

Workshop FAST BOUNDARY ELEMENT METHODS IN INDUSTRIAL APPLICATIONS

15-18 Oktober 2003, Söllerhaus

Analyse von 3D Rissproblemen mit der BEM unter Verwendung der Multipole Methode

Universität Erlangen-Nürnberg K. Kolk, G. Kuhn Lehrstuhl für Technische Mechanik Universität Erlangen-Nürnberg

Gliederung

Lehrstuhl für Technische Mechanik

3D Dual BEM

- Grundgleichungen
- Numerische Lösung

Multipole Methode

- Baumstruktur (octree)
- Kernentwicklungen
- First shift
- Second shift
- Beispiele
- Zusammenfassung und Ausblick

Einleitung

3D Dual BEM

Multipole Methode

Zusammenfassung

Motivation

"Typisches" Beispiel für gebrochene Strukturen

Gebrochene Kurbelwelle

Stabiles Risswachstum

Lehrstuhl für

Einleitung

3D Dual BEM

Technische Mechanik

Einleitung

Ziel: Analyse des 3D Risswachstums

- stabiles Risswachstum
- proportionale Mixed-Mode Beanspruchung
- Komplexe 3D Strukturen mit beliebiger Rissgeometrie
- linear elastisches Materialverhalten

Untergang der "Prestige" Nov. '02

3D Rissfortschrittssimulation

Update des neuen numerischen Modells

inkrementelle (iterative) Prozedur

3D Rissprobleme komplexe Topologie

- Oreiachsiger Spannungszustand, Oreiachsiger Spannungszustan
 - der entlang der Rissfront variiert OBestimmung der neuen Rissgeometrie
- Mixed Mode Probleme
- austretende Rissfronten
- 3D Singularitäten
- Universität Erlangen-Nürnberg

? 3D Rissfortschrittskriterium **?**

Zusammenfassung

Multipole Methode

Lehrstuhl für

Einleitung

3D Dual BEM

Multipole Methode

Zusammenfassung

Technische Mechanik

Bruchmechanik I

Rissöffnungsmoden:

Asymptotisches Rissnahfeld

$$\sigma_{ij}(r,\varphi,P) = \sum_{M=1}^{\text{III}} \frac{K_M(P)}{\sqrt{2\pi r}} f_{ij}^M(\varphi) + T_{ij} + O\left(\sqrt{r}\right)$$

Bestimmung der K-Faktoren:

- Regression / Extrapolation ($\varphi = 0$)
- Optimierung: Weglassen von Punkten am Anfang und Ende der Regressionsfunktion

Restriktion: Minimierung der Standardabweichung

Hohe Genauigkeit

Motivation der Multipole Methode

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Zusammenfassung

Problemdefinition

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Grundgleichungen

Lösung

Multipole Methode

Zusammenfassung

Randgeometrie $\Gamma = \Gamma^{n} \cup \Gamma^{c} \cup \Gamma^{\overline{c}}$

Lamé-Navier Gleichung $u_{j,ii}(\mathbf{x}) + \frac{1}{1-2\nu}u_{l,lj}(\mathbf{x}) + \frac{1}{G}b_j(\mathbf{x}) = 0$ $t_j(\mathbf{x}) = \sigma_{ji}(\mathbf{x})n_i(\mathbf{x})$

Universität Erlangen-Nürnberg

Randbedingungen

 $u_{j}(\boldsymbol{x}) = \overline{u}_{j}(\boldsymbol{x}), \, \boldsymbol{x} \in \Gamma^{u}$ $t_{j}(\boldsymbol{x}) = \overline{t}_{j}(\boldsymbol{x}), \, \boldsymbol{x} \in \Gamma^{t}$

und $\begin{aligned} \Gamma &= \Gamma^u \cup \Gamma^t & \text{mit} \\ \Gamma^u &\cap \Gamma^t = \emptyset \end{aligned}$

