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Coercive Variational Problems
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Coercivity

V = C-Banach space with dual space V ′, duality pairing 〈·, ·〉.

Definition:

Linear operator A � V 7→ V ′ coercive, if it satisfies a Gårding-type inequality

∃c > � � | 〈Av, v〉 � 〈Kv, v〉 | ≥ c ‖v‖� V ∀v ∈ V .

for some compact operator K � V 7→ V ′.

→ Coercivity of bilinear forms V × V 7→ C
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Theorem:

�
�

�
�

A continuous coercive operator is Fredholm with index zero.

A coercive ⇒ (A injective ⇒ A surjective)
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Coercivity and Galerkin Discretization

Vn, n ∈ N, sequence of closed subspaces of V (e.g., FEM/BEM spaces)

Assumption on Vn: Existence of linear projectors Pn � V 7→ Vn such that

∀u ∈ V � � � �

n→∞ ‖u− Pnu‖V � � .

Given: Continuous, coercive and injective bilinear form a � V × V 7→ C, that
is a � u, v � � � for all v ∈ V implies u � � .

∀ϕ ∈ V ′ ∃ � u ∈ V � a � u, v � � 〈ϕ, v〉 ∀v ∈ V .

For any fixed ϕ ∈ V ′ there is an N ∈ N such that the variational problems

un ∈ Vn � a � un, vn � � 〈ϕ, vn〉 ∀vn ∈ Vn ,
have unique solutions un for all n > N . Those are asymptotically quasi-
optimal in the sense that there is a constant C > � independent of ϕ such that

‖u− un‖V ≤ C ���

vn∈Vn
‖u− vn‖V ∀n > N .



Acoustic Scattering
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Boundary Value Problem

Bounded Lipschitz domain/polyhedron � ⊂ R� (scatterer), complement � ′ � �

R� \ � (air region), connected boundary� � � ∂ � , exterior unit normal vector
field n ∈ L∞ �� � points from � into � ′.
Exterior Dirichlet problem for Helmholtz equation

� U � κ� U � � in � ′ , U � g ∈ H

� � �� � on� ,
∂U

∂r

� x � − iκU � x � � o � r− � � uniformly as r � � |x| → ∞ .

κ > � = wave number, g given Dirichlet boundary value (from incident wave)

A distribution U is called a (radiating) Helmholtz solution, if it satisfies

� U � κ� U � � in � ∪ � ′ and the Sommerfeld radiation conditions.
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�
�

�
�

Existence and uniqueness of solutions
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Potentials

Helmholtz kernel: � κ � x,y � � � �� � � iκ|x− y| �

� π|x− y|

Transmission representation formula for Helmholtz solution U :

U � − � κ
SL � � γNU � � � � � κ

DL � � γDU � � �

γD = Dirichlet trace, γN := ∂
∂n Neumann trace, � · � � = jump across�

single layer potential: � κ
SL � λ � � x � �

∫

�
� κ � x,y � λ � y � dS � y � ,

double layer potential: � κ
DL � u � � x � �

∫

�
∂ � κ � x,y �

∂n � y �

u � y � dS � y � .
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�
∂ � κ � x,y �
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Continuity: � κ
SL � H−

� � �� � 7→ H �
� � � � R� � , � κ

DL � H
� � �� � 7→ H

� � � � � , � ∪ � ′ �

�
�

�
�

� κ
SL and � κ

DL are radiating Helmholtz solutions
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Boundary Integral Operators

Continuous boundary integral operators: ({γ·} � �� �
��� γ� · � γ−· 	 average)

Vκ � Hs �� � 7→ Hs � � �� � , − 
 ≤ s ≤ � , Vκ � �

{
γD � κ

SL

}

� ,

Kκ � Hs �� � 7→ Hs �� � , � ≤ s ≤ 
 , Kκ � �

{
γD � κ

DL

}

� ,

Dκ � Hs �� � 7→ Hs− � �� � , � ≤ s ≤ 
 , Dκ � �

{
γN � κ

DL

}

� .

Jump relations ⇒ γ �
D � κ

SL � Vκ , γ �

D � κ
DL � Kκ � �

� Id
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�
�

�
�

Vκ − V � � H−
� � �� � 7→ H

� � �� � is compact.
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�
�

�
�
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Symmetry:

�
�

�
�

〈ψ,Vκϕ〉 � � 〈ϕ,Vκψ〉 � ∀ϕ,ψ ∈ H−� � �� � .
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�
�

�
�

Vκ − V � � H−
� � �� � 7→ H

� � �� � is compact.

