Wavelet Based Adaptive Fast Solution of Boundary Integral Equations

Wolfgang Dahmen, Helmut Harbrecht* and Reinhold Schneider*

* Fakultät für Mathematik

Technische Universität Chemnitz

Operator Equation

E.g. Boundary Integral Equations

(Exterior) boundary value problem of second order:
e.g. Laplace, Stokes, Maxwell equation etc.

$$
\begin{gathered}
\mathcal{A} u=f \quad \text { on } \quad \Gamma=\partial \Omega \subset \mathbb{R}^{3} \\
\mathcal{A}: H^{t}(\Gamma) \rightarrow H^{-t}(\Gamma), \quad(\mathcal{A} u)(\mathbf{x})=\int_{\Gamma} k(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d \sigma_{\mathbf{y}}
\end{gathered}
$$

Decay property of the kernels of boundary integral operators

$$
\left|\partial_{\mathbf{x}}^{\alpha} \partial_{\mathbf{y}}^{\beta} k(\mathbf{x}, \mathbf{y})\right| \lesssim\|\mathbf{x}-\mathbf{y}\|^{-(2+2 t+|\alpha|+|\beta|)}
$$

Examples for the Laplacian:

\square single layer operator: $\mathcal{A}=\mathcal{V}, t=-\frac{1}{2}, f$ Dirichlet data

$$
(\mathcal{V} u)(\mathbf{x})=\frac{1}{4 \pi} \int_{\Gamma} \frac{1}{\|\mathbf{x}-\mathbf{y}\|} u(\mathbf{y}) d \sigma_{\mathbf{y}}
$$

\square double layer operator: $\mathcal{A}=\mathcal{K} \pm \frac{1}{2}, t=0, f$ Dirichlet data

$$
(\mathcal{K} u)(\mathbf{x})=\frac{1}{4 \pi} \int_{\Gamma} \frac{\left\langle\mathbf{x}-\mathbf{y}, \mathbf{n}_{\mathbf{y}}\right\rangle}{\|\mathbf{x}-\mathbf{y}\|^{3}} u(\mathbf{y}) d \sigma_{\mathbf{y}}
$$

\square hypersingular operator: $\mathcal{A}=\mathcal{W}, t=\frac{1}{2}$, f Neumann data

$$
(\mathcal{W} u)(\mathbf{x})=-\frac{1}{4 \pi} \frac{\partial}{\partial \mathbf{n}_{\mathbf{x}}} \int_{\Gamma} \frac{\left\langle\mathbf{x}-\mathbf{y}, \mathbf{n}_{\mathbf{y}}\right\rangle}{\|\mathbf{x}-\mathbf{y}\|^{3}} u(\mathbf{y}) d \sigma_{\mathbf{y}}
$$

Best N-Term Approximation:

Give u, assume $u_{\Lambda}=\sum_{\lambda \in \mathcal{I}} u_{\lambda} \psi_{\lambda}$ with $\sharp \mathcal{I}=N$

$$
\inf _{\sharp \mathcal{I}=N}\left\|u-u_{\Lambda}\right\| \lesssim N^{-s}
$$

-

Ultimate Goal :
Compute an approximate solution $u_{\text {approx }}$ of $A u=f$, s.t

$$
\left\|u-u_{\text {approx }}\right\| \lesssim N^{-s} \text { within Complexity } \sim N
$$

Fast Methods for Integral operators

Adaptive kernel approximation:

- Fast Multipole Method (Greengard, Rokhlin,...)

】 Panel Clustering and H-matrices (Hackbusch-Nowak,...)
\square Wavelet Galerkin Scheme
(Beylkin-Coifman-Rokhlin, Dahmen-Prößdorf-Schneider,...)

single-scale basis

\rightsquigarrow Linear system:

$$
\mathbf{A}_{\psi} \mathbf{u}_{\psi}=\mathbf{f}_{\psi}
$$

Biorthogonal Wavelet Bases

Multiscale hierarchy: $\quad V_{j}=\operatorname{span}\left\{\phi_{j, k}: k \in \Delta_{j}\right\}$

$$
\begin{gathered}
\left(V_{-l} \subset V_{-l+1} \subset \ldots\right) V_{0} \subset V_{1} \subset \ldots \subset V_{j} \subset V_{j+1} \subset \ldots \subset L^{2}(\Gamma) \\
\quad \longleftarrow(\text { Coarsening, Tausch, White) } \quad \text { Refinement } \longrightarrow
\end{gathered}
$$

