Mirjam Stolper, stolper@num.uni-sb.de Universität des Saarlandes, Fachrichtung 6.1 - Mathematik, D-66041 Saarbrücken

Neue Aspekte zur effizienten Lösung der Helmholtz-Gleichung - am Beispiel des Dirichlet-RWPs -

gemeinsame Arbeit mit **Prof. Rjasanow**,

Saarbrücken im Rahmen eines **BMBF-Projekts**

Überblick

- 1. Problembeschreibung
- 2. Fourier-Methode
- 3. ACA-Verfahren
- 4. Numerische Beispiele

Das Dirichlet-Außenraumproblem für die Helmholtz-Gleichung

$$\begin{aligned} \Delta \, u(y) + \kappa^2 u(y) &= 0, \qquad y \in \mathbb{R}^3 \setminus \bar{\Omega}, \\ u(y) &= g(y), \quad y \in \Gamma = \partial \Omega, \end{aligned}$$

u(y) genügt der Sommerfeld'schen Ausstrahlungsbedingung.

Ansatz von Brakhage und Werner:

$$u(y) = \int_{\Gamma} \frac{\partial G(x, y, \kappa)}{\partial n_x} f(x, \kappa) - i\eta G(x, y, \kappa) f(x, \kappa) dF_x, \quad y \in \Omega^c,$$

wobei
$$\eta > 0$$
 und $G(x, y, \kappa) = \frac{1}{4\pi} \frac{e^{i\kappa|x-y|}}{|x-y|}$ für alle $x, y \in \mathbb{R}^3$.

Die zugehörige Integralgleichung ist für alle Wellenzahlen κ (speziell $\kappa \in \mathbb{R}^+$) eindeutig lösbar.

 $\mathbf{2}$

STATIENS

Workshop FastBEM , Kleinwalsertal 2003

Kollokationsverfahren

$$\Gamma \approx \Gamma_h = \bigcup_{j=1}^N \Gamma_j \quad \text{und} \quad f \approx f_h(x,\kappa) = \sum_{j=1}^N \nu_j(\kappa)\varphi_j(x) \,, \ \varphi_j(x) = \begin{cases} 1, \ x \in \Gamma_j \\ 0, \ \text{sonst} \end{cases}$$

Das lineare Gleichungssystem:

$$\left(\frac{1}{2}I + B(\kappa) - i\eta A(\kappa)\right)\nu(\kappa) = \varrho, \quad A, B \in \mathbb{C}^{N \times N}, \ \nu, \ \varrho \in \mathbb{C}^N,$$

wobei (mit $r = |x - y_i|$)

$$\begin{aligned} a_{ij}(\kappa) &= \frac{1}{4\pi} \int_{\Gamma_j} \frac{e^{i\kappa r}}{r} dF_x \,, \quad b_{ij}(\kappa) = \frac{1}{4\pi} \int_{\Gamma_j} \frac{e^{i\kappa r}}{r^3} \left(i\kappa r - 1\right) \langle n_x, x - y_i \rangle dF_x \,, \\ (\nu(\kappa))_j &= \nu_j(\kappa) \text{ und } (\varrho)_i = g(y_i) \,. \end{aligned}$$

Workshop FastBEM , Kleinwalsertal 2003

Die Aufgabenstellungen:

• Lösungen des Gleichungssystems für ein Spektrum

$$0 < \kappa = \frac{\omega}{c} \le \kappa_{max} \sim \omega_{max}$$

mit n_{κ} verschiedenen Wellenzahlen. Stabilitätsbedingung: $h \kappa_{max} \leq 1$

• Fourier-Methode $C(\kappa) = \mathcal{F}_{\xi,\kappa} \left[\mathcal{F}_{\kappa,\xi}^{-1} \left[C(\kappa) \right](\xi) \right](\kappa).$

- Systemmatrizen sind vollbesetzt, unstrukturiert, großdimensioniert \rightarrow naive Generierung und Lösen mit $O(N^2)$ für jede Wellenzahl
- Niedrigrang-Approximation: $\operatorname{Zu} C \in \mathbb{C}^{M \times N}$ finde $C_k \in \mathbb{C}^{M \times N}$ mit $||C - C_k||_F \leq \varepsilon ||C||_F$ und $Mem(C_k) = Op(C_k x) = O((M + N)k).$