Symmetry:

�
�

�
�

〈ψ,Vκϕ〉 � � 〈ϕ,Vκψ〉 � ∀ϕ,ψ ∈ H−� � �� � .

Ellipticity:

�
�

�
�

〈� ϕ,V � ϕ〉 � ≥ cV ‖ϕ‖�

H
−� � � � 	

∀ϕ ∈ H−� � �� � .



Indirect CFIE
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Spurious Resonances

Derivation of indirect boundary integral equations (BIE):

• Use potentials as trial expression for solution of exterior Helmholtz BVP.

• Apply jump relations + boundary values

Trial expression U � � κ
SL � ϕ � , ϕ ∈ H−� � �� �

g � Vκϕ in H

� � �� �

If κ� is Dirichlet eigenvalue of − � in � , then � �� � Vκ � 6 � { � }

Trial expression U � � κ
DL � u � , u ∈ H� � �� �

g � � �
� Id � Kκ � u in H

� � �� �
If κ� is Neumann eigenvalue of − � in � , then � � � � �

� Id � Kκ � 6 � { � }
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Classical Indirect CFIE

Indirect approach based on trial expression

U � � κ
DL � u � � iη � κ

SL � u � , η ∈ R \ { � } .
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Classical Indirect CFIE

Indirect approach based on trial expression

U � � κ
DL � u � � iη � κ

SL � u � , η ∈ R \ { � } .
Boundary integral equation for unknown density u ∈ L� �� � :

g � � �
� Id � Kκ � u � iηVκu
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�
�

�
�

The classical CFIE has at most one solution



Classical Indirect CFIE 7

Classical Indirect CFIE

Indirect approach based on trial expression

U � � κ
DL � u � � iη � κ

SL � u � , η ∈ R \ { � } .
Boundary integral equation for unknown density u ∈ L� �� � :

g � � �
� Id � Kκ � u � iηVκu

�
�

�
�

The classical CFIE has at most one solution

Lemma: If� C� -smooth then Kκ � L� �� � 7→ H � �� � continuous

L� �� � -coercivity of bilinear form associated with classical CFIE
on smooth surfaces.

Problems: - Variational formulation lifted out of natural trace spaces
- No coercivity on non-smooth boundaries
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Double Layer Regularization

Devise CFIE set in natural trace spaces!

Tool: Compact regularizing operator M � H−

� � �� � 7→ H

� � �� �

Requirement: � � {〈ϕ,Mϕ〉 � } > � ∀ϕ ∈ H−� � �� � \ { � }

Trial expression: U � � κ
DL � Mϕ � � iη � κ

SL � ϕ � , ϕ ∈ H−� � �� �
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New CFIE: g � � � �
� Id � Kκ � ◦M � � ϕ � � iηVκϕ
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�
�

�
�

Uniqueness of solutions of new CFIE

Lemma:

�
�

�
�

The operator associated with the new CFIE is H−

� � �� � -coercive.

Unique solvability of new CFIE for all κ, g
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Regularizing Operator

Idea: M � � − � � � Id � − �

Define M � H− � �� � 7→ H � �� � by

〈grad � Mϕ,grad � v〉 � � 〈Mϕ, v〉 � � 〈ϕ, v〉 � ∀v ∈ H � �� � .

M � H− � �� � 7→ H � �� � isomorphism and

〈ϕ,Mϕ〉 � � ‖Mϕ‖� H� � � 	 ≥ c ‖ϕ‖
�

H−� � � 	 ∀ϕ ∈ H
− � �� � .

M � H−

� � �� � 7→ H

� � �� � compact by Rellich’s embedding theorem.

