{\kappa}\left(\gamma_{D}^{+} U\right)-\left(\mathrm{K}_{\kappa}^{*}-\frac{1}{2} I d\right)\left(\gamma_{N}^{+} U\right) \tag{2}
\end{align*}
$$

Burton \& Miller 1971: $i \eta \cdot(1)+(2)>$ CFIE:

$$
\left(i \eta\left(\mathrm{~K}_{\kappa}-\frac{1}{2} I d\right)-\mathrm{D}_{\kappa}\right)\left(\gamma_{D}^{+} U\right)-\left(i \eta \mathrm{~V}_{\kappa}+\frac{1}{2} I d+\mathrm{K}_{\kappa}^{*}\right)\left(\gamma_{N}^{+} U\right)=0 .
$$

Asscoiated boudary integral operator:

$$
i \eta \bigvee_{\kappa}+\frac{1}{2} I d+\mathrm{K}_{\kappa}^{*}
$$

Uniqueness of solutions of CFIE Coercivity in $L^{2}(\Gamma)$ on smooth Γ Lack of coercivity in natural trace spaces

Regularization

Problem: Equations of the Calderón projector set in different trace spaces
Lift equation (2) set in $H^{-\frac{1}{2}}(\Gamma)$ into $H^{\frac{1}{2}}(\Gamma)$ by applying regularizing operator M before adding it to $i \eta \cdot(1), \eta \in \mathbb{R} \backslash\{0\}$.

Regularized direct CFIE:

$$
\mathrm{S}_{\kappa}(\varphi):=\left(\mathrm{M} \circ\left(\mathrm{~K}_{\kappa}^{*}+\frac{1}{2} I d\right)+i \eta \mathrm{~V}_{\kappa}\right) \varphi=\left(i \eta\left(\mathrm{~K}_{\kappa}-\frac{1}{2} I d\right)-\mathrm{M} \circ \mathrm{D}_{\kappa}\right) g
$$

Lemma:

Uniqueness of solutions of new CFIE

Lemma: The operator associated with the new CFIE is $H^{-\frac{1}{2}}(\Gamma)$-coercive.
Unique solvability of new CFIE for all κ, g

Mixed Variational Formulation

Concrete choice:

$$
\begin{gathered}
\mathrm{M}=\left(-\Delta_{\Gamma}+I d\right)^{-1} \\
u:=\mathrm{M}\left(\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}^{*}\right) \varphi+\mathrm{D}_{\kappa} g\right) \in H^{\frac{1}{2}}(\Gamma)
\end{gathered}
$$

Introduce new "unknown"
Note: $u=0$ (dummy variable), because from second equation of Calderón projector $\gamma_{N}^{+} U=-\mathrm{D}_{\kappa}\left(\gamma_{D}^{+} U\right)-\left(\mathrm{K}_{\kappa}^{*}-\frac{1}{2} I d\right)\left(\gamma_{N}^{+} U\right)$.

Saddle point problem: seek $\varphi \in H^{-\frac{1}{2}}(\Gamma), u \in H^{1}(\Gamma)$,

$$
\begin{array}{ccc}
i \eta\left\langle\xi, \mathrm{~V}_{\kappa} \varphi\right\rangle_{\Gamma} & +\quad\langle\xi, u\rangle_{\Gamma}=i \eta\left\langle\xi,\left(\mathrm{~K}_{\kappa}-\frac{1}{2} I d\right) g\right\rangle_{\Gamma} \\
-\left\langle\left(\frac{1}{2} I d+\mathrm{K}_{\kappa}^{*}\right) \varphi, v\right\rangle_{\Gamma} & +\left\langle\operatorname{grad}_{\Gamma} u, \operatorname{grad}_{\Gamma} v\right\rangle_{\Gamma}+\langle u, v\rangle_{\Gamma}=\left\langle\mathrm{D}_{\kappa} g, v\right\rangle_{\Gamma} .
\end{array}
$$

$H^{-\frac{1}{2}}(\Gamma) \times H^{1}(\Gamma)$-coercivity \& asymptotically optimal convergence of conforming Galerkin-BEM

Summary and References

New direct/indirect CFIE for acoustic scattering have been obtrained that possess coercive mixed variational formulations.

