Wavelet Based Adaptive Fast Solution of Boundary Integral Equations

Wolfgang Dahmen, Helmut Harbrecht* and <u>Reinhold Schneider*</u>

* Fakultät für Mathematik Technische Universität Chemnitz

Operator Equation

E.g. Boundary Integral Equations

(Exterior) boundary value problem of second order:

e.g. Laplace, Stokes, Maxwell equation etc.

$$\begin{split} \mathcal{A}u &= f \quad \text{on} \quad \Gamma = \partial \Omega \subset \mathbb{R}^3 \\ \mathcal{A} &: H^t(\Gamma) \to H^{-t}(\Gamma), \quad (\mathcal{A}u)(\mathbf{x}) = \int_{\Gamma} k(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\sigma_{\mathbf{y}} \end{split}$$

Decay property of the kernels of boundary integral operators

$$\left|\partial_{\mathbf{x}}^{\alpha}\partial_{\mathbf{y}}^{\beta}k(\mathbf{x},\mathbf{y})\right| \lesssim \left\|\mathbf{x}-\mathbf{y}\right\|^{-(2+2t+|\alpha|+|\beta|)}$$

Examples for the Laplacian:

single layer operator: $\mathcal{A} = \mathcal{V}$, $t = -\frac{1}{2}$, f Dirichlet data

$$(\mathcal{V}u)(\mathbf{x}) = \frac{1}{4\pi} \int_{\Gamma} \frac{1}{\|\mathbf{x} - \mathbf{y}\|} u(\mathbf{y}) d\sigma_{\mathbf{y}}$$

double layer operator: $\mathcal{A} = \mathcal{K} \pm \frac{1}{2}$, t = 0, f Dirichlet data

$$(\mathcal{K}u)(\mathbf{x}) = \frac{1}{4\pi} \int_{\Gamma} \frac{\langle \mathbf{x} - \mathbf{y}, \mathbf{n}_{\mathbf{y}} \rangle}{\|\mathbf{x} - \mathbf{y}\|^3} u(\mathbf{y}) d\sigma_{\mathbf{y}}$$

 \Box hypersingular operator: $\mathcal{A} = \mathcal{W}$, $t = \frac{1}{2}$, f Neumann data

$$(\mathcal{W}u)(\mathbf{x}) = -\frac{1}{4\pi} \frac{\partial}{\partial \mathbf{n}_{\mathbf{x}}} \int_{\Gamma} \frac{\langle \mathbf{x} - \mathbf{y}, \mathbf{n}_{\mathbf{y}} \rangle}{\|\mathbf{x} - \mathbf{y}\|^3} u(\mathbf{y}) d\sigma_{\mathbf{y}}$$

Best N-Term Approximation:

Give
$$u_{\Lambda} = \sum_{\lambda \in \mathcal{I}} u_{\lambda} \psi_{\lambda}$$
 with $\sharp \mathcal{I} = N$

$$\inf_{\sharp \mathcal{I}=N} \|u - u_{\Lambda}\| \lesssim N^{-s}$$

Ultimate Goal :

Compute an approximate solution u_{approx} of Au = f, s.t

$$||u - u_{approx}|| \lesssim N^{-s}$$
 within Complexity $\sim N$

Fast Methods for Integral operators

Adaptive kernel approximation:

Fast Multipole Method (Greengard, Rokhlin,...)

Panel Clustering and H-matrices (Hackbusch-Nowak,...)

Wavelet Galerkin Scheme

(Beylkin-Coifman-Rokhlin, Dahmen-Prößdorf-Schneider,...)

Biorthogonal Wavelet Bases

 $\begin{array}{ll} \mbox{Multiscale hierarchy:} & V_j = {\rm span} \{ \phi_{j,k} : k \in \Delta_j \} \\ & (V_{-l} \subset V_{-l+1} \subset \ldots) V_0 \subset V_1 \subset \ldots \subset V_j \subset V_{j+1} \subset \ldots \subset L^2(\Gamma) \\ & \longleftarrow \mbox{(Coarsening, Tausch, White)} & \mbox{Refinement} & \longrightarrow \end{array}$

Multiscale decomposition and wavelets:

Decomposition:

$$V_{j+1} = V_j \oplus W_j, \qquad V_J = \bigoplus_{j=-1}^{J-1} W_j, \qquad W_{-1} := V_0$$