Remark. For piecewise smooth smooth� it is possible to choose product of

� − �
�� � on faces as M (cf. Maxwell case).
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Mixed Variational Problem

Avoid operator products by introducing new unknown u � � Mϕ ∈ H � �� �

Saddle point problem: seek ϕ ∈ H−� � �� � , u ∈ H � �� � ,

iη 〈Vκϕ, ξ〉 � �

〈
� �

� Id � Kκ � u, ξ
〉

�

� 〈g, ξ〉 � ∀ξ ∈ H−

� � �� �

−〈ϕ, v〉 � � 〈grad � u,grad � v〉 � � 〈u, v〉 � � � ∀v ∈ H � �� � .
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〈
� �
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�

� 〈g, ξ〉 � ∀ξ ∈ H−
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�
�

�
�

Off-diagonal terms in the variational problem are compact!

H−

� � �� � ×H � �� � -coercivity follows from coercivity of diagonal terms

Asymptotically optimal convergence of conforming Galerkin-BEM
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Regularity

By jump relations: if U � � κ
DL � Mϕ � � iη � κ

SL � ϕ � , then

� γDU � � � Mϕ , � γNU � � � −iηϕ .
Elimination of unknown ϕ

γ−DU � iη− � M � γ−NU � � � g − iη− � M � γ �

NU � � .

Assume: g − iη− � M � γ �

NU � ∈ Hr �� � , r >



�

,

M � Hs− � �� � 7→ Hs � � �� � , ∀ � ≤ s ≤ s∗, for some s∗ > � .

“Bootstrap argument”: first we see

γ−DU ∈ H
t �� � ,



�

≤ t ≤ � �� { �
�

, s∗ � 
 , r} .

Next, use regularity of − � in � to gain more smoothness of γ−NU .

Extra smoothness of ϕ from � γNU � � � −iηϕ



Direct CFIE
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Classical CFIE

Exterior Helmholtz Calderón projector:

γ �
DU � � Kκ � �

� Id � � γ �

DU � − Vκ � γ �

NU � , (1)

γ �

NU � −Dκ � γ �

DU � − � K∗κ − �
� Id � � γ �

NU � . (2)

Burton & Miller 1971: iη·(1) � (2) CFIE:

� iη � Kκ − �
� Id � − Dκ � � γ �

DU � − � iηVκ � �
� Id � K∗κ � � γ �

NU � � � .

Asscoiated boudary integral operator: iηVκ � �
� Id � K∗κ

Uniqueness of solutions of CFIE
Coercivity in L� �� � on smooth�

Lack of coercivity in natural trace spaces
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Regularization

Problem: Equations of the Calderón projector set in different trace spaces

Lift equation (2) set in H−

� � �� � into H

� � �� � by applying regular-
izing operator M before adding it to iη·(1), η ∈ R \ { � }.

Regularized direct CFIE:

Sκ � ϕ � � � � M ◦ � K∗κ � �
� Id � � iηVκ � ϕ � � iη � Kκ − �
� Id � −M ◦ Dκ � g

Lemma:

�
�

�
�

Uniqueness of solutions of new CFIE

Lemma:

�
�

�
�

The operator associated with the new CFIE is H−

� � �� � -coercive.

Unique solvability of new CFIE for all κ, g



Mixed Variational Formulation 14

Mixed Variational Formulation

Concrete choice: M � � − � � � Id � − �

Introduce new “unknown” u � � M � � �
� Id � K∗κ � ϕ � Dκg � ∈ H

� � �� � .

Note: u � � (dummy variable), because from second equation of Calderón
projector γ �

NU � −Dκ � γ �
DU � − � K∗κ − �

� Id � � γ �

NU � .

Saddle point problem: seek ϕ ∈ H−� � �� � , u ∈ H � �� � ,

iη 〈ξ,Vκϕ〉 � � 〈ξ, u〉 � � iη
〈
ξ, � Kκ − �

� Id � g
〉

� ,

−
〈

� �
� Id � K∗κ � ϕ, v

〉

� � 〈grad � u, grad � v〉 � � 〈u, v〉 � � 〈Dκg, v〉 � .

H−

� � �� � × H � �� � -coercivity & asymptotically optimal convergence of con-
forming Galerkin-BEM
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Summary and References

New direct/indirect CFIE for acoustic scattering have been obtrained that pos-
sess coercive mixed variational formulations.

Dummy multiplier & potential of FEM-BEM coupling makes direct CFIE
particularly attractive.
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A. BUFFA AND R. HIPTMAIR, A coercive combined field integral equation for electromagnetic scattering, Preprint
NI03003-CPD, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 2003. Submitted.