Dummy multiplier \& potential of FEM-BEM coupling makes direct CFIE particularly attractive.

References:

A. Buffa and R. Hiptmair, A coercive combined field integral equation for electromagnetic scattering, Preprint NI03003-CPD, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 2003. Submitted.
R. HIPTMAIR, Coercive combined field integral equations, J. Numer. Math., 11 (2003), pp. 115-134.
R. HIptmair and A. Buffa, Coercive combined field integral equations, Report 2003-06, SAM, ETH Zürich, Zürich, Switzerland, 2003. Submitted.

Electromagnetic Scattering

Scattering at PEC Obstacle

Exterior Dirichlet problem for electric wave equation (excited by incident wave)

$$
\begin{array}{rlrl}
\operatorname{curl} \operatorname{curl} \mathbf{E}-\kappa^{2} \mathbf{E} & =0 & & \text { in } \Omega^{\prime}, \\
\gamma_{\mathrm{t}} \mathbf{E} & =\mathrm{g}:=\gamma_{\mathrm{t}} \mathbf{E}_{i} & \text { on } \Gamma,
\end{array}
$$

+ Silver-Müller radiation conditions
Wave number $\kappa=\omega \sqrt{\epsilon_{0} \mu_{0}}>0$ fixed

Existence and uniqueness of solution for all \mathbf{E}_{i}

A distribution U is called a radiating Maxwell solution, if it satisfies curl curl $\mathrm{U}-\kappa^{2} \mathrm{U}=0$ in $\Omega \cup \Omega^{\prime}$ and the Silver-Müller radiation conditions at infinity.

Cauchy Data

Transmission conditions for electromagnetic fields:

$$
\left[\gamma_{\mathrm{t}} \mathrm{E}\right]_{\Gamma}=0, \quad[\mathrm{H} \times \mathbf{n}]_{\Gamma}=0 .
$$

Ensure continuity of Poynting-flux $\mathrm{E} \cdot(\overline{\mathbf{H}} \times \mathbf{n})$

Cauchy data for electric wave equation curl curl $\mathrm{E}-\kappa^{2} \mathrm{E}=0$:
"Electric trace" (Dirichlet data): $\quad \gamma_{D} \mathrm{E}(\mathrm{x}):=\mathrm{n}(\mathrm{x}) \times(\mathrm{E}(\mathrm{x}) \times \mathrm{n}(\mathrm{x}))$
"Magnetic trace" (Neumann data): $\quad \gamma_{N} \mathrm{E}(\mathrm{x}):=\operatorname{curl} \mathrm{E}(\mathrm{x}) \times \mathrm{n}(\mathrm{x})$

Integration by parts formula for curl-operator

Traces

"E-space":

$$
\boldsymbol{H}_{\mathrm{loc}}(\operatorname{curl} ; \Omega)=\left\{\mathbf{u} \in \boldsymbol{L}_{\mathrm{loc}}^{2}(\Omega), \operatorname{curl} \mathbf{u} \in \boldsymbol{L}_{\mathrm{loc}}^{2}(\Omega)\right\}
$$

$\begin{array}{lll}\text { Spaces: } & & \boldsymbol{T}_{\text {el }}:=\left\{v \in \boldsymbol{H}_{\perp}^{-\frac{1}{2}}(\Gamma), \operatorname{curl}_{\Gamma} v \in H^{-\frac{1}{2}}(\Gamma)\right\}, \quad \overbrace{\langle\cdot,}^{\text {duality }} \\ & \boldsymbol{T}_{\text {mag }}:=\left\{\boldsymbol{\zeta} \in \boldsymbol{H}_{\|}^{-\frac{1}{2}}(\Gamma), \operatorname{div}_{\Gamma} \boldsymbol{\zeta} \in H^{-\frac{1}{2}}(\Gamma)\right\} & <\rangle_{\Gamma}\end{array}$
[Surface differential operators: $\operatorname{div}_{\Gamma}:=\operatorname{grad}_{\Gamma}^{*}$, curl $_{\Gamma}:=\left(\mathbf{n} \times \operatorname{grad}_{\Gamma}\right)^{*}$]
Trace theorem (Buffa, Ciarlet, 1999; Buffa, Costabel, Sheen, 2000):

