H*-matrices with adaptive bases

Steffen Borm

MPI fur Mathematik in den Naturwissenschatten
Inselstrafie 22-26, 04103 Leipzig

http://www.mis.mpg.de/




Problem

Goal: Treat certain large dense matrices in linear complexity.

Model problem: Discretization of integral operators of the form

Klul(z) = / oz, y)uly) dy.

Discretization: Galerkin method with FE basis (y;)?"_; leads to a
matrix K € R"*"™ with

Kij = (i, Klpj]) 2 = //907, k(z,y)p;(y) dyde. (1 <i,j <n)

Problem: K is dense.
Idea: Use properties of the kernel function to approximate K.

Examples: Wavelets, multipole expansion, interpolation.




Interpolation

Idea: We consider a subdomain 7 x o C () x {2 and replace the kernel
function k by an interpolant

ZZK 2y, 2,) L3 (x) L3 (y). (k < n)

v=1 pu=1

Result: Local matrix in factorized form

//*" w95y >dydw~//% K77 (2,y)p; (y) dy da

v=1 p=1
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Local interpolation

Problem: Typical kernel functions are not globally smooth.

Idea: They are locally smooth outside of the diagonal x = y.
Examples: 1/[z — y]|, log |z — y]|.

Error bound: For m-th order tensor interpolation on axis-parallel
boxes B™ O 7 and B? D o, we get

2dist(B™, B°) \ "
diam(B™ x B°))

Hl%Tyo' — K,HLOO(BTXBO') S Oapx(m) (1 _I_

Rank: m interpolation points per coordinate = k = m¢.

Admissibility: Uniform exponential
convergence requires &J

diam(B" x B?) < 2ndist(B", B?).




Block structure

Approach: Split 2 x ) into admissible subdomains and a small
remainder.

Cluster tree: Hierarchy of
subdomains of (2

Nearfield: Small blocks,
stored in standard format.
Farfield: Admissible blocks,
stored in V7S77(V?)" format.
Partition: Collection of far-
and nearfield blocks.

Construction of cluster tree and block partition can be accomplished

by general algorithms in O(n) operations.




Nested bases

Goal: Treat the cluster basis (V7)< efficiently.

Idea: For a cluster 7 and 7" € sons(7) we have

Nested bases: Consider i € 7/ C 7. Setting 77, = L7 (x7,), we find

Vi, = / 0i(2) LT (z) dr = Z T, / i () LT (z)dr = (VT T7 ).
T v'=1 T

Consequence: Store V7 only for leaves

and use T™ for all other clusters.

Complexity: Storage O(nk), matrix-
vector O(nk).
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Orthogonalization

Problem: Efficiency depends on the rank £. Can we reduce this rank
by eliminating redundant expansion functions?

Idea: Orthogonalize columns of V7.
Gram-Schmidt: Find V™ = V7Z7 such that e
(V)TVT =TI holds.

Nested structure: Using P™ with V™ = V7 P7, we find

VTlTTl ‘77‘1P’7’1T7‘1 ‘7’7’1 P’TlT’Tl

VTQTTQ ‘77‘2P’7’2T7‘2 ‘7’7’2 P’TQT’TQ

so it is sufficient to orthogonalize a (2k) x k matrix. The resulting
cluster basis is nested due to

- VT (P TTZ7) VT
VT — VT ZT — ~ ~ ~
V7 (P2T™2Z7) VAEVME

Result: Complexity O(nk?).




Orthogonalization: Simple example

Example: Unit sphere, piecewise constant trial and test functions.

n

Interpolation

Build

MVM

Mem/n

Expl

Orthogonalized

Impl

MVM

Mem/n

2048
8192
32768
131072
524288

6

26
126
765
3347

0.14
0.54
2.45
10.33
43.08

49.2
45.6
49.6
53.4
53.8

3

15
107
469
2045

8

35
149
774
3473

0.07
0.31
1.37
5.48
23.81

17.0
21.1
22.0
22.0
22.0

H?-matrix constructed by cubic interpolation and subsequent

orthogonalization, relative error < 1073,

Hardware: SunFire 6800 with 900 MHz UltraSparc IlIcu processors

Software: HLIB, see http://www.hlib.org




Recompression algorithm: Problem

Problem: Interpolation does not take into account that a subset of

polynomials may be sufficient to approximate the kernel function.