2. Fourier-Methode

Die inverse Fourier-transformierte Matrizen

$$\check{A} \in \mathbb{R}^{N \times N}, \ \check{a}_{ij}(\xi) = \frac{1}{4\pi} \frac{1}{\xi} \int_{\Gamma_j} \delta(\xi - r) dF_x,$$

$$\check{B} \in \mathbb{R}^{N \times N}, \ \check{b}_{ij}(\xi) = \frac{1}{4\pi} \int_{\Gamma_j} \frac{1}{r^3} \left(r \frac{d}{dz} - 1 \right) \delta(z) \Big|_{z=\xi-r} \langle n_x, x - y_i \rangle dF_x \,,$$

wobei

$$\mathcal{F}_{\kappa,\xi}^{-1}[e^{i\kappa r}](\xi) = \delta(\xi - r) \text{ und } \mathcal{F}_{\kappa,\xi}^{-1}[e^{i\kappa r}(i\kappa r - 1)](\xi) = \left(r\frac{d}{dz} - 1\right)\delta(z)\Big|_{z=\xi-r}.$$

Die Eigenschaften der Matrizen :

- reellwertig und schwachbesetzt für ein festes $\xi \in [0, \operatorname{diam}(\Gamma)]$
- jedes Element besitzt lokalen Träger ($[\xi_{min},\xi_{max}]$)
- analytische Berechnung für ebene Dreieckselemente mittels einer geeigneten Koordinatentransformation

2. Fourier-Methode -

Analytische Ausdrücke der Matrixeinträge

$$\overset{d}{\phi} \overset{h}{\rho} \overset{h}{\rho} \overset{h}{\gamma} \overset{h$$

Bemerkungen:

۶

 y_i

- $\xi_{min} \ge \xi_0 = \sqrt{d+h}$
- $\check{b}_{ij}(\xi)$ und $\check{a}_{ij}(\xi)$ besitzen Stammfunktionen $B_{ij}(\xi)$ und $A_{ij}(\xi)$
- $\check{b}_{ij}(\xi)$ singulär für $\xi = \xi_0$

Workshop FastBEM , Kleinwalsertal 2003

2. Fourier-Methode Die Fourier-Transformation von $\check{C} = \check{A}$ bzw. $\check{C} = \check{B}$: $\int_{\xi_{min}}^{\xi_{max}} \check{c}_{ij}(\xi) e^{i\kappa\xi} d\xi \approx \tilde{c}_{ij}(\kappa) = \frac{e^{i\kappa\xi_o}}{4\pi} \left(C_{ij}(\xi) \Big|_{\xi_{min}}^{\xi_{max}} + \sum_{l=1}^{m_p} w_k \bar{c}_{ij}(\xi_l) \operatorname{sinc}(\kappa\xi_l) e^{i\kappa\xi_l} \right).$

Das lineare Gleichungssystem

$$\left(\frac{1}{2}I + \tilde{B}(\kappa) - i\eta\tilde{A}(\kappa)\right)\nu(\kappa) = \varrho$$

Bemerkungen:

- Polynomordnung m_p klein
- $A_{ij}(\xi)$ und $\bar{a}_{ij}(\xi)$ bzw. $B_{ij}(\xi)$ und $\bar{b}_{ij}(\xi)$ sind unabhängig von κ
- insbesondere $\tilde{b}_{ii}(\kappa) = 0$

(Bebendorf, Rjasanow: Adaptive low-rank approximation of collocation matrices, *Computing*, 70(1);1-24, 2003)

- Theoretische Ergebnisse nur für asymptotisch glatte Kerne
- !! Formale Anwendung des Algorithmus für degenierte Kerne, die nicht asymptotisch glatt sind \rightarrow Helmholtz-Operator !!

Approximation der Matrix:

- Konstruktion des Cluster-Baumes
- Bestimmung der zulässigen Cluster-Paare

 $\max(\operatorname{diam}(D_1), \operatorname{diam}(D_2)) \le \gamma \operatorname{dist}(D_1, D_2), \quad 0 < \gamma < 1$

• Approximation der Blöcke

-3. ACA-Verfahren -

ACA-Verfahren mit vollständiger Pivotisierung

- $R_0 = C, C_0 = 0.$
- Für $k = 0, 1, 2, \dots$ solange $||R_k||_F > \varepsilon ||C||_F$
- $(R_k)_{i_{k+1},j_{k+1}} = \max_{i,j} |(R_k)_{ij}|$ und $\gamma_{k+1} = \frac{1}{(R_k)_{i_{k+1},j_{k+1}}}$

•
$$R_{k+1} = R_k - \gamma_{k+1} (R_k e_{j_{k+1}}) (e_{i_{k+1}}^T R_k)^*$$

•
$$C_{k+1} = C_k + \gamma_{k+1} (R_k e_{j_{k+1}}) (e_{i_{k+1}}^T R_k)^*$$

-3. ACA-Verfahren -

ACA-Verfahren mit einer partiellen Pivotisierung

•
$$C_0 = 0, i_1 := 1.$$

• Für k = 0, 1, 2, ... solange $||u_k||_F ||v_k||_F > \varepsilon ||C_k||_F$

•
$$e_{i_{k+1}}^T R_k = e_{i_{k+1}}^T C - \sum_{l=1}^k (u_l)_{i_{k+1}} v_l^*$$

•
$$(R_k)_{i_{k+1},j_{k+1}} = \max_j |(R_k)_{i_{k+1}j}|$$
 und $v_{k+1} = e_{i_{k+1}}^T R_k / (R_k)_{i_{k+1},j_{k+1}}$