-

Multiscale decomposition and wavelets:
\square Decomposition:

$$
V_{j+1}=V_{j} \oplus W_{j}, \quad V_{J}=\bigoplus_{j=-1}^{J-1} W_{j}, \quad W_{-1}:=V_{0}
$$

- Wavelets:

$$
W_{j}=\operatorname{span}\left\{\psi_{j, k}: k \in \nabla_{j}:=\Delta_{j+1} \backslash \Delta_{j}\right\}
$$

】 Compact supports:

$$
\operatorname{diam} \operatorname{supp} \psi_{j, k} \sim 2^{-j}
$$

- Normalization:

$$
\left\|\psi_{j, k}\right\|_{L^{2}(\Gamma)} \sim 1
$$

\square Biorthogonality: $\left\langle\psi_{j, k}, \tilde{\psi}_{j^{\prime}, k^{\prime}}\right\rangle=\delta_{(j, k),\left(j^{\prime}, k^{\prime}\right)}$

$$
\tilde{V}_{0} \subset \tilde{V}_{1} \subset \ldots \subset \tilde{V}_{j} \subset \tilde{V}_{j+1} \subset \ldots \subset L^{2}(\Gamma)
$$

\square Regularity and Stability:

$$
\begin{aligned}
& \gamma:=\sup \left\{s \in \mathbb{R}: \psi_{j, k} \in H^{s}(\Gamma)\right\}>+t \\
& \tilde{\gamma}:=\sup \left\{s \in \mathbb{R}: \tilde{\psi}_{j, k} \in H^{s}(\Gamma)\right\}>-t
\end{aligned}
$$

- Cancellation Property: (\tilde{d} vanishing moments)

$$
\left|\left\langle\psi_{j, k}, f\right\rangle\right| \lesssim 2^{-j(\tilde{d}+1)}|f|_{W^{\tilde{d}, \infty}\left(\operatorname{supp} \psi_{j, k}\right)}
$$

Preconditioning

Theorem (Norm equivalences):

1. Sobolev spaces

$$
\left.\|u\|_{s}^{2} \sim \sum_{\lambda} \mid\left(u, \tilde{\psi}_{\lambda}\right)_{\Gamma}\right)\left.\right|^{2} 2^{2|\lambda| s}
$$

-

2. Besov spaces

$$
\|u\|_{B_{p, p}^{s}}^{p} \sim \sum_{\lambda}\left|\left\langle u, \tilde{\psi}_{\lambda}\right\rangle\right|^{p} \quad, \quad s=n\left(\frac{1}{p}-\frac{1}{2}\right)
$$

】 Diagonal scaling: (Dahmen-Kunoth, Schneider)

The condition number of the diagonally scaled system matrix is uniformly bounded if $\tilde{\gamma}>-t$.

Adaptive wavelet scheme

Normalisation $\|\left.\psi_{\lambda}\right|_{t} \sim 1 \rightarrow$ norm equivalence

$$
\|u\| \sim\|\mathbf{u}\|_{l_{2}}
$$

-

Best N-Term Approximation:
Rearranging \mathbf{u} by $\mathbf{u}^{*}=\left(u_{k}^{*}\right)_{k \in \mathbb{N}}$, i.e. $\left|u_{k}^{*}\right| \leq\left|u_{k-1}^{*}\right|$, provides a quasi-norm for weak l^{τ}-spaces

$$
\|\mathbf{u}\|_{l_{\tau}^{w}(\mathcal{J})}:=\sup _{k>0}\left(k^{1 / \tau}\left|u_{k}^{*}\right|\right) .
$$

-

$$
\left\|u-u_{\Lambda}\right\|^{2} \sim \sum_{\lambda \notin \mathcal{I}}\left|u_{\lambda}\right|^{2} \lesssim N^{-s}\|\mathbf{u}\|_{\tau_{\tau}^{w}(\mathcal{J})} \quad, \quad \frac{1}{\tau}=\frac{1}{2}+s
$$

Tree approximation

The local residuals are given by

$$
\tilde{u}_{\lambda}^{2}:=\left|u_{\lambda}\right|^{2}+\sum_{\mu \prec \lambda}\left|u_{\mu}\right|^{2}
$$

For $\eta>0$

$$
\mathcal{T}_{\eta}=\mathcal{T}_{\eta}(\mathbf{u}):=\left\{\lambda \in \mathcal{J}:\left|\tilde{u}_{\lambda}\right|>\eta\right\}
$$

is a tree.