R. HIPTMAIR, Coercive combined field integral equations, J. Numer. Math., 11 (2003), pp. 115–134.

R. HIPTMAIR AND A. BUFFA, Coercive combined field integral equations, Report 2003-06, SAM, ETH Zürich, Zürich,
Switzerland, 2003. Submitted.



Electromagnetic Scattering
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Scattering at PEC Obstacle

PSfrag replacements

�

� ′

n

�
Ei

Exterior Dirichlet problem for electric wave
equation (excited by incident wave)

curl curl E− κ� E � � in � ′ ,
γtE � g � � γtEi on� ,

+ Silver-Müller radiation conditions

Wave number κ � ω
√
ε � µ � > � fixed

�
�

�
�

Existence and uniqueness of solution for all Ei

A distribution U is called a radiating Maxwell solution, if it satisfies
curl curl U−κ� U � � in � ∪ � ′ and the Silver-Müller radiation conditions at
infinity.
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Cauchy Data

Transmission conditions for electromagnetic fields:

� γtE � � � � , � H× n � � � � .

Ensure continuity of Poynting-flux E · � H× n �

Cauchy data for electric wave equation curl curl E− κ� E � � :

“Electric trace” (Dirichlet data): γDE � x � � � n � x � × � E � x � × n � x � �

“Magnetic trace” (Neumann data): γNE � x � � � curl E � x � × n � x �

Integration by parts formula for curl-operator
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Traces

“E-space”: H

� � � � curl � � � � {u ∈ L�
� � � � � � , curl u ∈ L�
� � � � � � }

Spaces:
T � �

� � {v ∈H−

� �

⊥ �� � , � � � � � v ∈ H−

� � �� � },
T � � � � � {ζ ∈H−

� �

|| �� � , � � � � ζ ∈ H−

� � �� � }
duality
〈·, ·〉τ

[Surface differential operators: � � � � � � grad∗� , � � � � � � � � n× grad � � ∗]
Trace theorem (Buffa, Ciarlet, 1999; Buffa, Costabel, Sheen, 2000):

�
�

�
�

γD � H

� � � � curl � � � 7→ T � �

,
γt � � γD × n � H

� � � � curl � � � 7→ T � � �

are
continuous,
surjective.

Magnetic traces (H× n
.� curl E× n) : γNu � curl u× n, weakly defined

∓
∫

	

curl u · curl v − curl curl u · v dx � 〈γNu, γDv〉τ ∀v ∈H � curl � � �

�
�

�
�

γN � H

� � � � curl curl, � � 7→ T � � � continuous, surjective
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Potentials

Stratton-Chu representation formula for radiating solution E of
electric wave equation in � ′:

E � −Ψκ

� � � γ �

NE � � Ψκ

� � � γ �

DE � in � ′

Helmholtz kernel: � κ � x,y � � � �� � � iκ|x−y| 	

� π|x−y|

Single layer potential : � κ
V � φ � � x � � � ∫

�
� κ � x,y � φ � y � dS � y �

Vectorial single layer potential : Ψκ
A � λ � � x � � � ∫

�
� κ � x,y � λ � y � dS � y �

Maxwell double layer potential : Ψκ

� � � u � � x � � � curlx Ψκ
A � n× u � � x �

Maxwell single layer potential : Ψκ

� � � λ � � � Ψκ
A � λ � � grad � � κ

V � � � � � λ �

�
�

�
�

Both Ψκ

� � and Ψκ

� � provide radiating Maxwell solutions
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Boundary Integral Operators

Traces + potentials ⇒ continuous boundary integral operators:

Sκ � � γDΨκ

� � � T � � � 7→ T � �

,

Cκ � � �
� � γ �

D � γ−D � Ψκ

� � � T � �

7→ T � �

.

Jump relations:

�
�

�
�

[
γDΨκ

� � � λ �

]

� � � ,
[
γDΨκ

� � � u �

]

� � u

γ �

DΨκ

� � � Sκ , γ �
DΨκ

� � � Cκ � �
� Id

Compactness:

�
�

�
�

Sκ − S � � T � � � 7→ T � �

compact

BUT S � is not T � � � -elliptic
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Generalized Coercivity

There is an isomorphism X � T � � � 7→ T � � � and a compact operator
K � T � � � 7→ T � �

such that

∃c > � � | 〈Sκµ,Xµ〉τ � 〈Kµ,µ〉τ | ≥ c ‖µ‖� T

� �

∀µ ∈ T � � � .