Wavelets:

$$W_j = \operatorname{span}\{\psi_{j,k} : k \in \nabla_j := \Delta_{j+1} \setminus \Delta_j\}$$

Compact supports:

diam supp $\psi_{j,k} \sim 2^{-j}$

Normalization:

 $\|\psi_{j,k}\|_{L^2(\Gamma)} \sim 1$

Biorthogonality: $\langle \psi_{j,k}, \tilde{\psi}_{j',k'} \rangle = \delta_{(j,k),(j',k')}$ $\tilde{V}_0 \subset \tilde{V}_1 \subset \ldots \subset \tilde{V}_j \subset \tilde{V}_{j+1} \subset \ldots \subset L^2(\Gamma)$

Regularity and Stability:

$$\gamma := \sup\{s \in \mathbb{R} : \psi_{j,k} \in H^s(\Gamma)\} > +t$$
$$\tilde{\gamma} := \sup\{s \in \mathbb{R} : \tilde{\psi}_{j,k} \in H^s(\Gamma)\} > -t$$

 \square Cancellation Property: (\tilde{d} vanishing moments)

$$|\langle \psi_{j,k}, f \rangle| \lesssim 2^{-j(\tilde{d}+1)} |f|_{W^{\tilde{d},\infty}(\operatorname{supp}\psi_{j,k})}$$

Preconditioning

Theorem (Norm equivalences):

1. Sobolev spaces

$$\|u\|_s^2 \sim \sum_{\lambda} |(u, \tilde{\psi}_{\lambda})_{\Gamma})|^2 2^{2|\lambda|s}$$

2. Besov spaces

$$|u||_{B^s_{p,p}}^p \sim \sum_{\lambda} |\langle u, \tilde{\psi}_{\lambda} \rangle|^p \ , \ s = n(\frac{1}{p} - \frac{1}{2})$$

Diagonal scaling: (Dahmen-Kunoth, Schneider)

The condition number of the diagonally scaled system matrix

is uniformly bounded if $\tilde{\gamma} > -t$.

Adaptive wavelet scheme

Normalisation $\|\psi_{\lambda}|_t \sim 1 \rightarrow \text{norm equivalence}$

$$\|u\| \sim \|\mathbf{u}\|_{l_2}$$

Best N-Term Approximation:

Rearranging u by $\mathbf{u}^* = (u_k^*)_{k \in \mathbb{N}}$, i.e. $|u_k^*| \le |u_{k-1}^*|$, provides a quasi-norm for weak l^{τ} -spaces

$$\|\mathbf{u}\|_{l^w_{\tau}(\mathcal{J})} := \sup_{k>0} (k^{1/\tau} |u^*_k|).$$

$$\|u - u_{\Lambda}\|^2 \sim \sum_{\lambda \notin \mathcal{I}} |u_{\lambda}|^2 \lesssim N^{-s} \|\mathbf{u}\|_{l^w_{\tau}(\mathcal{J})} \quad , \quad \frac{1}{\tau} = \frac{1}{2} + s$$

Tree approximation

The local residuals are given by

$$ilde{u}_\lambda^2 := |u_\lambda|^2 + \sum_{\mu \prec \lambda} |u_\mu|^2$$

For $\eta > 0$

$$\mathcal{T}_{\eta} = \mathcal{T}_{\eta}(\mathbf{u}) := \{\lambda \in \mathcal{J} : |\tilde{u}_{\lambda}| > \eta\}$$

is a tree.

structure of adaptive wavelet tree approximation

We introduce the *tree weak spaces*

$${}_{t}l_{\tau}^{w} = {}_{t}l_{\tau}^{w}(\mathcal{J}) = \{\mathbf{u} \in l_{2}(\mathcal{J}) : (\widetilde{u}_{\lambda})_{\lambda \in \mathcal{J}} =: \widetilde{\mathbf{u}} \in l_{\tau}^{w}\}$$

The tree $\mathcal{T}(\epsilon,\mathbf{u})$ satisfies

$$\|\mathbf{u}-\mathbf{u}|_{\mathcal{T}(\epsilon,\mathbf{u})}\| \leq \epsilon.$$

We define

$$\mathcal{T}_j := \mathcal{T}(\epsilon \frac{2^{js}}{j+1}, \mathbf{u}).$$

and tree layers

$$\Delta_j := \mathcal{T}_j \setminus \mathcal{T}_{j+1}, \ j = 0, \dots, J = J(\epsilon).$$

