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Problem 2

Goal: Treat certain large dense matrices in linear complexity.

Model problem: Discretization of integral operators of the form

K[u](x) =

∫

Ω

κ(x, y)u(y) dy.

Discretization: Galerkin method with FE basis (ϕi)
n
i=1 leads to a

matrix K ∈ R
n×n with

Kij = 〈ϕi,K[ϕj ]〉L2 =

∫

Ω

∫

Ω

ϕi(x)κ(x, y)ϕj(y) dy dx. (1 ≤ i, j ≤ n)

Problem: K is dense.

Idea: Use properties of the kernel function to approximate K.

Examples: Wavelets, multipole expansion, interpolation.



Interpolation 3

Idea: We consider a subdomain τ ×σ ⊆ Ω×Ω and replace the kernel

function κ by an interpolant

κ̃τ,σ(x, y) :=
k∑

ν=1

k∑

µ=1

κ(xτ
ν , xσ

µ)Lτ
ν(x)Lσ

µ(y). (k � n)

Result: Local matrix in factorized form

Kτ,σ
ij :=

∫

τ

∫

σ

ϕi(x)κ(x, y)ϕj(y) dy dx ≈

∫

τ

∫

σ

ϕi(x)κ̃τ,σ(x, y)ϕj(y) dy dx

=
k∑

ν=1

k∑

µ=1

κ(xτ
ν , xσ

µ)

︸ ︷︷ ︸

=:Sτ,σ
νµ

∫

τ

ϕi(x)Lτ
ν(x) dx

︸ ︷︷ ︸

=:V τ
iν

∫

σ

ϕj(y)Lσ
µ(y) dy

︸ ︷︷ ︸

=:V σ
jµ

= (V τSτ,σ(V σ)>)ij

k

n k n



Local interpolation 4

Problem: Typical kernel functions are not globally smooth.

Idea: They are locally smooth outside of the diagonal x = y.

Examples: 1/‖x − y‖, log ‖x − y‖.

Error bound: For m-th order tensor interpolation on axis-parallel

boxes Bτ ⊇ τ and Bσ ⊇ σ, we get

‖κ̃τ,σ − κ‖L∞(Bτ×Bσ) ≤ Capx(m)

(

1 +
2 dist(Bτ , Bσ)

diam(Bτ × Bσ)

)−m

.

Rank: m interpolation points per coordinate ⇒ k = md.

Admissibility: Uniform exponential

convergence requires

diam(Bτ × Bσ) ≤ 2η dist(Bτ , Bσ).



Block structure 5

Approach: Split Ω × Ω into admissible subdomains and a small

remainder.

Cluster tree: Hierarchy of

subdomains of Ω

Nearfield: Small blocks,

stored in standard format.

Farfield: Admissible blocks,

stored in V τSτ,σ(V σ)> format.

Partition: Collection of far-

and nearfield blocks.

Construction of cluster tree and block partition can be accomplished

by general algorithms in O(n) operations.



Nested bases 6

Goal: Treat the cluster basis (V τ )τ∈T efficiently.

Idea: For a cluster τ and τ ′ ∈ sons(τ) we have

Lτ
ν =

k∑

ν′=1

Lτ
ν(xτ ′

ν′)Lτ ′

ν′ . (1 ≤ ν ≤ k)

Nested bases: Consider i ∈ τ ′ ⊆ τ . Setting T τ ′

ν′ν := Lτ
ν(xτ ′

ν′), we find

V τ
iν =

∫

τ

ϕi(x)Lτ
ν(x) dx =

k∑

ν′=1

T τ ′

ν′ν

∫

τ

ϕi(x)Lτ ′

ν′(x) dx = (V τ ′

T τ ′

)iν .

Consequence: Store V τ only for leaves

and use T τ ′

for all other clusters.

Complexity: Storage O(nk), matrix-

vector O(nk).



Orthogonalization 7

Problem: Efficiency depends on the rank k. Can we reduce this rank

by eliminating redundant expansion functions?

Idea: Orthogonalize columns of V τ .

Gram-Schmidt: Find Ṽ τ = V τZτ such that

(Ṽ τ )>Ṽ τ = I holds.

=
Ṽ τ V τ Zτ

Nested structure: Using P τ with V τ = Ṽ τP τ , we find

V τ =




V τ1T τ1

V τ2T τ2



 =




Ṽ τ1P τ1T τ1

Ṽ τ2P τ2T τ2



 =




Ṽ τ1

Ṽ τ2








P τ1T τ1

P τ2T τ2



 ,

so it is sufficient to orthogonalize a (2k) × k matrix. The resulting

cluster basis is nested due to

Ṽ τ = V τZτ =




Ṽ τ1(P τ1T τ1Zτ )

Ṽ τ2(P τ2T τ2Zτ )



 =




Ṽ τ1 T̃ τ1

Ṽ τ2 T̃ τ2



 .

Result: Complexity O(nk2).



Orthogonalization: Simple example 8

Example: Unit sphere, piecewise constant trial and test functions.