Verschiebungs-Randintegralgleichung

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Grundgleichungen

Lösung

Multipole Methode

Zusammenfassung

Universität Erlangen-Nürnberg **u-RIG** Quellpunktlagen auf dem normalen Rand $(\xi \in \Gamma^n)$ $c_{ij}(\boldsymbol{\xi}) u_j(\boldsymbol{\xi}) = \int U_{ij}(\boldsymbol{\xi}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x})$ Ω $-\int T_{ij}(\boldsymbol{\xi}, \mathbf{x}) u_j(\mathbf{x}) d\Gamma(\mathbf{x})$ Integral freier Term $c_{ij}(\xi) = \frac{1}{2}\delta_{ij}$ (glatter Rand) Quellpunktlagen auf dem Riss $(\xi \in \Gamma^c \cup \Gamma^{\overline{c}})$ u-RIG $\frac{1}{2}u_i^c(\boldsymbol{\xi}) + \frac{1}{2}u_i^{\bar{c}}(\boldsymbol{\xi}) = \int U_{ij}(\boldsymbol{\xi}, \mathbf{x})t_j(\mathbf{x})\,\mathrm{d}\Gamma(\mathbf{x})$ Ω $-\int T_{ij}(\boldsymbol{\xi}, \mathbf{x}) u_j(\mathbf{x}) d\Gamma(\mathbf{x})$

Trennung der identischen Rissoberflächen

Duale Randintegralformulierungen

DUAL BEM (Grundformulierung)

DUAL Discontinuity Method (DDM)

- Einleitung
 - **3D Dual BEM**
- Grundgleichungen
 - Lösung
- **Multipole Methode**
- Zusammenfassung

Universität Erlangen-Nürnberg

Duale Formulierung

- Modellierung von beiden Rissoberfläche in einer Substruktur Keine Diskretisierung im Risswachstumsbereich
- Einführung der Randspannungsintegralgleichung (traction RIG) für Quellpunkte auf dem Riss $(\xi \in \Gamma^c \cup \Gamma^{\bar{c}})$

 $\overline{U}_{ij}(\boldsymbol{\xi}, \mathbf{x}) = \frac{\partial U_{ij}(\boldsymbol{\xi}, \mathbf{x})}{\partial \boldsymbol{\xi}} C_{ijkl} n_l(\boldsymbol{\xi}) \qquad \overline{T}_{ij}(\boldsymbol{\xi}, \mathbf{x}) = \frac{\partial T_{ij}(\boldsymbol{\xi}, \mathbf{x})}{\partial \boldsymbol{\xi}} C_{ijkl} n_l(\boldsymbol{\xi})$

Kinematik: $\mathcal{E}_{kl}(\xi) = 0.5 \cdot \left(u_{k,l}(\xi) + u_{l,k}(\xi)\right)$ Stoffgesetz: $\sigma_{ij}(\xi) = C_{ijkl} \ \mathcal{E}_{kl}(\xi)$ Cauchy Formel: $t_i(\xi) = \sigma_{ij}(\xi) n_j(\xi)$

$$\frac{1}{2}t_i^{c}(\boldsymbol{\xi}) + \frac{1}{2}t_i^{\overline{c}}(\boldsymbol{\xi}) = \oint_{\Gamma} \overline{U}_{ij}(\boldsymbol{\xi}, \mathbf{x})t_j(\mathbf{x}) d\Gamma(\mathbf{x})$$
$$-\oint_{\Gamma} \overline{T}_{ij}(\boldsymbol{\xi}, \mathbf{x})u_j(\mathbf{x}) d\Gamma(\mathbf{x})$$

Hu = Gt

Ax = b

Lehrstuhl	für
Technisch	e
Mechanik	

Einleitung

3D Dual BEM

Grundgleichungen

Lösung

Multipole Methode

Zusammenfassung

Universität Erlangen-Nürnberg

Grundformulierung

Kollokationsmethode

- Diskretisierung der gesamten Oberfläche $\Gamma = \Gamma^{n} + \Gamma^{c} + \Gamma^{\overline{c}}$
- Approximation der Randwerte u und t über Formfunktionen
- Auswertung der relevanten RIG's im Rahmen der Kollokation:

Diskretisierte Form der **u** – RIG für Knoten auf Γ^{n}

Diskretisierte Form der **u** – RIG für Knoten auf Γ^{c}

Diskretisierte Form der **t** – RIG für Knoten auf $\Gamma^{\bar{c}}$

Umordnung entsprechend den Randbedingungen:

$$\begin{bmatrix} A^{nn} & A^{nc} & A^{n\overline{c}} \\ A^{cn} & A^{cc} & A^{c\overline{c}} \\ A^{\overline{c}n} & A^{\overline{c}c} & A^{\overline{c}\overline{c}} \end{bmatrix} \begin{bmatrix} x^n \\ x^c \\ x^{\overline{c}} \end{bmatrix} = \begin{bmatrix} b^n \\ b^c \\ b^{\overline{c}} \end{bmatrix}$$

DDM

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Grundgleichungen

Lösung

Multipole Methode

Zusammenfassung

Universität Erlangen-Nürnberg

Dual Discontinuity Method (DDM) [Partheymüller et al., '00]

Einführung von "Sprunggrößen" am Riss

$$\hat{u}_j^c(\mathbf{x}) = u_j^c(\mathbf{x}) - u_j^{\overline{c}}(\mathbf{x})$$

$$\hat{t}_j^c(\mathbf{x}) = n_b^c(\mathbf{x}) \left(\sigma_{jb}^c(\mathbf{x}) - \sigma_{jb}^{\bar{c}}(\mathbf{x}) \right) = t_j^c(\mathbf{x}) + t_j^{\bar{c}}(\mathbf{x})$$

• Auswertung der relevanten RIG's:

Knoten auf Γ^{n} : Diskretisierte Form der **u** – RIG

Knoten auf Γ^{c} : Diskretisierte Form der **u** – RIG oder der **t** – RIG

$$\begin{bmatrix} \mathbf{A}^{\mathbf{nn}} & \mathbf{A}^{\mathbf{nc}} & \mathbf{0} \\ \mathbf{A}^{\mathbf{cn}} & \mathbf{A}^{\mathbf{cc}} & \mathbf{0} \\ \widetilde{\mathbf{A}}^{\overline{\mathbf{c}}\mathbf{n}} & \widetilde{\mathbf{A}}^{\mathbf{cc}} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{\mathbf{n}} \\ \hat{\mathbf{x}}^{\mathbf{c}} \\ \mathbf{x}^{\mathbf{c}} \end{bmatrix} = \begin{bmatrix} \mathbf{b}^{\mathbf{n}} \\ \mathbf{b}^{\mathbf{c}} \\ \widetilde{\mathbf{b}}^{\mathbf{c}} \end{bmatrix}$$

Postprocessing

Knoten auf $\Gamma^{\bar{c}}$: Diskretisierte Form der t – RIG oder der u – RIG

$$\mathbf{x}^{\mathbf{c}} = \widetilde{\mathbf{b}}^{\mathbf{c}} - \widetilde{\mathbf{A}}^{\mathbf{cn}} \, \mathbf{x}^{\mathbf{n}} - \widetilde{\mathbf{A}}^{\mathbf{cc}} \, \widehat{\mathbf{x}}^{\mathbf{c}}$$

Resumé

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Zusammenfassung

Speicherbedarf: $O(N^2)$ Gleichungslösung: $O(N^3)$ $O(M \cdot N^2)$

3D Dual BEM – Grundformulierung

• 3D Dual BEM - DDM

Universität Erlangen-Nürnberg • Multipole Methode [Popov, Power, '01]

 $O(N \log N) \longrightarrow O(N)$

Komplexität **lumerische**

Taylor-Entwicklung der Kerne

- Gruppierung von Nah- und Fernfeldanteilen
- Erfordernis einer neuen Datenstruktur

3D Dual BEM

Multipole Methode

Baumstruktur Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Universität Erlangen-Nürnberg

Octree I

Definition des Baums

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Universität Erlangen-Nürnberg

Octree II

Auffüllen des Baums

- Definition des Grundquaders
 - Finden der minimalen und maximalen Koordinaten jeder Achsrichtung
- Unterteilung des Grundquaders in "Würfel"