$$
\begin{aligned}
\gamma_{D}: \boldsymbol{H}_{\mathrm{loc}}(\operatorname{curl} ; \Omega) & \mapsto \boldsymbol{T}_{\mathrm{el}},
\end{aligned} \quad \text { are } \quad \begin{aligned}
& \text { continuous }, \\
& \gamma_{\mathrm{t}}:=\gamma_{D} \times \mathbf{n}: \boldsymbol{H}_{\mathrm{loc}}(\operatorname{curl} ; \Omega) \mapsto \boldsymbol{T}_{\mathrm{mag}}
\end{aligned} \quad \begin{aligned}
& \text { surjective } .
\end{aligned}
$$

Magnetic traces $(\mathbf{H} \times \mathbf{n} \doteq \operatorname{curlE} \times \mathbf{n}): \gamma_{N} \mathbf{u}=\mathbf{c u r l} \mathbf{u} \times \mathbf{n}$, weakly defined

$$
\mp \int_{\Omega} \operatorname{curl} \mathbf{u} \cdot \operatorname{curl} \overline{\mathrm{v}}-\operatorname{curl} \operatorname{curl} \mathbf{u} \cdot \overline{\mathbf{v}} d \mathbf{x}=\left\langle\gamma_{N} \mathbf{u}, \gamma_{D} \mathbf{v}\right\rangle_{\tau} \forall \mathbf{v} \in \boldsymbol{H}(\operatorname{curl} ; \Omega)
$$

$$
\gamma_{N}: \boldsymbol{H}_{\text {loc }}(\text { curl curl }, \Omega) \mapsto \boldsymbol{T}_{\text {mag }} \text { continuous, surjective }
$$

Potentials

Stratton-Chu representation formula for radiating solution E of electric wave equation in Ω^{\prime} :

$$
\mathrm{E}=-\Psi_{\mathrm{SL}}^{\kappa}\left(\gamma_{N}^{+} \mathrm{E}\right)+\Psi_{\mathrm{DL}}^{\kappa}\left(\gamma_{D}^{+} \mathrm{E}\right) \quad \text { in } \Omega^{\prime}
$$

Helmholtz kernel:

$$
\Phi_{\kappa}(\mathrm{x}, \mathrm{y}):=\frac{\exp (i \kappa|\mathrm{x}-\mathrm{y}|)}{4 \pi|\mathrm{x}-\mathrm{y}|}
$$

Single layer potential

$$
: \Psi_{V}^{\kappa}(\phi)(\mathrm{x}):=\int_{\Gamma} \Phi_{\kappa}(\mathrm{x}, \mathrm{y}) \phi(\mathrm{y}) d S(\mathrm{y})
$$

Vectorial single layer potential : $\Psi_{\mathrm{A}}^{\kappa}(\boldsymbol{\lambda})(\mathrm{x}):=\int_{\Gamma} \Phi_{\kappa}(\mathrm{x}, \mathrm{y}) \boldsymbol{\lambda}(\mathrm{y}) d S(\mathrm{y})$
Maxwell double layer potential : $\Psi_{\text {DL }}^{\kappa}(u)(\mathrm{x}):=\operatorname{curl}_{\mathrm{X}} \Psi_{\mathrm{A}}^{\kappa}(\mathbf{n} \times u)(\mathrm{x})$
Maxwell single layer potential $: \Psi_{S L}^{\kappa}(\lambda):=\Psi_{\mathrm{A}}^{\kappa}(\boldsymbol{\lambda})+\operatorname{grad}_{\Gamma} \Psi_{V}^{\kappa}\left(\operatorname{div}_{\Gamma} \boldsymbol{\lambda}\right)$
Both $\Psi_{D L}^{\kappa}$ and $\Psi_{S L}^{\kappa}$ provide radiating Maxwell solutions