Interpolation Orthogonalized

n Build MVM Mem/n Expl Impl MVM Mem/n

2048 6 0.14 49.2 3 8 0.07 17.0

8192 26 0.54 45.6 15 35 0.31 21.1

32768 126 2.45 49.6 107 149 1.37 22.0

131072 765 10.33 53.4 469 774 5.48 22.0

524288 3347 43.08 53.8 2045 3473 23.81 22.0

H2-matrix constructed by cubic interpolation and subsequent

orthogonalization, relative error ≤ 10−3.

Hardware: SunFire 6800 with 900 MHz UltraSparc IIIcu processors

Software: HLib, see http://www.hlib.org



Recompression algorithm: Problem 9

Problem: Interpolation does not take into account that a subset of

polynomials may be sufficient to approximate the kernel function.

Idea: Use local singular value decompositions to find optimal cluster

bases ⇒ Take kernel and geometry into account.

Important: Since the cluster bases are

nested, the father clusters depend on the son

clusters.

Consequence: If τ × σ is a farfield block and τ ′ ∈ sons(τ), we have

K̃|τ ′×σ = (V τSτ,σ(V σ)>)|τ ′×σ = V τ ′

T τ ′

Sτ,σ(V σ)>,

i.e., the choice of V τ ′

influences all farfield blocks connected to τ or

its other ancestors.



Recompression algorithm: Local problems and recursion 10

Block row: Rτ := {σ : ∃τ+ ⊇ τ : τ+ × σ is admissible}.

Goal: Find an orthogonal matrix V τ ∈ R
τ×kτ

that maximizes
∑

σ∈Rτ

‖(V τ )>K|τ×σ‖
2
F .

Optimal solution: Use eigenvectors of corresponding Gram matrix.

Nested structure: Ensured by bottom-up recursion and projections.

Result: Algorithm with complexity O(nk2), truncation error can be

controlled directly.



Recompression: Simple example 11

Example: Unit sphere, piecewise constant trial and test functions.

Interpolation Recompressed

n Build MVM Mem/n Build MVM Mem/n

2048 6 0.14 49.2 11 0.01 3.7

8192 26 0.54 45.6 51 0.11 4.4

32768 128 2.41 49.6 210 0.45 4.6

131072 762 10.34 53.4 883 2.07 4.7

524288 3371 43.37 53.8 3818 9.77 5.2

H2-matrix constructed by cubic interpolation.

Recompression with relative error bound 10−3, maximal rank 16.

Hardware: SunFire 6800 with 900 MHz UltraSparc IIIcu processors.

Software: HLib, see http://www.hlib.org



Recompression: Netgen example 12

Example: Grid “Crank shaft” of the Netgen package.

n 1768 10126 113152

Build 20 200 2255

Mem/n 5.7 7.6 5.6

Near/n 4.2 4.7 3.4

MVM 0.02 0.24 2.18

Rel. error 0.05% 0.07% 0.08%

DMem/n 13.8 79.1 884.0



Recompression: Netgen geometries and eddy current model 13

b(v, φ) =

Z

Γ

Z

Γ

〈∇ × φ(y), v(x)〉〈∇xΦ(x, y), n(x)〉 dy dx

−

Z

Γ

Z

Γ

〈∇ × φ(y), n(x)〉〈∇xΦ(x, y), v(x)〉 dy dx

n 42432 169728 37632

Direct 1554 5178 1428

MVM 8.3 32.5 8.0

Mem/DoF 168 165 183

Recompressed 1700 6090 1644

MVM 0.8 2.6 0.7

Mem/DoF 8.0 6.5 8.0

Rel. error 8 × 10−3 1 × 10−3



Summary 14

H2-matrices: Nested structure leads to complexity O(nk) for storage

requirements and matrix-vector multiplication.

Black box: The approximation is constructed by using only kernel

evaluations κ(xτ
ν , xσ

µ) and works for all asymptotically smooth kernel

functions.

Recompression: Use O(nk2) algorithm to reduce the rank k, find a

quasi-optimal cluster basis adapted to geometry, discretization and

kernel function.

Work in progress: H2-matrix arithmetics, HCA.



H
2-matrix arithmetics 15

Goal: Perform matrix addition and multiplication efficiently.

Addition and scaling: For an admissible block τ × σ, we have

(A + λB)|τ×σ = V τ (Sτ,σ
A + λSτ,σ

B )(V σ)>,

so H2-matrices form a vector space. Addition and scaling can be

performed in O(nk) operations.

+( )✕λ

Multiplication: Defined recursively.



A11 A12

A21 A22








B11 B12

B21 B22



=




A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22





Use truncation if product does not match prescribed format.



H
2-matrix multiplication I 16

✕:=

Situation: Let A = V τSτ,%
A (V %)>, B not admissible.

Compute best approximation of AB in the form C = V τSτ,σ
C (V σ)>.

Orthogonality: If V τ and V σ are orthogonal:

Sτ,σ
C = (V τ )>ABV σ = (V τ )>V τSτ,%

A (V %)>BV σ = Sτ,%
A (V %)>BV σ

︸ ︷︷ ︸

=:S̃%,σ

B

.