These layers play a similar role as the levels $\mathbf{u}_j := \mathbf{u}|_{\Delta_j}$, $\mathbf{u}_\epsilon = \sum_{l=0}^J \mathbf{u}_l$,

Compressible matrices

Let
$$u = \sum_{\lambda} u_{\lambda} \psi_{\lambda} \in H^t$$
 and $\mathbf{A}_{\lambda,\lambda'} = (\mathcal{A}\psi_{\lambda}, \psi_{\lambda'})_{\Gamma}$

$$\mathcal{A}: H^t \to (H^t)'$$
 corresponds to $\mathbf{A}: l_2 \to l_2$

Compressed matrices

$$\mathbf{A}_j: l^2(\mathcal{J}) \to l^2(\mathcal{J}) , \ nnz_{row} \mathbf{A}_j \lesssim \frac{2^j}{(j+1)^{\alpha}}$$

 $\quad \text{and} \quad$

$$\|\mathbf{A} - \mathbf{A}_j\| \lesssim \frac{2^{-js}}{j+1}.$$

Suppose $\mathbf{u} \in {}_{t}l_{\tau}^{w}$ and \mathbf{u}_{ϵ} is the best tree *N*-term approximation of \mathbf{u} satisfying $\|\mathbf{u} - \mathbf{u}_{\epsilon}\| \leq \epsilon$. We approximate $\mathbf{A}\mathbf{u}_{\epsilon}$ by \mathbf{w}_{J} ,

$$\mathbf{w}_J := \sum_{j=0}^J \mathbf{A}_j \mathbf{u}_j,$$

then the computational cost is $\lesssim \epsilon^{-1/s} = N = N(\epsilon)$ and the accuracy is

$$\|\mathbf{A}\mathbf{u}-\mathbf{w}_J\|\lesssim\epsilon.$$

Prediction set: $T_{new} := supp \mathbf{w}_J$ is a tree $\sharp T_0 \sim \sharp T_{new}$. Iterative scheme:

$$\mathbf{u}^{n+1} = \mathbf{u}^n - \omega \mathbf{C}^{-1} \mathbf{A} (\mathbf{u}^n - \mathbf{f}^n)$$

A-priori Matrix Compression

Estimate:

$$|(\mathcal{A}\psi_{j,k},\psi_{j',k'})_{L^{2}(\Gamma)}| \leq c \frac{2^{(j+j')(\tilde{d}+n/2)}}{\operatorname{dist(supp }\psi_{j,k}, \operatorname{supp }\psi_{j',k'})^{n+2t+2\tilde{d}}}$$
1. Compression:
(Dahmen-Prößdorf-Schwab)

$$\psi_{j,k} \qquad \psi_{j',k'} \qquad \psi_{j',k'} \qquad (\psi_{j',k'})_{j',k'} \qquad (\psi_{j,k}, \psi_{j',k'})_{j',k'} \qquad (\mathcal{A}\psi_{j,k},\psi_{j',k'})_{L^{2}(\Gamma)} := 0$$
if $\operatorname{dist(supp }\psi_{j,k}, \operatorname{supp }\psi_{j',k'}) > \mathcal{B}_{j,j'}$
where $\mathcal{B}_{j,j'} = a \max\left\{2^{-\min\{j,j'\}}, 2^{\frac{2J(\delta-t)-(j+j')(\delta+\tilde{d})}{2(d+t)}}\right\}$

 $\leadsto \mathcal{O}(N_J)$ relevant matrix coefficients

$$(a, a' > 1, d < \delta, \delta' < \tilde{d} + 2t)$$

Error Analysis:

 $\underline{\mbox{Theorem}}$: The solution of the compressed wavelet scheme convergences with optimal order

$$||u - u_J^{\epsilon}||_{2t-d} \lesssim 2^{-2J(d-t)} ||u||_{\epsilon}$$

Complexity:

 $\begin{array}{l} \underline{\text{Theorem}:} \text{ If the computation of a relevant matrix coefficient} \\ (\mathcal{A}\psi_{j,k},\psi_{j',k'})_{L^2(\Gamma)} \text{ requires} \\ \\ \mathcal{O}\Big(\Big[J-\frac{j+j'}{2}\Big]^\alpha\Big), \quad \alpha \geq 0, \\ \text{operations, the complexity of assembling the compressed system matrix scales linearly.} \end{array}$