Boundary Integral Operators

Traces + potentials \Rightarrow continuous boundary integral operators:

$$
\begin{aligned}
\mathbf{S}_{\kappa}:=\gamma_{D} \boldsymbol{\Psi}_{\mathrm{SL}}^{\kappa} & : \boldsymbol{T}_{\mathrm{mag}} \mapsto \boldsymbol{T}_{\mathrm{el}} \\
\mathrm{C}_{\kappa}:=\frac{1}{2}\left(\gamma_{D}^{+}+\gamma_{D}^{-}\right) \boldsymbol{\Psi}_{\mathrm{DL}}^{\kappa} & : \boldsymbol{T}_{\mathrm{el}} \mapsto \boldsymbol{T}_{\mathrm{el}}
\end{aligned}
$$

$$
\text { Jump relations: }\left[\gamma_{D} \Psi_{\mathrm{SL}}^{\kappa}(\lambda)\right]_{\Gamma}=0 \quad, \quad\left[\gamma_{D} \Psi_{\mathrm{DL}}^{\kappa}(u)\right]_{\Gamma}=u
$$

Compactness:

$$
\mathrm{S}_{\kappa}-\mathrm{S}_{0}: \boldsymbol{T}_{\text {mag }} \mapsto \boldsymbol{T}_{\mathrm{el}} \text { compact }
$$

Generalized Coercivity

There is an isomorphism X: $\boldsymbol{T}_{\text {mag }} \mapsto \boldsymbol{T}_{\text {mag }}$ and a compact operator $\mathrm{K}: \boldsymbol{T}_{\text {mag }} \mapsto \boldsymbol{T}_{\text {el }}$ such that

$$
\exists c>0: \quad\left|\left\langle\mathbf{S}_{\kappa} \boldsymbol{\mu}, \mathrm{X} \overline{\boldsymbol{\mu}}\right\rangle_{\tau}+\langle\mathrm{K} \boldsymbol{\mu}, \overline{\boldsymbol{\mu}}\rangle_{\tau}\right| \geq c\|\boldsymbol{\mu}\|_{T_{\mathrm{el}}}^{2} \quad \forall \boldsymbol{\mu} \in \boldsymbol{T}_{\mathrm{mag}} .
$$

$$
\mathrm{S}_{\kappa} \text { is Fredholm with index zero }
$$

Construction of X based on stable Hodge-type decomposition

$$
\boldsymbol{T}_{\mathrm{mag}}=\mathbf{X} \oplus \mathbf{N} \quad, \quad \mathbf{N} \subset \operatorname{Ker}\left(\operatorname{div}_{\Gamma}\right) \quad, \quad \mathbf{X} \subset \gamma_{\mathrm{t}} \boldsymbol{H}^{1}(\Omega) .
$$

$\rightarrow \quad$ Associated continuous projectors $P_{\mathbf{X}}, P_{\mathrm{N}}: \quad P_{\mathrm{X}}+P_{\mathrm{N}}=I d$

Note:

$$
\begin{gathered}
\mathrm{X}=P_{\mathbf{X}}-P_{\mathbf{N}} \\
\mathrm{X} \hookrightarrow \boldsymbol{L}^{2}(\Gamma) \text { compact }
\end{gathered}
$$

Regularized CFIE

Combined field trial expression $\quad \mathrm{U}=\Psi_{\mathrm{DL}}^{\kappa}(\mathrm{M} \zeta)+i \eta \Psi_{\mathrm{SL}}^{\kappa}(\zeta), \quad \zeta \in \boldsymbol{T}_{\text {mag }}$. (with regularizing operator M: $\boldsymbol{T}_{\text {mag }} \mapsto \boldsymbol{T}_{\mathrm{el}}$)

Regularized CFIE:

$$
\mathrm{g}=\left(\left(\frac{1}{2} I d+\mathbf{C}_{\kappa}\right) \circ \mathrm{M}\right)(\zeta)+i \eta \mathbf{S}_{\kappa} \zeta
$$

If $\eta \neq 0$ and $\mathrm{M}: \boldsymbol{T}_{\text {mag }} \mapsto \boldsymbol{T}_{\mathrm{el}}$ satisfies $\langle\mathrm{M} \boldsymbol{\mu}, \overline{\boldsymbol{\mu}}\rangle_{\boldsymbol{\tau}}>0 \quad \forall \boldsymbol{\mu} \in \boldsymbol{T}_{\text {mag }} \backslash\{0\}$, then the above regularized combined field integral equation has at most one solution for any $\kappa>0$.