Octal Strategie

٤

Ω

 $r_i = x_i - \xi_i$

 $R = \sqrt{r_i r_i}$

Taylorentwicklung bzgl. der Aufpunkte

Bedingung

3D Dual BEM

Einleitung

Lehrstuhl für Technische Mechanik

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Biharmonische Funktion Ψ

3D Fall: $\Psi = R$

Kerne als Funktion von Ψ I

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

 T_{ij}

 \overline{U}_{ii}

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

$$U_{ij}(\xi, \mathbf{x}) = \frac{1+\nu}{8\pi(1-\nu)E} \left\{ 2(1-\nu)\Psi_{,ss}\delta_{ij} - \Psi_{,ij} \right\}$$

$$(\boldsymbol{\xi}, \mathbf{x}) = \frac{\partial U_{ij}(\boldsymbol{\xi}, \mathbf{x})}{\partial x_l} C_{ijlk} n_k(\mathbf{x})$$
$$= \frac{n_k(\mathbf{x})}{8\pi(1-\nu)} \begin{cases} -\Psi_{,ijk} + \nu \delta_{kj} \Psi_{,ssi} + \\ (1-\nu)(\delta_{ij} \Psi_{,ssk} + \delta_{ik} \Psi_{,ssj}) \end{cases} = T_{ij}^k n_k(\mathbf{x})$$

$$(\boldsymbol{\xi}, \mathbf{x}) = \frac{\partial U_{ij}(\boldsymbol{\xi}, \mathbf{x})}{\partial \boldsymbol{\xi}_{k}} C_{ijbk} n_{b}(\boldsymbol{\xi})$$
$$= \frac{n_{b}(\boldsymbol{\xi})}{8\pi(1-\nu)} \begin{cases} -\Psi_{,ijb} - \nu \delta_{ib} \Psi_{,ssj} - \\ (1-\nu)(\delta_{ij} \Psi_{,ssb} + \delta_{bj} \Psi_{,ssi}) \end{cases} = \overline{U}_{ij}^{b} n_{b}(\boldsymbol{\xi})$$

Kerne als Funktion von Ψ II

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Universität Erlangen-Nürnberg

$$\overline{T}_{ij}(\boldsymbol{\xi}, \mathbf{x}) = \frac{\partial T_{ij}(\boldsymbol{\xi}, \mathbf{x})}{\partial \boldsymbol{\xi}_{k}} C_{ijbk} n_{b}(\boldsymbol{\xi})$$

$$= \frac{E n_{k}(\mathbf{x}) n_{b}(\boldsymbol{\xi})}{8\pi (1-\nu)(1+\nu)} \begin{cases} \Psi_{,ibjk} - \nu (\delta_{kj} \Psi_{,ssib} + \delta_{ib} \Psi_{,sskj}) - \\ \frac{1}{2} (1-\nu) (\delta_{ij} \Psi_{,sskb} + \delta_{ik} \Psi_{,ssjb} + \\ \delta_{bj} \Psi_{,sski} + \delta_{bk} \Psi_{,ssji}) \end{cases}$$

$$= \overline{T}_{ij}^{kb} n_{k}(\mathbf{x}) n_{b}(\boldsymbol{\xi})$$

Elastizitätstensor

$$C_{abil} = \frac{E}{2(1+\nu)} \left\{ \delta_{ai} \delta_{bl} + \delta_{al} \delta_{bi} + \frac{2\nu}{1-2\nu} \delta_{ab} \delta_{il} \right\}$$

Entwicklung der Kerne

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Universität **Erlangen-Nürnberg**

U-Kern
$$U_{ij}(\boldsymbol{\xi}, \mathbf{x}) = U_{ij}(\boldsymbol{\xi}, \mathbf{x}^{0}) + \sum_{\beta=1}^{\infty} \frac{1}{\beta!} \cdot (\mathbf{x} - \mathbf{x}^{0})_{k_{1}} \cdots (\mathbf{x} - \mathbf{x}^{0})_{k_{\beta}}$$
$$\cdot U_{ij,k_{1}\cdots k_{\beta}}(\boldsymbol{\xi}, \mathbf{x})|_{\mathbf{x}=\mathbf{x}^{0}}$$

mit:

U

$$U_{ij,k_1\dots k_{\beta}}(\boldsymbol{\xi},\mathbf{x})\Big|_{\mathbf{x}=\mathbf{x}^0} = \frac{\partial^{\beta} U_{ij}(\boldsymbol{\xi},\mathbf{x})}{\partial x_{k_1}\dots \partial x_{k_{\beta}}}\Big|_{\mathbf{x}=\mathbf{x}^0} = \frac{1+\nu}{8\pi(1-\nu)E} \left\{ 2(1-\nu)\Psi_{,ssk_1\dots k_{\beta}}(\boldsymbol{\xi},\mathbf{x}^0) \delta_{ij} - \Psi_{,ijk_1\dots k_{\beta}}(\boldsymbol{\xi},\mathbf{x}^0) \right\}$$

T-Kern

$$T_{ij}(\boldsymbol{\xi}, \mathbf{x}) = T_{ij}^{k}(\boldsymbol{\xi}, \mathbf{x}^{0}) \cdot n_{k}(\mathbf{x}) + \sum_{\beta=1}^{\infty} \frac{n_{k}(\mathbf{x})}{\beta!} \cdot (\mathbf{x} - \mathbf{x}^{0})_{k_{1}} \cdots (\mathbf{x} - \mathbf{x}^{0})_{k_{\beta}}$$

$$\left.\cdot T_{ij,k_1\cdots k_\beta}^k\left(\boldsymbol{\xi},\mathbf{x}\right)\right|_{\mathbf{x}=\mathbf{x}^0}$$

Diskretisierung

Approximation der Geometrie

$$x_i = \sum_{m=1}^p N^m(\mathbf{\eta}) \cdot x_i^m$$

Jacobideterminante

$$J^{n}(\mathbf{\eta}) = \left| \frac{\partial x_{i}^{n}(\mathbf{\eta})}{\partial \eta_{1}} \times \frac{\partial x_{i}^{n}(\mathbf{\eta})}{\partial \eta_{2}} \right|$$

Approximation der Feldgrößen

Verschiebungen

$$u_i = \sum_{m=1}^p N^m(\mathbf{\eta}) \cdot u_i^m$$

$$t_i = \sum_{m=1}^p N^m(\mathbf{\eta}) \cdot t_i^m$$

Diskretisierte Integrale

$$U_{ij}(\boldsymbol{\xi}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x}) = \sum_{n=1}^N \sum_{m=1}^p t_j^{nm} \int U_{ij}(\boldsymbol{\xi}, \mathbf{x}(\boldsymbol{\eta})) N^m(\boldsymbol{\eta}) J^n(\boldsymbol{\eta}) d(\boldsymbol{\eta})$$

$$\int_{\Gamma} T_{ij}(\boldsymbol{\xi}, \mathbf{x}) u_j(\mathbf{x}) d\Gamma(\mathbf{x}) = \sum_{n=1}^{N} \sum_{m=1}^{p} u_j^{nm} \int T_{ij}(\boldsymbol{\xi}, \mathbf{x}(\boldsymbol{\eta})) N^m(\boldsymbol{\eta}) J^n(\boldsymbol{\eta}) d(\boldsymbol{\eta})$$

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

```
Kernentwicklungen
```

First shift

Second shift

Beispiele

Zusammenfassung

Verwendung der Kernentwicklungen

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Universität Erlangen-Nürnberg

$$\begin{split} \sum_{n=1}^{N} \sum_{m=1}^{p} \underline{t_{j}^{n\,m}} \int \left\{ \begin{split} & \underbrace{\sum_{\beta=1}^{\infty} \frac{1}{\beta!} \cdot \left(\mathbf{x}(\mathbf{\eta}) - \mathbf{x}^{0} \right)_{k_{1}} \cdots \left(\mathbf{x}(\mathbf{\eta}) - \mathbf{x}^{0} \right)_{k_{\beta}}}_{\mathbf{y}_{1} \cdots \mathbf{y}_{k_{\beta}}} \right\} \underbrace{N^{m}(\mathbf{\eta}) J^{n}(\mathbf{\eta})}_{\mathbf{y}_{1} (\mathbf{\eta}) \mathbf{y}_{1} \cdots \mathbf{y}_{k_{\beta}}} \\ & \underbrace{V_{ij,k_{1} \cdots k_{\beta}}(\mathbf{\xi}, \mathbf{x})}_{\mathbf{x}_{1} \mathbf{y}_{1} (\mathbf{x}) \mathbf{y}_{1} (\mathbf{x}) \mathbf{y}_{1} (\mathbf{x})} = \sum_{n=1}^{N} \left\{ \sum_{m=1}^{p} t_{j}^{n\,m} U_{ij}(\mathbf{\xi}, \mathbf{x}^{0}) M_{0}^{n\,m} \right\} \\ & + \sum_{n=1}^{N} \left\{ \sum_{m=1}^{p} t_{j}^{n\,m} \sum_{\beta=1}^{\infty} U_{ij,k_{1} \cdots k_{\beta}}(\mathbf{\xi}, \mathbf{x}^{0}) M_{k_{1} \cdots k_{\beta}}^{n\,m} \right\} \end{split}$$