A-posteriori matrix compression:

$$\begin{aligned} \mathbf{Define} \quad (\mathcal{A}\psi_{j,k},\psi_{j',k'})_{L^2(\Gamma)} &:= 0\\ \mathbf{if} \quad \left| (\mathcal{A}\psi_{j,k},\psi_{j',k'})_{L^2(\Gamma)} \right| < \varepsilon_{j,j'}\\ \mathbf{where} \quad \varepsilon_{j,j'} \sim \min\left\{ 2^{-|j-j'|}, 2^{-(2J-j-j')\frac{\delta-t}{\tilde{d}+t}} \right\} 2^{-2J(d'-t)+(j+j')d'} \end{aligned}$$

Modified scheme of Cohen, Dahmen, de Vore:

- Choose : $\mathbf{u}^0 = \mathbf{u}^0_0$
- For $k = 1, \dots, K$ do $\mathbf{u}_{k+1}^{n+1} = \mathbf{u}_k^n - \omega \mathbf{C}^{-1} \mathbf{A} (\mathbf{u}_k^n - \mathbf{f}^n)$
- Fast Operator Multiplication: perform $\mathbf{C}^{-1}\mathbf{A}\mathbf{u}_k^n$ by above scheme
- Error Control: proceed until $\epsilon_{n+1} \leq 0.5\epsilon_n$
- Coarsening: approximate u_K^n by its best N-tree approximation u^n : $\|u^n u_K^n\| \le \epsilon_n (\sim N_n^{-s})$
- Continue up to desired accuracy

Result: Let $\epsilon_n \sim N^{-s}$, then the complexity to compute a solution u^n with $||u^n - u|| \leq \epsilon$ is proportional to $N \sim \epsilon^{-1/s}$.

Numerical Results I nonadaptive

Problem: Dirichlet problem in a crankshaft Single layer operator

$$(\mathcal{V}g)(\mathbf{x}) := \frac{1}{4\pi} \int_{\Gamma} \frac{1}{\|\mathbf{x} - \mathbf{y}\|} g(\mathbf{y}) d\sigma_{\mathbf{y}}$$

Fredholm's integral equation of the first kind

$$\mathcal{V}g = f \quad \text{on } \Gamma \qquad \longrightarrow \qquad u = \mathcal{V}g \quad \text{in } \Omega$$

u	nknowns	piecewise constant wavelets $\psi^{(1,3)}_{ ext{optimized}}$					
J	N_J	$\ \mathbf{u}-\mathbf{u}_J\ _\infty$	contr.	cpu-time (in sec.)	a-priori compression (nnz in %)	a-posteriori compression (nnz in %)	
1	568	11		2	27	20	
2	2272	1.0	11	9	8.7	6.7	
3	9088	2.5e-1	4.1	76	3.5	1.9	
4	36352	2.9e-2	8.4	727	1.1	0.44	
5	145408	5.3e-3	5.5	3897 1.1h	0.30	0.10	

unknowns		Iknowns	piecewise bilinear wavelets $\psi^{(2,4)}_{optimized}$					
,	J	N_J	$\ \mathbf{u}-\mathbf{u}_J\ _\infty$	contr.	cpu-time (in sec.)	a-priori compression (nnz in %)	a-posteriori compression (nnz in %)	
	1	1278	3.0		8	100	99	
	2	3550	1.3	2.2	36	21	17	
	3	11502	6.7e-2	19	470	7.8	4.4	
	4	41038	1.7e-3	41	3975 1.1h	2.7	1.3	

Distribution of the cpu-time

- ► Dirichlet problem in a crankshaft
- ► indirect formulation using the single layer operator
- ▶ performed on a Linux PC with 1 GB RAM

Piecewise constant wavelets $(N_J = 145408)$

Problem: Dirichlet problem in a gear wheel

Seek $u\in C^2(\Omega)\cap C(\overline{\Omega})$ such that

$$\Delta u = 0 \quad \text{in } \Omega \subset \mathbb{R}^3 \\ u = f \quad \text{on } \Gamma := \partial \Omega, \ f \in C^1(\Gamma)$$