If $\eta \neq 0$ and $\mathrm{M}: \boldsymbol{T}_{\text {mag }} \mapsto \boldsymbol{T}_{\mathrm{el}}$ is compact, then the operator mapping $T_{\text {mag }} \mapsto T_{\text {el }}$ associated with the above regularized combined field integral equation is Fredholm with index zero.

Existence and uniqueness of solutions for any g, κ

Regularizing Operator

Assume that Ω is polyhedron with flat (smooth) faces $\Gamma_{1}, \ldots, \Gamma_{p}, p \in \mathbb{N}$. Write Σ for the union of all edges of Ω.

$$
\boldsymbol{H}_{\Sigma}\left(\operatorname{curl}_{\Gamma},\ulcorner):=\left\{\mathbf{u} \in \boldsymbol{H}\left(\operatorname{curl}_{\Gamma},\ulcorner), \gamma_{\mathbf{t}} \mathbf{u}=0 \text { on } \Sigma\right\}\right.\right.
$$

Lemma:

$$
\begin{gathered}
H_{\Sigma}\left(\operatorname{curl}_{\Gamma},\ulcorner) \text { is dense in } T_{\text {el }}\right. \\
\text { with compact embedding } H_{\Sigma}\left(\operatorname{curl}_{\Gamma},\ulcorner) \hookrightarrow T_{\text {mag }}\right.
\end{gathered}
$$

Define M : $\boldsymbol{T}_{\text {mag }} \mapsto \boldsymbol{H}_{\Sigma}\left(\operatorname{curl}_{\Gamma},\ulcorner)\right.$ by

$$
\left\langle\operatorname{curl}_{\Gamma} \mathrm{M} \mu, \operatorname{curl}_{\Gamma} \mathrm{v}\right\rangle_{\Gamma}+\langle\mathrm{M} \mu, \mathrm{v}\rangle_{\tau}=\langle\boldsymbol{\mu}, \mathrm{v}\rangle_{\tau} \quad \forall \mathrm{v} \in \boldsymbol{H}_{\Sigma}\left(\operatorname{curl}_{\Gamma}, \Gamma\right) .
$$

$\Delta \mathrm{M} \mu=0 \Rightarrow \mu=0 \quad,\langle\mathrm{M} \mu, \bar{\mu}\rangle_{\tau}=\{\mathrm{M} \mu\}_{\mathrm{curl}_{\Gamma}, \Gamma}>0$ if $\mu \neq 0$.
Remark. Split regularizing operator enjoys better lifting properties $\rightarrow \zeta$ more regular

Mixed Variational Formulation

Get rid of operator products by introducing new unknown $\mathrm{u}:=\mathrm{M} \zeta$, $\mathrm{u} \in \boldsymbol{H}_{\Sigma}\left(\operatorname{curl}_{\Gamma}, \Gamma\right)$, and incorporate variational definition of M :

Seek $\zeta \in \boldsymbol{T}_{\text {mag }}, \mathbf{u} \in \boldsymbol{H}_{\Sigma}\left(\operatorname{curl}_{\Gamma}, \Gamma\right)$ such that

$$
\begin{array}{ccc}
i \eta\left\langle\mathbf{S}_{\kappa} \zeta, \boldsymbol{\mu}\right\rangle_{\tau} & +\left\langle\left(\frac{1}{2} I d+\mathbf{C}_{\kappa}\right) \mathbf{u}, \boldsymbol{\mu}\right\rangle_{\tau} & =\langle\mathrm{g}, \boldsymbol{\mu}\rangle_{\boldsymbol{\tau}}, \\
\left\langle\operatorname{curl}_{\Gamma} \mathbf{u}, \operatorname{curl}_{\Gamma} \mathbf{v}\right\rangle_{\Gamma}+\langle\mathbf{u}, \mathbf{v}\rangle_{\tau} & - & \langle\boldsymbol{\mu}, \mathbf{v}\rangle_{\tau} \tag{1}
\end{array}
$$