structure of adaptive wavelet tree approximation

We introduce the tree weak spaces

$$
t_{\tau}^{w}={ }_{t} l_{\tau}^{w}(\mathcal{J})=\left\{\mathbf{u} \in l_{2}(\mathcal{J}):\left(\tilde{u}_{\lambda}\right)_{\lambda \in \mathcal{J}}=: \widetilde{\mathbf{u}} \in l_{\tau}^{w}\right\}
$$

-

Tree layers

The tree $\mathcal{T}(\epsilon, \mathbf{u})$ satisfies

$$
\left\|\mathbf{u}-\left.\mathbf{u}\right|_{\mathcal{T}(\epsilon, \mathbf{u})}\right\| \leq \epsilon
$$

We define

$$
\mathcal{T}_{j}:=\mathcal{T}\left(\epsilon \frac{2^{j s}}{j+1}, \mathbf{u}\right)
$$

and tree layers

$$
\Delta_{j}:=\mathcal{T}_{j} \backslash \mathcal{T}_{j+1}, j=0, \ldots, J=J(\epsilon)
$$

These layers play a similar role as the levels $\mathbf{u}_{j}:=\left.\mathbf{u}\right|_{\Delta_{j}}, \quad \mathbf{u}_{\epsilon}=\sum_{l=0}^{J} \mathbf{u}_{l}, \|$

Compressible matrices

Let $u=\sum_{\lambda} u_{\lambda} \psi_{\lambda} \in H^{t}$ and $\mathbf{A}_{\lambda, \lambda^{\prime}}=\left(\mathcal{A} \psi_{\lambda}, \psi_{\lambda^{\prime}}\right)_{\Gamma}$

$$
\mathcal{A}: H^{t} \rightarrow\left(H^{t}\right)^{\prime} \text { corresponds to } \quad \mathbf{A}: l_{2} \rightarrow l_{2}
$$

Compressed matrices

$$
\mathbf{A}_{j}: l^{2}(\mathcal{J}) \rightarrow l^{2}(\mathcal{J}), n n z_{\text {row }} \mathbf{A}_{j} \lesssim \frac{2^{j}}{(j+1)^{\alpha}}
$$

and

$$
\left\|\mathbf{A}-\mathbf{A}_{j}\right\| \lesssim \frac{2^{-j s}}{j+1} .
$$

I

Suppose $\mathbf{u} \in{ }_{t} l_{\tau}^{w}$ and \mathbf{u}_{ϵ} is the best tree N-term approximation of \mathbf{u} satisfying $\left\|\mathbf{u}-\mathbf{u}_{\epsilon}\right\| \leq \epsilon$. We approximate $\mathbf{A u}_{\epsilon}$ by \mathbf{w}_{J},

$$
\mathbf{w}_{J}:=\sum_{j=0}^{J} \mathbf{A}_{j} \mathbf{u}_{j}
$$

then the computational cost is $\lesssim \epsilon^{-1 / s}=N=N(\epsilon)$ and the accuracy is

$$
\left\|\mathbf{A} \mathbf{u}-\mathbf{w}_{J}\right\| \lesssim \epsilon
$$

Prediction set: $\mathcal{T}_{\text {new }}:=\operatorname{supp}_{J}$ is a tree $\sharp \mathcal{T}_{0} \sim \sharp \mathcal{T}_{\text {new }}$.
Iterative scheme:

$$
\mathbf{u}^{n+1}=\mathbf{u}^{n}-\omega \mathbf{C}^{-1} \mathbf{A}\left(\mathbf{u}^{n}-\mathbf{f}^{n}\right)
$$

A-priori Matrix Compression

Estimate: $\left|\left(\mathcal{A} \psi_{j, k}, \psi_{j^{\prime}, k^{\prime}}\right)_{L^{2}(\Gamma)}\right| \leq c \frac{2^{\left(j+j^{\prime}\right)(\tilde{d}+n / 2)}}{\operatorname{dist}\left(\operatorname{supp} \psi_{j, k}, \operatorname{supp} \psi_{j^{\prime}, k^{\prime}}\right)^{n+2 t+2 \tilde{d}}}$

