Wavelet based matrix compression for boundary integral equations on complex geometries

Ulf Kähler

Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications (Hirschegg) 16.10.2003

Motivation - presentation of problem

- Motivation presentation of problem
- Wavelet basis stiffness matrix

- Motivation presentation of problem
- Wavelet basis stiffness matrix
- Wavelet construction

- Motivation presentation of problem
- Wavelet basis stiffness matrix
- Wavelet construction
- Computation of the stiffness matrix

- Motivation presentation of problem
- Wavelet basis stiffness matrix
- Wavelet construction
- Computation of the stiffness matrix
- Numerical results

Preliminaries

$$A\rho = f \quad \text{on } \Gamma = \partial \Omega \subset \mathbb{R}^2$$
$$A: H^q(\Gamma) \to H^{-q}(\Gamma) \quad (A\rho)(x) = \int_{\Gamma} k(x, y)\rho(y)\partial \Gamma_y$$

• single layer potential: $q = -\frac{1}{2}$, A = K

$$K = -\frac{1}{2\pi} \int_{\Gamma} \log|y - x|\rho(y)\partial\Gamma_y$$

• double layer potential: q = 0, $A = -\frac{1}{2} + K$

$$K = -\frac{1}{2\pi} \int_{\Gamma} \frac{\langle n(y), y - x \rangle}{|y - x|^2} \rho(y) \partial \Gamma_y$$

Galerkin scheme

- Variational formulation: find $\rho \in H^q(\Gamma)$ $(A\rho, v)_{L^2(\Gamma)} = (f, v)_{L^2(\Gamma)} \quad \forall v \in H^q(\Gamma)$
- $V_N = \operatorname{span}\{\phi_1, ..., \phi_N\} \subseteq H^q(\Gamma)$

$$\Rightarrow A^{\Phi} \rho^{\Phi} = f^{\Phi}$$

• Γ_N - polygonial approximations of the surface Γ \Rightarrow finest level is fixed

 $\hline \bullet \operatorname{diam}(\Omega) < 1$

• ansatzfunctions:

$$\phi_i(x) = \begin{cases} \frac{1}{\sqrt{\int_{\Gamma_i} \partial \Gamma}}, & \text{for } x \in \Gamma_i \\ 0, & \text{else} \end{cases}$$

• ansatzfunctions:

$$\phi_i(x) = \begin{cases} \frac{1}{\sqrt{\int_{\Gamma_i} \partial \Gamma}}, & \text{for } x \in \Gamma_i \\ 0, & \text{else} \end{cases}$$

$$\phi_{i}(x(s)) = \begin{cases} \frac{s}{\sqrt{\frac{1}{3}\int_{\Gamma_{i-1}}\partial\Gamma+\frac{1}{3}\int_{\Gamma_{i}}\partial\Gamma}} & \text{for } x(s) \in \Gamma_{i-1}, \\ \frac{1-s}{\sqrt{\frac{1}{3}\int_{\Gamma_{i-1}}\partial\Gamma+\frac{1}{3}\int_{\Gamma_{i}}\partial\Gamma}} & \text{for } x(s) \in \Gamma_{i}, \\ 0 & \text{else} \end{cases}$$

• classical single scale method

classical single scale method
 * advantages:

 * reduction of the space dimension
 * good convergence rates

- classical single scale method
 - ★ advantages:
 - * reduction of the space dimension
 - * good convergence rates
 - ★ disadvantages:
 - * densly populated stiffness matrix
 - * expensive quadrature rules

- classical single scale method
 - ★ advantages:
 - * reduction of the space dimension
 - * good convergence rates
 - ★ disadvantages:
 - * densly populated stiffness matrix
 - * expensive quadrature rules

Objectives

Objectives

• sparse stiffness matrix

Objectives

- sparse stiffness matrix
- low complexity of solving

• hierarchical wavelets:

hierarchical wavelets:
 hierarchical structure

• hierarchical wavelets:

* hierarchical structure * $\psi_i := \sum_{k=1}^N \omega_{i,k} \phi_k, \quad \omega_{i_1} \omega_{i_2} = \delta_{i_1 i_2}$

hierarchical wavelets:

* hierarchical structure * $\psi_i := \sum_{k=1}^N \omega_{i,k} \phi_k$, $\omega_{i_1} \omega_{i_2} = \delta_{i_1 i_2}$ * $(\psi_i, \vec{x}^{\alpha}) = 0$, $|\alpha| < \tilde{d}$ $(\vec{x}^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2})$

• hierarchical wavelets:

* hierarchical structure * $\psi_i := \sum_{k=1}^N \omega_{i,k} \phi_k$, $\omega_{i_1} \omega_{i_2} = \delta_{i_1 i_2}$ * $(\psi_i, \vec{x}^{\alpha}) = 0$, $|\alpha| < \tilde{d}$ $(\vec{x}^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2})$

• Dahmen-Prößdorf-Schneider/ von Petersdorff-Schwab: A^{ψ} is a quasi sparse matrix with $O(N \log(N))$ entries.

• idea:

$$= \sum_{\substack{(\alpha,\beta)\in\mathbb{N}_{0}^{2}\times N_{0}^{2}\\ \frac{\int_{\Gamma}\psi_{k}(x)(x-x_{0})^{\alpha}\partial\Gamma_{x}\int_{\Gamma}\psi_{k'}(y)(y-y_{0})^{\beta}\partial\Gamma_{y}}{\alpha!}} \frac{\int_{\Gamma}\psi_{k}(x)(x-x_{0})^{\alpha}\partial\Gamma_{x}\int_{\Gamma}\psi_{k'}(y)(y-y_{0})^{\beta}\partial\Gamma_{y}}{\beta!}$$

• idea:

$$\begin{split} &\int_{\Gamma} \int_{\Gamma} k(x,y) \psi_k(x) \psi_{k'}(y) \partial \Gamma_x \partial \Gamma_y \\ &= \sum_{(\alpha,\beta) \in \mathbb{N}_0^2 \times N_0^2} (D^{\alpha+\beta}k)(x_0,y_0) \\ & \underline{\int_{\Gamma} \psi_k(x)(x-x_0)^{\alpha} \partial \Gamma_x \int_{\Gamma} \psi_{k'}(y)(y-y_0)^{\beta} \partial \Gamma_y}{\alpha!} \\ & \left| D^{\alpha+\beta}k(x_0,y_0) \right| \leq C \left(\frac{1}{\|x_0-y_0\|} \right)^{\alpha+\beta+1-2q} \end{split}$$

Wavelet construction

Wavelet construction

• hierarchical structure \rightarrow coarsening \rightarrow cluster tree

Wavelet construction

• hierarchical structure \rightarrow coarsening \rightarrow cluster tree

•
$$\left[egin{array}{c} \Phi^{
u,j-1} \\ \Psi^{
u,j-1} \end{array}
ight] = \left[egin{array}{c} V_0^{
u,j-1} \\ V_0^{
u,j-1} \end{array}
ight] \Phi^{
u,j}$$

• Let $M^{\nu,j-1}$ be the moment matrix of the cluster ν from level j-1

$$M^{\nu,j-1} = \left[\int_{\Gamma} \vec{x}^{\alpha} \Phi^{\nu,j^{\top}} dx \right]_{|\alpha| < \tilde{d}}$$

• Let $M^{\nu,j-1}$ be the moment matrix of the cluster ν from level j-1

$$M^{\nu,j-1} = \left[\int_{\Gamma} \vec{x}^{\alpha} \Phi^{\nu,j^{\top}} dx \right]_{|\alpha| < \tilde{d}}$$