Single layer operator

$$(\mathcal{V}g)(\mathbf{x}) := \frac{1}{4\pi} \int_{\Gamma} \frac{1}{\|\mathbf{x} - \mathbf{y}\|} g(\mathbf{y}) d\sigma_{\mathbf{y}}$$

Fredholm's integral equation of the first kind

$$\mathcal{V}g = f \quad \text{on } \Gamma \qquad \longrightarrow \qquad u = \mathcal{V}g \quad \text{in } \Omega$$

unknowns		adaptive scheme			nonadaptive scheme	
J	$\dim V_J$	$\dim \widehat{V}_J / \dim V_J$	$\ \mathbf{u}-\widehat{\mathbf{u}}_J\ _{\infty}$	cpu-time	$\ \mathbf{u}-\mathbf{u}_J\ _{\infty}$	cpu-time
1	1160	100 %	4.6e-1	9	4.7e-1	8
2	4640	100 %	1.8e-1	258	1.9e-1	41
3	18560	27	3.0e-2	421	3.0e-2	488
4	74240	7.7	1.3e-2	828	4.9e-3	4627
5	296960	3.1	1.4e-3	2332		
6	1187840	1.2	5.3e-4	6902		

Numerical Results VII adaptiv

Dirichlet problem in a crankshaft solved by the indirect formulation using the single layer operator

u	nknowns	piecewise constant wavelets					
J	$\dim V_J$	$\dim \widehat{V}_J / \dim V_J$	$\ \mathbf{u}-\widehat{\mathbf{u}}_J\ _\infty$		cpu-time		
1	568	100 %	11	(11)	2	(2)	
2	2272	99 %	1.0	(1.0)	16	(9)	
3	9088	26 %	2.8e-1	(2.5e-1)	55	(76)	
4	36352	7.2	1.8e-2	(2.9e-2)	138	(727)	
5	145408	3.0	5.2e-3	(5.3e-3)	456	(3897)	
6	581632	1.4	2.1e-3	(—)	1607	(—)	
7	2326528	0.70	1.5e-4	(—)	5630	(—)	

unknowns		piecewise bilinear wavelets						
J	$\dim V_J$	$\dim \widehat{V}_J / \dim V_J$	$\ \mathbf{u}-\widehat{\mathbf{u}}_J\ _\infty$		cpu-time			
1	1278	100 %	3.0	(3.0)	8	(8)		
2	3550	100 %	1.3	(1.3)	38	(36)		
3	11502	32	6.3e-2	(6.7e-2)	142	(470)		
4	41038	11	3.8e-3	(1.7e-3)	539	(3975)		
5	154638	5.1	5.4e-4	(—)	3091	(—)		
6	599950	2.8	6.3e-5	(—)	21749	(—)		

Quadrature

The quadrature is reduced to element-element interactions

Tensor product Gauß-Legendre quadrature rules

Precision of quadrature (d' > d)

$$\varepsilon_{j,j'} \sim \min\left\{2^{-|j-j'|}, 2^{-(2J-j-j')\frac{2\delta-t}{2\tilde{d}+t}}\right\}2^{-2J(d'-t)+(j+j')d'}$$

Direct quadrature of two elements if

$$\operatorname{dist}(\Gamma_{i,j,k},\Gamma_{i',j',k'}) \ge s > \frac{2^{-\min\{j,j'\}}}{4r}$$

Quadrature of two elements on the same level:

use the Duffy trick for identical elements and for elements which have a common edge or vertex

 \Box Per coefficient $\mathcal{O}(\left[J - \frac{j+j'}{2}\right]^4)$ function calls

] The complexity of computing the system matrix is $\mathcal{O}(N_J)$

Adaptivity II

Modification Since setting up matrix coefficients is much more expensive than solving the compressed system. We solve the equation on the next finer layer.

The tree \mathcal{T} corresponds to the space $\widehat{V}_j = span\{\psi_{\lambda} : \lambda \in \mathcal{T}(\epsilon_j, \mathbf{u}_j)\}$

Goal: Find a sequence of spaces

$$V_{j_0} = \widehat{V}_{j_0} \subseteq \widehat{V}_{j_0+1} \subseteq \widehat{V}_{j_0+2} \subseteq \cdots \subseteq \widehat{V}_J \subseteq V_J, \qquad \widehat{V}_j \subseteq V_j,$$

such that \widehat{u}_j provides the same accuracy as u_j .