Momente pro Element

$$M_0^{nm} = \int N^m(\mathbf{\eta}) J^n(\mathbf{\eta}) d(\mathbf{\eta})$$
$$M_{k_1 \cdots k\beta}^{nm} = \int \frac{1}{\beta!} \cdot \left(\mathbf{x}(\mathbf{\eta}) - \mathbf{x}^0 \right)_{k_1} \cdots \left(\mathbf{x}(\mathbf{\eta}) - \mathbf{x}^0 \right)_{k_\beta} N^m(\mathbf{\eta}) J^n(\mathbf{\eta}) d(\mathbf{\eta})$$

Gruppierung auf Blattebene

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

$$U_{ij}(\boldsymbol{\xi}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x}) = \sum_{n=1}^{N_L} U_{ij}(\boldsymbol{\xi}, \mathbf{x}_n^0) M_{j0}^n + \sum_{\beta=1}^{\infty} \sum_{n=1}^{N_L} U_{ij,k_1\cdots k_\beta}(\boldsymbol{\xi}, \mathbf{x}_n^0) M_{jk_1\cdots k_\beta}^{n\,m}$$

Trennung: Nah- und Fernfeld

$\int U_{ij}(\boldsymbol{\xi}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x}) = \int U_{ij}(\boldsymbol{\xi}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x})$ + $\sum_{n=1}^{a_s} U_{ij}(\xi, \mathbf{x}_n^0) M_{j0}^n + \sum_{n=1}^{b_w} U_{ij}(\xi, \mathbf{x}_n^0) M_{j0}^n + \cdots$ $+\sum_{i=1}^{\infty}\sum_{j=1}^{n}U_{ij,k_{1}\cdots k_{\beta}}(\boldsymbol{\xi},\mathbf{x}_{n}^{0})M_{jk_{1}\cdots k_{\beta}}^{n\,m}$ $+\sum_{ij,k_1\cdots k_{\beta}}^{\infty} \sum_{ij,k_1\cdots k_{\beta}}^{b_w} \left(\boldsymbol{\xi}, \mathbf{x}_n^0\right) M_{jk_1\cdots k_{\beta}}^{n\,m} + \cdots$

Technische Mechanik

Lehrstuhl für

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Universität Erlangen-Nürnberg

First shift (Gomez und Power , '97)

$$\begin{aligned}
\boldsymbol{\mu}_{j0} &= \boldsymbol{M}_{j0} \\
\boldsymbol{\mu}_{jk_{1}\cdots k_{\gamma}} &= \boldsymbol{M}_{jk_{1}\cdots k_{\gamma}} + \left(\mathbf{x}_{0}^{i_{n}} - \mathbf{x}_{1}^{i}\right)_{k_{\gamma}} \boldsymbol{M}_{jk_{1}\cdots k_{\gamma-1}} + \cdots \\
&+ \frac{\left(\mathbf{x}_{0}^{i_{n}} - \mathbf{x}_{1}^{i}\right)_{k_{1}} \cdots \left(\mathbf{x}_{0}^{i_{n}} - \mathbf{x}_{1}^{i}\right)_{k_{\gamma}}}{\boldsymbol{\gamma}!} \boldsymbol{M}_{j0}
\end{aligned}$$

Lehrstuhl für

Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Universität Erlangen-Nürnberg