•
$$\stackrel{SVD}{\Rightarrow} M^{\nu,j-1} = U\Sigma V^{\top} = U \left[S, 0 \right] \left[\begin{array}{c} V_0^{\nu,j-1} \\ V_0^{\nu,j-1} \end{array} \right]$$

• Let $M^{\nu,j-1}$ be the moment matrix of the cluster $\overline{\nu}$ from level j-1

$$M^{\nu,j-1} = \left[\int_{\Gamma} \vec{x}^{\alpha} \Phi^{\nu,j^{\top}} dx \right]_{|\alpha| < \tilde{d}}$$

•
$$\stackrel{SVD}{\Rightarrow} M^{\nu,j-1} = U\Sigma V^{\top} = U \left[S, 0 \right] \left[\begin{array}{c} V_0^{\nu,j-1} \\ V_0^{\nu,j-1} \end{array} \right]$$

- constant/linear ansatzfunctions $\Rightarrow \Psi$ is orthonormal/ Riesz-basis.

• complexity of computing cluster tree and wavelets:

O(N)

Computation of the stiffness matrix

• transformation matrix $\Omega^{\Psi,\Phi} := (\omega_{i,k})_{i,k=1}^N$

Computation of the stiffness matrix

• transformation matrix $\overline{\Omega^{\Psi,\Phi}} := (\omega_{i,k})_{i,k=1}^N$

• $A^{\Psi}\rho^{\Psi} = \Omega^{\Psi,\Phi}A^{\Phi}\Omega^{\Psi,\Phi^{\top}}\Omega^{\Psi,\Phi}\rho^{\Phi} = \Omega^{\Psi,\Phi}(f,\phi_i)_{i=1}^N = f^{\Psi}$

Computation of the stiffness matrix

- transformation matrix $\Omega^{\Psi,\Phi} := (\omega_{i,k})_{i,k=1}^N$
- $A^{\Psi}\rho^{\Psi} = \Omega^{\Psi,\Phi}A^{\Phi}\Omega^{\Psi,\Phi^{\top}}\Omega^{\Psi,\Phi}\rho^{\Phi} = \Omega^{\Psi,\Phi}(f,\phi_i)_{i=1}^N = f^{\Psi}$
- calculation of f^{Ψ} in O(N) possible

$$\Omega^{\Psi,\Phi^{\top}} = \begin{pmatrix} \cdots & \psi^{\nu_1^2} & 0 & 0 & 0 & \psi^{\nu_1^1} & 0 & \psi^{\nu_1^0} \\ \cdots & 0 & \psi^{\nu_2^2} & 0 & 0 & \vdots & 0 & \vdots \\ \cdots & 0 & 0 & \psi^{\nu_3^2} & 0 & 0 & \psi^{\nu_2^1} & \vdots \\ \cdots & 0 & 0 & 0 & \psi^{\nu_4^2} & 0 & \vdots & \vdots \end{pmatrix}$$

$$\Omega^{\Psi,\Phi^{\top}} = \begin{pmatrix} \cdots & \psi^{\nu_1^2} & 0 & 0 & 0 & \psi^{\nu_1^1} & 0 & \psi^{\nu_1^0} \\ \cdots & 0 & \psi^{\nu_2^2} & 0 & 0 & \vdots & 0 & \vdots \\ \cdots & 0 & 0 & \psi^{\nu_3^2} & 0 & 0 & \psi^{\nu_2^1} & \vdots \\ \cdots & 0 & 0 & 0 & \psi^{\nu_4^2} & 0 & \vdots & \vdots \end{pmatrix}$$

$$\Omega^{\Psi,\Phi^{\top}} = \begin{pmatrix} \cdots & \psi^{\nu_1^2} & 0 & 0 & 0 & \psi^{\nu_1^1} & 0 & \psi^{\nu_1^0} \\ \cdots & 0 & \psi^{\nu_2^2} & 0 & 0 & \vdots & 0 & \vdots \\ \cdots & 0 & 0 & \psi^{\nu_3^2} & 0 & 0 & \psi^{\nu_2^1} & \vdots \\ \cdots & 0 & 0 & 0 & \psi^{\nu_4^2} & 0 & \vdots & \vdots \end{pmatrix}$$