for all $\mu \in T_{\text {mag }}, \mathrm{v} \in \boldsymbol{H}_{\Sigma}\left(\operatorname{curl}_{\Gamma}, \Gamma\right)$.

Lemma: The off-diagonal forms in (1) are compact

The bilinear form associated with (1) is coercive in the generalized sense.

Natural Boundary Elements

E, H require curl-conforming elements (e.g. edge element space \mathcal{V}_{h})
\square Discretize $\gamma_{D} \mathbf{E}, \gamma_{N} \mathbf{E}=\gamma_{\mathbf{t}} \mathbf{H}$ in $\gamma_{D} \mathcal{V}_{h}, \gamma_{\mathbf{t}} \mathcal{V}_{h}$ (on 「-restricted mesh)
Example: Lowest order elements on simplicial triangulations of $\Omega(\Gamma)$:

Edge elements (Whitney 1-forms) Space: \mathcal{V}_{h}

Discrete surface currents $\in \boldsymbol{T}_{h, m}$
$D \zeta_{h}$
D.o.f = edge fuxes

Discrete Dirichlet traces $\in \boldsymbol{T}_{h, \Sigma}$
$\nabla \mathbf{u}_{h}$
D.o.f = edge voltages (Set to zero on Σ)
[Conforming spaces] \Rightarrow Galerkin discretization

A Priori Error Estimates

Challenge: Mismatch of continuous and discrete Hodge-type decompositions

$$
\boldsymbol{T}_{\mathrm{mag}}=\mathbf{X} \oplus \mathbf{N} \quad \leftrightarrow \quad \boldsymbol{T}_{h, m}=\mathbf{X}_{h} \oplus \mathbf{N}_{h}: \quad \mathbf{X}_{h} \not \subset \mathbf{X}
$$

Special properties of BEM-space $\boldsymbol{T}_{\text {mag }}$ ensure " $\mathrm{X}_{h} \rightarrow \mathbf{X}$ " as $h \rightarrow 0$:
There is $s>0$ such that

$$
\inf _{\boldsymbol{\mu}_{h} \in \mathrm{X}_{h}}\left\|\boldsymbol{\xi}-\boldsymbol{\mu}_{h}\right\|_{\boldsymbol{T}_{\text {mag }}} \leq C h^{s}\|\boldsymbol{\xi}\|_{\boldsymbol{T}_{\text {mag }}} \quad \forall \boldsymbol{\xi} \in \mathbf{X}
$$

where $C>0$ only depends on s and the shape regularity of the surface mesh.

Generalized coercivity asymptotic inf-sup condition for discrete problem

Asymptotic quasi-optimality of discrete Galerkin solutions.

Summary and References

Now a rigorous theoretical foundation for Galerkin-BEM for the CFIEs of direct acoustic and electromagnetic scattering has become available.

References:

A. BuFFA, Remarks on the discretization of some non-positive operators with application to heterogeneous Maxwell problems, preprint, IMATI-CNR, Pavia, Pavia, Italy, 2003.
A. Buffa and R. Hiptmair, A coercive combined field integral equation for electromagnetic scattering, Preprint NI03003-CPD, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 2003.
__, Galerkin boundary element methods for electromagnetic scattering, in Computational Methods in Wave Propagation, M. Ainsworth, ed., Springer, New York, 2003, pp. 85-126. In print.
A. Buffa, R. Hiptmair, T. von Petersdorff, and C. Schwab, Boundary element methods for Maxwell equations on Lipschitz domains, Numer. Math., (2002). To appear.
R. HIPTMAIR AND C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra, SIAM J. Numer. Anal., 40 (2002), pp. 66-86.