1. Compression:
(Dahmen-Prößdorf-
Schneider,
von Petersdorff-Schwab)

$$
\begin{gathered}
\left(\mathcal{A} \psi_{j, k}, \psi_{j^{\prime}, k^{\prime}}\right)_{L^{2}(\Gamma)}:=0 \\
\text { if } \quad \operatorname{dist}\left(\operatorname{supp} \psi_{j, k}, \operatorname{supp} \psi_{j^{\prime}, k^{\prime}}\right)>\mathcal{B}_{j, j^{\prime}} \\
\mathcal{B}_{j, j^{\prime}}=a \max \left\{2^{-\min \left\{j, j^{\prime}\right\}}, 2^{\frac{2 J(\delta-t)-\left(j+j^{\prime}\right)(\delta+\tilde{d})}{2(\tilde{d}+t)}}\right\}
\end{gathered}
$$

where
2. Compression: (Schneider)

$$
\begin{gathered}
\left(\mathcal{A} \psi_{j, k}, \psi_{j^{\prime}, k^{\prime}}\right)_{L^{2}(\Gamma)}:=0 \\
\text { if } \operatorname{dist}\left(\operatorname{supp} \psi_{j, k}, \operatorname{supp}^{\prime} \psi_{j^{\prime}, k^{\prime}}\right)>\mathcal{B}_{j, j^{\prime}}^{\prime} \\
\text { where } \quad \mathcal{B}_{j, j^{\prime}}^{\prime}=a^{\prime} \max \left\{2^{-\max \left\{j, j^{\prime}\right\}}, 2^{\frac{2 J\left(\delta^{\prime}-t\right)-\left(j+j^{\prime} \delta^{\prime}-\max \left\{j, j^{\prime}\right\} \tilde{d}\right.}{d+2 t}}\right\}
\end{gathered}
$$

$\rightsquigarrow \mathcal{O}\left(N_{J}\right)$ relevant matrix coefficients

$$
\left(a, a^{\prime}>1, d<\delta, \delta^{\prime}<\tilde{d}+2 t\right)
$$

Error Analysis:

Theorem : The solution of the compressed wavelet scheme convergences with optimal order

$$
\left\|u-u_{J}^{\epsilon}\right\|_{2 t-d} \lesssim 2^{-2 J(d-t)}\|u\|_{d}
$$

Complexity:

Theorem: If the computation of a relevant matrix coefficient $\left(\mathcal{A} \psi_{j, k}, \psi_{j^{\prime}, k^{\prime}}\right)_{L^{2}(\Gamma)}$ requires

$$
\mathcal{O}\left(\left[J-\frac{j+j^{\prime}}{2}\right]^{\alpha}\right), \quad \alpha \geq 0
$$

operations, the complexity of assembling the compressed system matrix scales linearly.

A-posteriori matrix compression:

$$
\begin{gathered}
\text { Define } \quad\left(\mathcal{A} \psi_{j, k}, \psi_{j^{\prime}, k^{\prime}}\right)_{L^{2}(\Gamma)}:=0 \\
\text { if }\left|\left(\mathcal{A} \psi_{j, k}, \psi_{j^{\prime}, k^{\prime}}\right)_{L^{2}(\Gamma)}\right|<\varepsilon_{j, j^{\prime}} \\
\text { where } \quad \varepsilon_{j, j^{\prime}} \sim \min \left\{2^{-\left|j-j^{\prime}\right|}, 2^{-\left(2 J-j-j^{\prime}\right) \frac{\delta-t}{d+t}}\right\} 2^{-2 J\left(d^{\prime}-t\right)+\left(j+j^{\prime}\right)} \phi^{\prime} .
\end{gathered}
$$

Modified scheme of Cohen, Dahmen, de Vore:

- Choose : $\mathbf{u}^{0}=\mathbf{u}_{0}^{0}$
- For $k=1, \ldots, K$ do
$\mathbf{u}_{k+1}^{n+1}=\mathbf{u}_{k}^{n}-\omega \mathbf{C}^{-1} \mathbf{A}\left(\mathbf{u}_{k}^{n}-\mathbf{f}^{n}\right)$
- Fast Operator Multiplication: perform $\mathbf{C}^{-1} \mathbf{A} \mathbf{u}_{k}^{n}$ by above scheme
- Error Control: proceed until $\epsilon_{n+1} \leq 0.5 \epsilon_{n}$
- Coarsening: approximate u_{K}^{n} by its best N -tree approximation u^{n} : $\left\|u^{n}-u_{K}^{n}\right\| \leq \epsilon_{n}\left(\sim N_{n}^{-s}\right)$
- Continue up to desired accuracy

Result: Let $\epsilon_{n} \sim N^{-s}$, then the complexity to compute a solution u^{n} with $\left\|u^{n}-u\right\| \leq \epsilon$ is proportional to $N \sim \epsilon^{-1 / s}$.