Problem: Computing (V %)>BV σ directly is too expensive.

Idea: Prepare S̃%,σ
B := (V %)>BV σ in advance.

Matrix forward transformation: Since the cluster bases are

nested, all matrices S̃%,σ
B can be prepared in O(nk3) operations.



H
2-matrix multiplication II 17

✕:=

Situation: Let A = V τSτ,%
A (V %)> and B = V %S%,σ

B (V σ)>.

Advantage: The product AB already has the factorized form

AB = V τSτ,%
A (V %)>V %S%,σ

B (V σ)> = V τ (Sτ,%
A S%,σ

B )(V σ)>.

Problem: Converting AB directly to the format of C will lead to

inacceptable complexity.

Idea: Store result in S̃τ,σ
C := Sτ,%

A S%,σ
B and distribute after the

multiplication is complete.

Matrix backward transformation: Since the cluster bases are

nested, all matrices S̃τ,σ
C can be distributed in O(nk3) operations.



H
2-matrix multiplication III 18

✕:=

Situation: Let B = V %S%,σ
B (V σ)>.

Approach: Split B and proceed by recursion:

B|%′×σ′ = V %′

T %′

S%,σ
B (T σ′

)>
︸ ︷︷ ︸

=:bS
%′,σ′

B

(V σ′

)>.

Complexity: Only O(C2
spn) such splitting operations are required

⇒ Complexity O(C2
spnk3).

Result: The best approximation C of AB in a prescribed H2-matrix

format can be computed in O(C2
spnk3) operations.



H
2-matrix multiplication: Fixed structure 19

Example: Discretized double layer potential on the unit sphere K,

approximate KK.

n Build Csp H2-MVM H2-MMM H-MMM Error

512 1.7 16 < 0.01 0.3 0.7 1.1
−2

2048 10.7 36 0.01 6.0 39.0 1.2
−2

8192 49.4 42 0.10 35.6 315.9 4.5
−3

32768 206.3 56 0.45 172.3 2085.2 4.9
−3

131072 858.3 84 2.00 924.2 13213.8 8.6
−5

Important: Here, the result matrix is projected to the same cluster

bases and the same block structure as K.

Question: Can we reduce the error by using adapted cluster bases?



H
2-matrix multiplication: Adapted structure 20

Modification: Choose cluster bases for result matrix adaptively to

improve the precision.

n Csp Old MMM Error New basis New MMM Error

512 16 0.3 1.1
−2 0.3 0.3 5.0

−5

2048 36 6.0 1.2
−2 9.5 6.8 6.6

−5

8192 42 35.6 4.5
−3 98.9 40.8 1.4

−4

32768 56 172.3 4.9
−3 878.9 194.7 4.3

−6

131072 84 924.2 8.6
−5 5030.2 966.9 2.9

−6

Advantage: Precision significantly improved, computation time only

slightly increased.

Current work: Improve the efficiency of the construction of adapted

cluster bases.



Hybrid Cross Approximation 21

Problem: For each admissble block V τSτ,σ(V σ)> of the H2-matrix,

the kernel function κ has to be evaluated in m2d points.

⇒ Very time-consuming if high precision is required.

Approach: Apply adaptive cross approximation to the coefficient

matrices Sτ,σ to find rank k representation Sτ,σ ≈ Xτ,σ(Y τ,σ)>.

Result: Only mdk � m2d kernel evaluations required to approximate

coefficient matrix Sτ,σ.

Important: ACA is only applied to coefficient matrices.

⇒ Construction still linear in n, no problems with quadrature.

m 5 6 7 8

Std 24.1s 64.7s 160.8s 399.2s

HCA 22.3s 49.2s 90.0s 222.7s



Conclusion 22

H2-matrices: Data-sparse approximation of certain dense matrices

with linear complexity in the number of degrees of freedom.

Adaptive cluster bases: Find quasi-optimal expansion systems

for arbitrary matrices. In the case of integral operators, point

evaluations of the kernel function are sufficient to construct efficient

and reliable H2-matrix approximations.

H2-matrix arithmetics: Approximate A + λB and AB in O(nk2)

and O(nk3) operations. Next goal: Approximate A−1 and LU .

HCA: Reduce the number of kernel evaluations required to construct

the H2-matrix.

Software: HLib package for hierarchical matrices and

H2-matrices, including applications to elliptic PDEs

and integral equations.

http://www.hlib.org



Interpolation vs. Multipole 23

Construction: Pointwise evaluation and integrals of polynomials.

T t′

ν′ν = Lt
ν(xt′

ν′), St,s
νµ = κ(xt

ν , xs
µ), V t

iν =

∫

Γ

ϕi(x)Lt
ν(x) dx.

Interpolation Multipole

- Rank k = pd + Rank k = pd−1

- Low frequencies only + Low and high frequencies

+ General kernels - Special kernels only

+ Anisotropic clusters - Spherical clusters only

Goal: Reduce rank for interpolation without sacrificing precision.