Idea: Use local singular value decompositions to find optimal cluster

bases = Take kernel and geometry into account.

Important: Since the cluster bases are

M
nested, the father clusters depend on the son
-

clusters.

Consequence: If 7 x ¢ is a farfield block and 7" € sons(7), we have
K’T’XO‘ _ (VTST,J(VJ)T)lT/XU _ VT/TT/ST’J(VJ)Ta

i.e., the choice of V7 influences all farfield blocks connected to T or

its other ancestors.




Recompression algorithm: Local problems and recursion

Block row: R™ :={c : 377 D7 : 77 X ¢ is admissible}.

Goal: Find an orthogonal matrix V™ € R™**" that maximizes

> V)T Kol

ocER™

Optimal solution: Use eigenvectors of corresponding Gram matrix.

Nested structure: Ensured by bottom-up recursion and projections.

Result: Algorithm with complexity O(nk?), truncation error can be

controlled directly.
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Recompression: Simple example

Example: Unit sphere, piecewise constant trial and test functions.

Interpolation Recompressed

n | Build | MVM | Mem/n | Build | MVM | Mem/n

2048 6 0.14 49.2 11 0.01 3.7
8192 26 0.54 45.6 o1 0.11 4.4
32768 128 2.41 49.6 210 0.45 4.6
131072 762 | 10.34 53.4 333 2.07 4.7
524288 | 3371 | 43.37 53.8 | 3818 9.77 5.2

H?-matrix constructed by cubic interpolation.

Recompression with relative error bound 1073, maximal rank 16.

Hardware: SunFire 6800 with 900 MHz UltraSparc I1IIcu processors.

Software: HLIB, see http://www.hlib.org




Recompression: Netgen example

Example: Grid “Crank shaft” of the Netgen package.

n

113152

Build
Mem/n
Near /n

MVM

Rel. error

2255
0.6
3.4

2.18
0.08%

DMem/n

884.0
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Recompression: Netgen geometries and eddy current model

b(v, ) = / / (V % $(y), v(2))(Vad(z, ), n(x)) dy dz

n

it

169728

@D

Direct
MVM
Mem /DoF

5178
32.5
165

Recompressed
MVM
Mem /DoF

Rel. error

6090
2.6
6.5




Summary

H?-matrices: Nested structure leads to complexity O(nk) for storage

requirements and matrix-vector multiplication.

Black box: The approximation is constructed by using only kernel

g

?) and works for all asymptotically smooth kernel

evaluations x(z7],

functions.

Recompression: Use O(nk?) algorithm to reduce the rank k, find a
quasi-optimal cluster basis adapted to geometry, discretization and

kernel function.

Work in progress: H?-matrix arithmetics, HCA.
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H?-matrix arithmetics 15

Goal: Perform matrix addition and multiplication efficiently.

Addition and scaling: For an admissible block 7 X o, we have

(A4 AB)|rxo = V(ST +ASF)(V) ',

so ‘H?-matrices form a vector space. Addition and scaling can be
performed in O(nk) operations.

Multiplication: Defined recursively.

Ajr Ags Bi1 Bia A11B11 + A12Boy A11Bi2 4+ A12B29

Agr Ao By Bag Ao1B11 + A22Bo1 Ao1Bio + AgaBao

Use truncation if product does not match prescribed format.




H?-matrix multiplication I 16

Situation: Let A =V7S7}%(Ve)" B not admissible.
Compute best approximation of AB in the form C' = V7S5 (V7).

Orthogonality: If V7 and V7 are orthogonal:

SH7 = (V)TABV? = (V)T VTS, e(Ve) BV? = S3¢ (Vo) BVe.

_.Qo,o
=:5¢

Problem: Computing (V)" BV directly is too expensive.
Idea: Prepare S%7 := (V2)T BV? in advance.

Matrix forward transformation: Since the cluster bases are

nested, all matrices S 27 can be prepared in O(nk?) operations.




H?-matrix multiplication II 17

Situation: Let A =V7S}¢(Ve)" and B=VeSg7 (Vo).