Gruppierung auf der ersten Ebene

Erste Anwendung des First shift

$\int_{\Gamma} U_{ij}(\boldsymbol{\xi}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x}) = \int_{\Gamma} U_{ij}(\boldsymbol{\xi}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x})$
1 $1_{\eta f}$
+ $U_{ij}(\boldsymbol{\xi}, \mathbf{x}_{a}^{1})\sum_{n=a_{1}}^{a_{s}} \mu_{j0}^{n} + U_{ij}(\boldsymbol{\xi}, \mathbf{x}_{b}^{1})\sum_{n=b_{1}}^{b_{w}} \mu_{j0}^{n} + \cdots$
$+\sum_{\beta=1}^{\infty}U_{ij,k_{1}\cdots k_{\beta}}\left(\boldsymbol{\xi},\mathbf{x}_{a}^{1}\right)\sum_{n=a_{1}}^{a_{s}}\mu_{jk_{1}\cdots k_{\beta}}^{n}$
$+\sum_{\beta=1}^{\infty}U_{ij,k_{1}\cdots k_{\beta}}\left(\boldsymbol{\xi},\mathbf{x}_{b}^{1}\right)\sum_{n=b_{1}}^{b_{w}}\mu_{jk_{1}\cdots k_{\beta}}^{n}+\cdots$
Ebene 1 — O
Ebene 0 — a ₁ a ₂ a ₃ b ₁ b ₂

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Universität Erlangen-Nürnberg

$$\int_{\Gamma} U_{ij}(\boldsymbol{\xi}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x}) = \int_{\Gamma_{nf}} U_{ij}(\boldsymbol{\xi}, \mathbf{x}) t_j(\mathbf{x}) d\Gamma(\mathbf{x}) + U_{ij}(\boldsymbol{\xi}, \mathbf{x}_a^p) \mu_{j0}^a + U_{ij}(\boldsymbol{\xi}, \mathbf{x}_b^q) \mu_{j0}^b + \cdots + \sum_{\beta=1}^{\infty} \left\{ U_{ij,k_1\cdots k_\beta}(\boldsymbol{\xi}, \mathbf{x}_a^p) \mu_{jk_1\cdots k_\beta}^a + U_{ij,k_1\cdots k_\beta}(\boldsymbol{\xi}, \mathbf{x}_b^q) \mu_{jk_1\cdots k_\beta}^b + \cdots \right\}$$

Reduktion der Komplexität auf O(N log N)

ast

Balken mit geradem Randeinriss I

Einleitung

3D Dual BEM

Multipole Methode

- Baumstruktur
- Kernentwicklungen
- First shift
- Second shift
- Beispiele
- Zusammenfassung

Lehrstuhl für

Technische Mechanik

Einleitung

3D Dual BEM

Balken mit geradem Randeinriss III

Kompression der Systemmatrix

Baumstruktur Kernentwicklungen First shift

Multipole Methode

Second shift

Beispiele

Zusammenfassung

4-Punkt-Biegeprobe

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Universität Erlangen-Nürnberg

Verschiedene Phasen des Rissfortschritts Experimentelle Untersuchungen [M. Heyder, '03] Material: PMMA Moment of bending: M= 75 Nm Frequency: f = 6.94Hz R-ratio: R = 0.5 Stabil II Instabilität & Stabil I

- Einleitung
- **3D Dual BEM**
- **Multipole Methode**
- Baumstruktur
- Kernentwicklungen
- First shift
- Second shift
- Beispiele
- Zusammenfassung

Universität Erlangen-Nürnberg

4-Punkt-Biegeprobe

K-Faktor K_I

4-Punkt-Biegeprobe

 Δa

 Δ

Lehrstuhl für Technische Mechanik

Einleitung

3D Dual BEM

Multipole Methode

Baumstruktur

Kernentwicklungen

First shift

Second shift

Beispiele

Zusammenfassung

Risspfad

$$\Delta a(P) = \Delta a_0 \frac{G(P) - C \cdot G_{\min}}{G_{\max}}$$

$$\Delta a_0 = 0.5 \text{ mm}$$

$$\Delta K_I \approx 1\%$$