Sκ is Fredholm with index zero

Construction of X based on stable Hodge-type decomposition

T � � �

� X⊕N , N ⊂ � � � � � � � � � , X ⊂ γtH

� � � � .
→ Associated continuous projectors PX, PN: PX � PN � Id

X � PX − PN

Note: X ↪→ L� �� � compact
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Regularized CFIE

Combined field trial expression U � Ψκ

� � � Mζ � � iηΨκ

� � � ζ � , ζ ∈ T � � � .

(with regularizing operator M � T � � � 7→ T � �

)

Regularized CFIE: g � � � �
� Id � Cκ � ◦M � � ζ � � iηSκζ

If η 6 � � and M � T � � � 7→ T � �
satisfies 〈Mµ,µ〉τ > � ∀µ ∈ T � � � \ { � } ,

then the above regularized combined field integral equation has at most one
solution for any κ > � .

If η 6 � � and M � T � � � 7→ T � �

is compact, then the operator mapping
T � � � 7→ T � �

associated with the above regularized combined field integral
equation is Fredholm with index zero.

Existence and uniqueness of solutions for any g, κ
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Regularizing Operator

Assume that � is polyhedron with flat (smooth) faces� � , . . . ,� p, p ∈ N. Write �

for the union of all edges of � .

H � � curl � ,� � � � {u ∈H � curl � ,� � , γtu � � on � }
Lemma:

�
�

�
�

H � � curl � ,� � is dense in T � �

with compact embedding H � � curl � ,� � ↪→ T � � �

Define M � T � � � 7→H � � curl � ,� � by

〈curl � Mµ, curl � v〉 � � 〈Mµ,v〉τ � 〈µ,v〉τ ∀v ∈H � � curl � ,� � .

Mµ � � ⇒ µ � � , 〈Mµ,µ〉τ � {Mµ}curl � , � > � if µ 6 � � .

Remark. Split regularizing operator enjoys better lifting properties→ ζ more regular



Mixed Variational Formulation 24

Mixed Variational Formulation

Get rid of operator products by introducing new unknown u � � Mζ,
u ∈H � � curl � ,� � , and incorporate variational definition of M:

Seek ζ ∈ T � � � , u ∈H � � curl � ,� � such that

iη 〈Sκζ,µ〉τ �

〈

� �
� Id � Cκ � u,µ

〉
τ

� 〈g,µ〉τ ,

〈curl � u, curl � v〉 � � 〈u,v〉τ − 〈µ,v〉τ � � ,
(1)

for all µ ∈ T � � � , v ∈H � � curl � ,� � .

Lemma:

�
�

�
�

The off-diagonal forms in (1) are compact

The bilinear form associated with (1) is coercive in the generalized sense.
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Natural Boundary Elements

E, H require curl-conforming elements (e.g. edge element space Vh)
Discretize γDE, γNE � γtH in γDVh, γtVh (on� -restricted mesh)

Example: Lowest order elements on simplicial triangulations of � (� ):

Edge elements
(Whitney 1-forms)

Space: Vh

PSfrag replacements

γt

πt

Discrete surface
currents ∈ T h,m

ζh
D.o.f = edge fluxes

Discrete Dirichlet
traces ∈ T h, �

uh
D.o.f = edge voltages

(Set to zero on � )

[Conforming spaces]⇒ Galerkin discretization
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A Priori Error Estimates

Challenge: Mismatch of continuous and discrete Hodge-type decompositions

T � � �

� X⊕N ↔ T h,m � Xh ⊕Nh � Xh 6⊂X .

Special properties of BEM-space T � � � ensure “Xh → X” as h→ � :

There is s > � such that

� ��

µh∈Xh

‖ξ − µh‖T � � �
≤ Chs ‖ξ‖T � � �

∀ξ ∈ X ,

where C > � only depends on s and the shape regularity of the surface mesh.

Generalized coercivity asymptotic inf-sup condition for discrete problem

Asymptotic quasi-optimality of discrete Galerkin solutions.
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Summary and References

Now a rigorous theoretical foundation for Galerkin-BEM for the CFIEs of direct
acoustic and electromagnetic scattering has become available.
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