Numerical Results I nonadaptive

Problem: Dirichlet problem in a crankshaft Single layer operator

$$
(\mathcal{V} g)(\mathbf{x}):=\frac{1}{4 \pi} \int_{\Gamma} \frac{1}{\|\mathbf{x}-\mathbf{y}\|} g(\mathbf{y}) d \sigma_{\mathbf{y}}
$$

Fredholm's integral equation of the first kind

$$
\mathcal{V} g=f \quad \text { on } \Gamma \quad \longrightarrow \quad u=\mathcal{V} g \quad \text { in } \Omega
$$

unknowns		piecewise constant wavelets $\psi_{\text {optimized }}^{(1,3)}$						
J	N_{J}	$\left\\|\mathbf{u}-\mathbf{u}_{J}\right\\|_{\infty}$	contr.	cpu-time (in sec.)	a-priori compression (nnz in \%)	a-posteriori compression (nnz in \%)		
1	568	11	-	2	27	20		
2	2272	1.0	11	9	8.7	6.7		
3	9088	$2.5 \mathrm{e}-1$	4.1	76	3.5	1.9		
4	36352	$2.9 \mathrm{e}-2$	8.4	727	1.1	0.44		
5	145408	$5.3 \mathrm{e}-3$	5.5	3897 1.1 h	0.30	0.10		

unknowns		piecewise bilinear wavelets $\psi_{\text {optimized }}^{(2,4)}$						
J	N_{J}	$\left\\|\mathbf{u}-\mathbf{u}_{J}\right\\|_{\infty}$	contr.	cpu-time (in sec.)	a-priori compression (nnz in \%)	a-posteriori compression (nnz in \%)		
1	1278	3.0	-	8	100	99		
2	3550	1.3	2.2	36	21	17		
3	11502	$6.7 \mathrm{e}-2$	19	470	7.8	4.4		
4	41038	$1.7 \mathrm{e}-3$	41	3975	2.7	1.3		

Distribution of the cpu-time

- Dirichlet problem in a crankshaft
- indirect formulation using the single layer operator
- performed on a Linux PC with 1 GB RAM
\square Piecewise constant wavelets $\left(N_{J}=145408\right)$
cpu-time in percent

Numerical Results VI

Problem: Dirichlet problem in a gear wheel
Seek $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ such that

$$
\begin{aligned}
\triangle u=0 & \text { in } \Omega \subset \mathbb{R}^{3} \\
u=f & \text { on } \Gamma:=\partial \Omega, f \in C^{1}(\Gamma)
\end{aligned}
$$

Single layer operator

$$
(\mathcal{V} g)(\mathbf{x}):=\frac{1}{4 \pi} \int_{\Gamma} \frac{1}{\|\mathbf{x}-\mathbf{y}\|} g(\mathbf{y}) d \sigma_{\mathbf{y}}
$$

Fredholm's integral equation of the first kind

$$
\mathcal{V} g=f \quad \text { on } \Gamma \quad \longrightarrow \quad u=\mathcal{V} g \quad \text { in } \Omega
$$

unknowns		adaptive scheme			nonadaptive scheme					
J	$\operatorname{dim} V_{J}$	$\operatorname{dim} \widehat{V}_{J} / \operatorname{dim} V_{J}$	$\left\\|\mathbf{u}-\widehat{\mathbf{u}}_{J}\right\\|_{\infty}$	cpu-time	$\left\\|\mathbf{u}-\mathbf{u}_{J}\right\\|_{\infty}$	cpu-time				
1	1160	100%	$4.6 \mathrm{e}-1$	9	$4.7 \mathrm{e}-1$	8				
2	4640	100%	$1.8 \mathrm{e}-1$	258	$1.9 \mathrm{e}-1$	41				
3	18560	27	$3.0 \mathrm{e}-2$	421	$3.0 \mathrm{e}-2$	488				
4	74240	7.7	$1.3 \mathrm{e}-2$	828	$4.9 \mathrm{e}-3$	4627				
5	296960	3.1	$1.4 \mathrm{e}-3$	2332	-	-				
6	1187840	1.2	$5.3 \mathrm{e}-4$	6902	-	-				