Advantage: The product AB already has the factorized form
AB=V"S3¢(VO)'Vesgy (Vo) =v7T(SyesgT)(ve) .

Problem: Converting AB directly to the format of C will lead to

inacceptable complexity.

Idea: Store result in S’(TJG = S°S%Y and distribute after the

multiplication is complete.

Matrix backward transformation: Since the cluster bases are

nested, all matrices S’(TJG can be distributed in O(nk”) operations.




H?-matrix multiplication III

Situation: Let B =VeSg7(Vo)'.

Approach: Split B and proceed by recursion:

B’Q’XO” — VQ/ ?Q/S%,O'(TJ/)‘Z(VJ/)T.

~

=:5% 7
Complexity: Only O(Cfpn) such splitting operations are required
= Complexity O(CZ,nk?).
Result: The best approximation C of AB in a prescribed H?-matrix

format can be computed in O(CZ,nk?) operations.
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H?-matrix multiplication: Fixed structure

Example: Discretized double layer potential on the unit sphere K,
approximate K K.

n | Build | Cyp | H*-MVM | H*-MMM | H-MMM
512 1.7 | 16 < 0.01 0.3 0.7
2048 | 10.7 | 36 0.01 6.0 39.0
8192 | 49.4 | 42 0.10 35.6 315.9
32768 | 206.3 | 56 0.45 172.3 2085.2
131072 | 858.3 | 84 2.00 924.2 | 13213.8

Important: Here, the result matrix is projected to the same cluster
bases and the same block structure as K.

Question: Can we reduce the error by using adapted cluster bases?




H?-matrix multiplication: Adapted structure

Modification: Choose cluster bases for result matrix adaptively to
improve the precision.

n | Csp | Old MMM New basis

512 | 16 0.3 | 1. 0.3
2048 | 36 6.0 | 1. 9.5
8192 | 42 35.6 | 4. 98.9
32768 | 56 172.3 | 4. 878.9
131072 | &4 924.2 | 8. 5030.2

Advantage: Precision significantly improved, computation time only

slightly increased.

Current work: Improve the efficiency of the construction of adapted

cluster bases.
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Hybrid Cross Approximation 21

Problem: For each admissble block V™S9 (V)" of the H?-matrix,
the kernel function x has to be evaluated in m?? points.

= Very time-consuming if high precision is required.

Approach: Apply adaptive cross approximation to the coefficient

matrices S7° to find rank k representation S77 ~ X7 (Y 7).

Result: Only m?k < m?? kernel evaluations required to approximate

coeflicient matrix S7°.

Important: ACA is only applied to coefficient matrices.

= Construction still linear in n, no problems with quadrature.

m 5! 6 7 8




Conclusion

H?-matrices: Data-sparse approximation of certain dense matrices
with linear complexity in the number of degrees of freedom.

Adaptive cluster bases: Find quasi-optimal expansion systems
for arbitrary matrices. In the case of integral operators, point
evaluations of the kernel function are sufficient to construct efficient
and reliable H2-matrix approximations.

H?-matrix arithmetics: Approximate A + AB and AB in O(nk?)

and O(nk?) operations. Next goal: Approximate A~! and LU.

HCA: Reduce the number of kernel evaluations required to construct
the H2-matrix.

Software: HLIB package for hierarchical matrices and
H2-matrices, including applications to elliptic PDEs
and integral equations.
http://www.hlib.org
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Interpolation vs. Multipole 23

Construction: Pointwise evaluation and integrals of polynomials.

Y, = L), Sty = wabat), VE = [ ei@)g @) de

Interpolation Multipole

- Rank k = p? + Rank k = p¢—1!
- Low frequencies only + Low and high frequencies

+ General kernels - Special kernels only

+ Anisotropic clusters — Spherical clusters only

/ \ 7 \

M \ /W \

I I

| |

/ ! 7’ !

, ‘ , )

, | , i

/ [ / I
, ! , ,

I

! / /
i h | A
\ / ' /
\ / t /
\ N \ R
\ o, \ )Yy
AN wo\ AN Lo\
\W \W

Goal: Reduce rank for interpolation without sacrificing precision.