•
$$u_{k+1} = Ce_{j_{k+1}} - \sum_{l=1}^{k} u_l(v_l)_{j_{k+1}}^*$$

•
$$i_{k+2} = \operatorname{argmax}_{i \neq i_{k+1}} |(u_{k+1})_i|$$

- $C_{k+1} = C_k + u_{k+1}v_{k+1}^*$
- Berechnung von $||C_k||_F$:

$$|C_k||_F^2 = ||C_{k-1}||_F^2 + 2\sum_{l=1}^{k-1} u_k^* u_l v_l^* v_k + ||u_k||_F^2 ||v_k||_F^2$$

Streuproblem an der schallweichen Einheitskugel

$$u^{I}(y) = e^{i\kappa d^{T}y}, \quad d = (1, 0, 0)^{T}.$$

Randintegralgleichung

$$\left(\frac{I}{2} + B - i\eta A\right)\nu = -e^{i\kappa d^T y}, \quad \eta > 0,$$

die analytische Lösung

$$\boldsymbol{\nu}(\boldsymbol{y},\boldsymbol{\kappa}) = \sum_{n=0}^{\infty} i^n (2n+1) \frac{j_n(\boldsymbol{\kappa})}{i\boldsymbol{\kappa}(\boldsymbol{\kappa}j'_n(\boldsymbol{\kappa}) - i\eta j_n(\boldsymbol{\kappa})) h_n^{(1)}(\boldsymbol{\kappa})} P_n(\boldsymbol{d}^T \boldsymbol{y}) \,.$$

Die Lösungen mit Standardtechniken ν_{ST} und Fouriermethode ν_{FT} .

ACA-Verfahren mit partieller Pivotisierung, $\varepsilon = 10^{-4}$

Kompressionsfaktor $KF := \frac{Mem(\text{Approximant})}{Mem(\text{Original Matrix})}$

Feste Wellenzahl $\kappa = \pi/2$

N	κh	KF~(%)	$ \nu - \nu_{FT} _{\mathbb{L}_2}$	$ \nu - \nu_{FT} _{\mathbb{L}_2}/ \nu _{\mathbb{L}_2}$	# It.
80	0.97	100	3.91E-01	6.14E-02	5
320	0.51	93	1.07E-01	1.62 E-02	5
1280	0.247	46	2.75 E-02	4.09 E- 03	5
5120	0.13	18	6.96E-03	1.03E-03	5
20480	0.065	6	1.93E-03	2.86 E-04	4

N	κ	κh	KF~(%)	$ \nu - \nu_{FT} _{\mathbb{L}_2}$	$ \nu - \nu_{FT} _{\mathbb{L}_2}/ \nu _{\mathbb{L}_2}$	# It.
80	0.4	0.247	100	2.24E-01	3.17E-02	4
320	0.76	0.247	87	8.22E-01	1.10E-02	5
1280	1.5	0.247	46	2.75 E-01	4.09E-03	5
5120	3.0	0.248	20	8.42E-02	1.49E-03	6
20480	6.0	0.248	8	1.93E-02	3.87E-03	7

Variable κ mit $\kappa \cdot h \approx 0.25$

KF in Abhängigkeit der Wellenzahl

Workshop FastBEM , Kleinwalsertal 2003

Randintegralgleichung - Green'sche Darstellung

$$Af = \left(-\frac{I}{2} + B\right)w.$$

Die analytische Lösung $f(\kappa) = \frac{\partial}{\partial n_x} w(\kappa)$. mit $w = G(x, y_0, \kappa)$ mit $y_0 \in \Omega$ und $x \in \Gamma$

 \mathbb{L}_2 Fehler der Lösungen f_{ST}, f_{FT}

Workshop FastBEM , Kleinwalsertal 2003

Zusammenfassung —

- Fourier-Methode für die Generierung der Kollokationsmatrizen
- analytische Berechnung der reellen und schwachbesetzten Matrizen
- effiziente Generierung der "neuen" Systemmatrizen für beliebige Wellenzahlen
 - Anwendung des ACA-Verfahrens auf die Kollokationsmatrizen
 - gute Übereinstimmung der numerischen Ergebnisse mit den analytischen Werten