Let \widehat{V}_j denote an arbitrary *m*-graded trial space and $\widehat{V}_{j,\boxplus}$ arises by uniform refinement. We assume that $\widehat{u}_j \in \widehat{V}_j$ and $\widehat{u}_{j,\boxplus} \in \widehat{V}_{j,\boxplus}$

<u>Problem:</u> Find a trial space $\widehat{V}_j \subseteq \widehat{V}_{j+1} \subseteq \widehat{V}_{j,\boxplus}$ such that

$$\|\widehat{u}_{j,\boxplus} - \widehat{u}_{j+1}\|_s \le \epsilon \|\widehat{u}_{j,\boxplus} - \widehat{u}_j\|_s.$$

Strategy to find $\widehat{V}_{j} \subseteq \widehat{V}_{j+1} \subseteq \widehat{V}_{j,\boxplus}$:

Numerical Results II

Problem: Dirichlet problem in a gear wheel

Double layer operator

$$(\mathcal{K}g)(\mathbf{x}) := \frac{1}{4\pi} \int_{\Gamma} \frac{\langle \mathbf{x} - \mathbf{y}, \mathbf{n}_{\mathbf{y}} \rangle}{\|\mathbf{x} - \mathbf{y}\|^3} g(\mathbf{y}) d\sigma_{\mathbf{y}}$$

Fredholm's integral equation of the second kind

$$(\mathcal{K}-\tfrac{1}{2})g=f \quad \text{on } \Gamma \qquad \longrightarrow \qquad u=\mathcal{K}g \quad \text{in } \Omega$$

unknowns		nknowns	wavelets $\psi^{(1,3)}_{optimized}$			single-scale basis $\phi^{(1)}$
	J	N_J	$\ \mathbf{u}-\mathbf{u}_J\ _{\infty}$	contr.	cpu-time (in sec.)	cpu-time (in sec.)
	1	2800	1.3		10	20
	2	11200	1.5e-1	9.8	73	417
	3	44800	5.5e-2	2.2	664	6672
	4	179200	7.6e-2	4.5	5014 ^{1.4h}	106752 _{30h}

define an element wise error portion

sort error portions by their modulus and refine \widehat{V}_j successively

Algorithm:

 $\begin{array}{l} \text{initialization:} \ \widehat{V}_{j_0} \coloneqq V_{j_0} \\ \text{for } j \coloneqq j_0 \ \text{to } J-2 \ \text{do begin} \\ \text{ compute the system matrix for } \widehat{V}_{j,\boxplus} \\ \text{ compute the solutions } \widehat{u}_j \ \text{and } \widehat{u}_{j,\boxplus} \\ \text{ determine } \widehat{V}_{j+1} \ \text{with } \|\widehat{u}_{j,\boxplus} - \widehat{u}_{j+1}\|_s \leq \epsilon \|\widehat{u}_{j,\boxplus} - \widehat{u}_j\|_s \\ \text{ end} \\ \text{ compute the system matrix for } \widehat{V}_{J-1,\boxplus} \end{array}$

compute the final solution $\widehat{u}_J := \widehat{u}_{J-1,\boxplus}$

Further Results:

- Coupling FEM& BEM with Harbrecht, Gatica et al.
- Inverse Problems with Harbrecht and Pereverzev
- Wavelet Approximation for Nonlinear Operators (PDE's) with Dahmen and Xu
- Least square methods with Dahmen and Kunoth
- Preconditioner for p-methods and weigthed norms with Beuchler and Schwab
 - Ab initio methods for many particle quantum mechanics with H.J Flad, Hackbusch et al.

Domain Decomposition

Parametric representation:

$$\square \quad \Gamma = \bigcup_{i=1}^{M} \Gamma_i, \quad \Gamma_i = \gamma_i(\square), \quad i = 1, \dots, M$$

 \Box $\Gamma_i \cap \Gamma_{i'}$, $i \neq i'$, is either empty or a lower dimensional face

anonical inner product: $(u,v)_{L^2(\Gamma)} = \int_{\Gamma} u(\mathbf{x}) v(\mathbf{x}) d\sigma_{\mathbf{x}}$

modified inner product: $\langle u,v
angle = \sum_{i=1}^M (u\circ\gamma_i,v\circ\gamma_i)_{L^2(\Box)}$

Parametric surface patch :