Numerical Results VII adaptiv

Dirichlet problem in a crankshaft solved by the indirect formulation using the single layer operator

unknowns		piecewise constant wavelets						
J	$\operatorname{dim} V_{J}$	$\operatorname{dim} \widehat{V}_{J} / \operatorname{dim} V_{J}$	$\left\\|\mathbf{u}-\widehat{\mathbf{u}}_{J}\right\\|_{\infty}$		cpu-time			
1	568	100%	11	(11)	2	(2)		
2	2272	99%	1.0	(1.0)	16	(9)		
3	9088	26%	$2.8 \mathrm{e}-1$	$(2.5 \mathrm{e}-1)$	55	(76)		
4	36352	7.2	$1.8 \mathrm{e}-2$	$(2.9 \mathrm{e}-2)$	138	(727)		
5	145408	3.0	$5.2 \mathrm{e}-3$	$(5.3 \mathrm{e}-3)$	456	(3897)		
6	581632	1.4	$2.1 \mathrm{e}-3$	$(-)$	1607	$(-)$		
7	2326528	0.70	$1.5 \mathrm{e}-4$	$(-)$	5630	$(-)$		

unknowns		piecewise bilinear wavelets						
J	$\operatorname{dim} V_{J}$	$\operatorname{dim} \widehat{V}_{J} / \operatorname{dim} V_{J}$	$\left\\|\mathbf{u}-\widehat{\mathbf{u}}_{J}\right\\|_{\infty}$		cpu-time			
1	1278	100%	3.0	(3.0)	8	(8)		
2	3550	100%	1.3	(1.3)	38	(36)		
3	11502	32	$6.3 \mathrm{e}-2$	$(6.7 \mathrm{e}-2)$	142	(470)		
4	41038	11	$3.8 \mathrm{e}-3$	$(1.7 \mathrm{e}-3)$	539	(3975)		
5	154638	5.1	$5.4 \mathrm{e}-4$	$(-)$	3091	$(-)$		
6	599950	2.8	$6.3 \mathrm{e}-5$	$(-)$	21749	$(-)$		

Quadrature

\square The quadrature is reduced to element-element interactions
\square Tensor product Gauß-Legendre quadrature rules
\square Precision of quadrature $\left(d^{\prime}>d\right)$

$$
\varepsilon_{j, j^{\prime}} \sim \min \left\{2^{-\left|j-j^{\prime}\right|}, 2^{-\left(2 J-j-j^{\prime}\right) \frac{2 \delta-t}{2 \bar{d}+t}}\right\} 2^{-2 J\left(d^{\prime}-t\right)+\left(j+j^{\prime}\right) d^{\prime}}
$$

- Direct quadrature of two elements if

$$
\operatorname{dist}\left(\Gamma_{i, j, k}, \Gamma_{i^{\prime}, j^{\prime}, k^{\prime}}\right) \geq s>\frac{2^{-\min \left\{j, j^{\prime}\right\}}}{4 r}
$$

\square Quadrature of two elements on the same level:
use the Duffy trick for identical elements and for elements which have a common edge or vertex

- Adaptive $h p$-quadrature scheme

\square Per coefficient $\mathcal{O}\left(\left[J-\frac{i+j^{\prime}}{2}\right]^{4}\right)$ function calls
\square The complexity of computing the system matrix is $\mathcal{O}\left(N_{J}\right)$

Adaptivity II

Modification Since setting up matrix coefficients is much more expensive than solving the compressed system. We solve the equation on the next finer layer.
-
The tree \mathcal{T} corresponds to the space $\widehat{V}_{j}=\operatorname{span}\left\{\psi_{\lambda}: \lambda \in \mathcal{T}\left(\epsilon_{j}, \mathbf{u}_{j}\right)\right\}$
Goal: Find a sequence of spaces

$$
V_{j_{0}}=\widehat{V}_{j_{0}} \subseteq \widehat{V}_{j_{0}+1} \subseteq \widehat{V}_{j_{0}+2} \subseteq \cdots \subseteq \widehat{V}_{J} \subseteq V_{J}, \quad \widehat{V}_{j} \subseteq V_{j}
$$

such that \widehat{u}_{j} provides the same accuracy as u_{j}.