$$\begin{pmatrix} \cdots & \psi^{\nu_1^2} & \psi^{\nu_1^1} & \psi^{\nu_1^0} \\ \cdots & \psi^{\nu_2^2} & \vdots & \vdots \\ \cdots & \psi^{\nu_3^2} & \psi^{\nu_2^1} & \vdots \\ \cdots & \psi^{\nu_4^2} & \vdots & \vdots \end{pmatrix}$$

 $\Rightarrow O(\log(N))$ columns

• the multipole method

• the multipole method \star iterative solving of $A^{\Phi}\rho^{\Phi}=f^{\Phi}$

• the multipole method * iterative solving of $A^{\Phi}\rho^{\Phi} = f^{\Phi}$ \Rightarrow fast matrix-vector product

 the multipole method
 ★ iterative solving of A^Φρ^Φ = f^Φ ⇒ fast matrix-vector product
 ★ expansion of kernel

the multipole method
 ★ iterative solving of A^Φρ^Φ = f^Φ
 ⇒ fast matrix-vector product
 ★ expansion of kernel

$$\Rightarrow k(x,y) = \sum_{\substack{(\alpha,\beta) \in \mathbb{N}_0^2 \times N_0^2}} (D^{\alpha+\beta}k)(x_0,y_0)$$
$$\frac{(x-x_0)^{\alpha}(y-y_0)^{\beta}}{\alpha!}$$

 \star low rank approximation of parts of A^Φ

 \star low rank approximation of parts of A^Φ

 $\to (A^{\Phi}_{i,j})_{i\in\mathbb{I},j\in\mathbb{J}}\approx XkY^{\top}$

* low rank approximation of parts of A^{Φ} $\rightarrow (A^{\Phi}_{i,j})_{i \in \mathbb{I}, j \in \mathbb{J}} \approx XkY^{\top}$

 \star subdivision of A^Φ

 \bigstar low rank approximation of parts of A^Φ

 $|\to \overline{(A_{i,j}^{\Phi})}_{i\in\mathbb{I},j\in\mathbb{J}} \approx XkY^{\top}$

★ subdivision of A^{Φ} → hierarchical matrix \star low rank approximation of parts of A^{Φ}

 $\rightarrow (A^{\Phi}_{i,j})_{i \in \mathbb{I}, j \in \mathbb{J}} \approx X k Y^{\top}$

★ subdivision of A^{Φ} → hierarchical matrix → cluster-cluster interactions possible \star low rank approximation of parts of A^Φ

 $\rightarrow (A^{\Phi}_{i,j})_{i \in \mathbb{I}, j \in \mathbb{J}} \approx X k Y^{\top}$

★ subdivision of A^{Φ} → hierarchical matrix → cluster-cluster interactions possible

★ complexity of a matrix-vector product:

 $O(N \log^2(N))$

 \star low rank approximation of parts of A^Φ

 $\rightarrow (A^{\Phi}_{i,j})_{i \in \mathbb{I}, j \in \mathbb{J}} \approx X k Y^{\top}$

★ subdivision of A^{Φ} → hierarchical matrix → cluster-cluster interactions possible

★ complexity of a matrix-vector product:

 $O(N \log^2(N))$

• application on wavelets

• application on wavelets

* using fast matrix-vector products on

application on wavelets

* using fast matrix-vector products on

* complexity of computing A^{Ψ} : $O(N \log^3(N))$

application on wavelets

* using fast matrix-vector products on

* complexity of computing A^{Ψ} : $O(N \log^3(N))$

\star H.Harbecht: Error estimates for entries of A^{Ψ}

Numerical results

Future research

Future research

• application to the 3D-case

Future research

- application to the 3D-case
- improved combination of multipole and wavelets