Let \widehat{V}_{j} denote an arbitrary m-graded trial space and $\widehat{V}_{j, \boxplus}$ arises by uniform refinement. We assume that $\widehat{u}_{j} \in \widehat{V}_{j}$ and $\widehat{u}_{j, \boxplus} \in \widehat{V}_{j, \boxplus}$

Problem: Find a trial space $\widehat{V}_{j} \subseteq \widehat{V}_{j+1} \subseteq \widehat{V}_{j, \boxplus}$ such that

$$
\left\|\widehat{u}_{j, \boxplus}-\widehat{u}_{j+1}\right\|_{s} \leq \epsilon\left\|\widehat{u}_{j, \boxplus}-\widehat{u}_{j}\right\|_{s} .
$$

Strategy to find $\widehat{V}_{j} \subseteq \widehat{V}_{j+1} \subseteq \widehat{V}_{j, \boxplus}:$

Numerical Results II

Problem: Dirichlet problem in a gear wheel
Double layer operator

$$
(\mathcal{K} g)(\mathbf{x}):=\frac{1}{4 \pi} \int_{\Gamma} \frac{\left\langle\mathbf{x}-\mathbf{y}, \mathbf{n}_{\mathbf{y}}\right\rangle}{\|\mathbf{x}-\mathbf{y}\|^{3}} g(\mathbf{y}) d \sigma_{\mathbf{y}}
$$

Fredholm's integral equation of the second kind

$$
\left(\mathcal{K}-\frac{1}{2}\right) g=f \quad \text { on } \Gamma \quad \longrightarrow \quad u=\mathcal{K} g \quad \text { in } \Omega
$$

	knowns	wavelets $\psi_{\text {optimized }}^{(1,3)}$			single-scale basis $\phi^{(1)}$		
J	N_{J}	$\left\\|\mathbf{u}-\mathbf{u}_{J}\right\\|_{\infty}$	contr.	cpu-time (in sec.)	$\begin{aligned} & \text { cpu-time } \\ & \text { (in sec.) } \end{aligned}$		
1	2800	1.3	-	10	20		
2	11200	$1.5 \mathrm{e}-1$	9.8	73	417		
3	44800	$5.5 \mathrm{e}-2$	2.2	664	6672		
4	179200	7.6e-2	4.5	$\underset{1.4 \mathrm{~h}}{5014}$	$\underset{30 \mathrm{~h}}{106752}$		

\square define an element wise error portion

\square sort error portions by their modulus and refine \widehat{V}_{j} successively

Algorithm:
initialization: $\widehat{V}_{j_{0}}:=V_{j_{0}}$
for $j:=j_{0}$ to $J-2$ do begin
compute the system matrix for $\widehat{V}_{j, \boxplus}$
compute the solutions \widehat{u}_{j} and $\widehat{u}_{j, \text { 田 }}$
determine \widehat{V}_{j+1} with $\left\|\widehat{u}_{j, \boxplus}-\widehat{u}_{j+1}\right\|_{s} \leq \epsilon\left\|\widehat{u}_{j, \boxplus}-\widehat{u}_{j}\right\|_{s}$
end
compute the system matrix for $\widehat{V}_{J-1, \boxplus}$
compute the final solution $\widehat{u}_{J}:=\widehat{u}_{J-1, \boxplus}$

Further Results:

】 Coupling FEM\& BEM with Harbrecht, Gatica et al.

- Inverse Problems with Harbrecht and Pereverzev
- Wavelet Approximation for Nonlinear Operators (PDE's) with Dahmen and Xu
\square Least square methods with Dahmen and Kunoth
\square Preconditioner for p -methods and weigthed norms with Beuchler and Schwab
\square Ab initio methods for many particle quantum mechanics with H.J Flad, Hackbusch et al.

-

Domain Decomposition

Parametric representation:
$\square \Gamma=\bigcup_{i=1}^{M} \Gamma_{i}, \quad \Gamma_{i}=\gamma_{i}(\square), \quad i=1, \ldots, M$
$\square \Gamma_{i} \cap \Gamma_{i^{\prime}}, i \neq i^{\prime}$, is either empty or a lower dimensional face
\square canonical inner product: $(u, v)_{L^{2}(\Gamma)}=\int_{\Gamma} u(\mathbf{x}) v(\mathbf{x}) d \sigma_{\mathbf{x}}$
\square modified inner product: $\langle u, v\rangle=\sum_{i=1}^{M}\left(u \circ \gamma_{i}, v \circ \gamma_{i}\right)_{L^{2}(\square)}$

Parametric surface patch :

Examples:

