Coupled FETI/BETI for Nonlinear Potential Problems

U. Langer¹ <u>C. Pechstein¹</u> A. Pohoață¹

¹Institute of Computational Mathematics Johannes Kepler University Linz {ulanger,pechstein,pohoata}@numa.uni-linz.ac.at

This work has been supported by the Austrian Science Fund 'Fonds zur Förderung der wissenschaftlichen Forschung

(FWF)' under the grant 'Project P 14953 '

Outline

• Motivation

 $\mathsf{Nonlinear}\ \mathsf{Magnetostatic}\ \leftarrow\ \mathsf{Maxwell}$

• Coupled FETI/BETI for Linear Potential Problems

Weak Formulation – Tearing and Interconnecting – Schur Complement Regularization – Dual Problem – Preconditioning

• Nonlinear Potential Problems

Approximation of Nonlinear Parameter – Newton + Coupled FETI-BETI

- First Numerical Results (Linear)
- Concluding Remarks and Outlook

Motivation for Coupled FETI/BETI

References

FETI: [Farhat, Roux, Klawonn, Widlund, Brenner] BETI/Coupling: [Langer, Steinbach]

Non-overlapping Domain Decomposition

$$\begin{split} \Omega \subset \mathbb{R}^n & n = 2, 3 \quad \text{bounded} \\ \bar{\Omega} = \bigcup_{i \in I} \bar{\Omega}_i \\ \Gamma = \partial \Omega \\ \Gamma_i = \partial \Omega_i \\ \Gamma_{ij} = \Gamma_i \cap \Gamma_j \\ \bar{n}_i \dots \text{ outward unit normal vector to } \Omega_i \end{split}$$

Linear Potential Problem

Potential Problem

 $\alpha_i = \alpha_i(x) !$

$$\begin{split} -\nabla \cdot \begin{bmatrix} \alpha_i \nabla u \end{bmatrix} &= f \quad \text{in } \Omega_i \\ u &= 0 \quad \text{on } \Gamma \\ (\alpha_i \nabla u) \cdot \vec{n}_i + (\alpha_j \nabla u) \cdot \vec{n}_j &= 0 \quad \text{on } \Gamma_{ij} \end{split}$$

Weak formulation – Find $u \in H_0^1(\Omega)$:

$$\sum_{i \in I} \int_{\Omega_i} \alpha_i \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f \, v \, \mathrm{d}x \qquad \forall v \in H^1_0(\Omega)$$

BEM Subdomains

 $I = I^{\text{BEM}} \cup I^{\text{FEM}}$ such that $\alpha_i \equiv \text{const}$ for $i \in I^{\text{BEM}}$ Local representation:

$$\int_{\Omega_{i}} \alpha_{i} \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\Omega_{i}} \underbrace{-\alpha_{i} \Delta u}_{=f} v \, \mathrm{d}x + \int_{\Gamma_{i}} \underbrace{\alpha_{i} \frac{\partial u}{\partial \vec{n}_{i}}}_{=S_{i}u - N_{i}f} v \, \mathrm{d}s_{x} \quad \text{for } i \in I^{\mathsf{BEM}}$$

Global formulation:

$$\begin{split} \sum_{i \in I^{\mathsf{FEM}} \Omega_{i}} &\int \alpha_{i} \nabla u \cdot \nabla v \, \mathrm{d}x + \sum_{i \in I^{\mathsf{BEM}} \Gamma_{i}} \int (S_{i}u) \, v \, \mathrm{ds}_{x} = \\ &= \sum_{i \in I^{\mathsf{FEM}} \Omega_{i}} \int f \, v \, \mathrm{d}x + \sum_{i \in I^{\mathsf{BEM}} \Gamma_{i}} \int (N_{i}f) \, v \, \mathrm{ds}_{x} \qquad \forall v \in H^{1}_{0}(\Omega) \end{split}$$

Discretization

- Triangulation of Ω_i , $i \in I^{\text{FEM}}$ $\rightsquigarrow V_{i,h} \subset H^1(\Omega_i) \cap H^1_0(\Omega)$
- Triangulation of Γ_i , $i \in I^{\mathsf{BEM}}$ $\rightsquigarrow V_{i,h} \subset \{v \in H^{1/2}(\Gamma_i) : v|_{\Gamma_i \cap \Gamma} = 0\})$

$$\begin{split} (K_{i,h}\,\underline{u}_i,\underline{v}_i) &= \int\limits_{\Omega_i} \alpha_i \nabla u_{i,h} \cdot \nabla v_{i,h} \,\mathrm{d}x \qquad (\underline{f}_i,\underline{v}_i) = \int_{\Omega_i} f\, v_{i,h} \,\mathrm{d}x \\ (S_{i,h}^{\mathsf{BEM}}\underline{u}_i,\underline{v}_i) &\approx \int\limits_{\Gamma_i} (S_i\,u_{i,h}) v_{i,h} \,\mathrm{d}\mathbf{s}_x \qquad (f_{i,h}^{\mathsf{BEM}},\underline{v}_i) = \int_{\Gamma_i} (N_i f)\, v_{i,h} \,\mathrm{d}\mathbf{s}x \end{split}$$

$$S_{i,h}^{\mathsf{BEM}} := D_{i,h} + \Big[\frac{1}{2} M_{i,h}^\top + K_{i,h}^\top \Big] V_{i,h}^{-1} \Big[\frac{1}{2} M_{i,h} + K_{i,h} \Big]$$

Tearing and Interconnecting

Linear System:

FEM – Schur Complement

Optionally: Elimination of inner FEM-unknowns via Schur Complement

$$\begin{split} S_{i,h}^{\mathsf{FEM}} &= K_{i,h}^{CC} - K_{i,h}^{IC} \, [K_{i,h}^{II}]^{-1} \, K_{i,h}^{CI} \\ \underline{f}_{i,h}^{\mathsf{FEM}} &= \underline{f}_{i,h}^{C} - K_{i,h}^{IC} \, [K_{i,h}^{II}]^{-1} \, \underline{f}_{i,h}^{I} \end{split}$$

Linear System:

FETI/BETI – Regularization, Dual Problem

In floating domains, i.e. $\Gamma_I \cap \Gamma = \emptyset$:

$$\tilde{S}_{i,h}^{\mathsf{FEM}/\mathsf{BEM}} = S_{i,h}^{\mathsf{FEM}/\mathsf{BEM}} {+} \beta_i \, \underline{e}_i \, \underline{e}_i^{\top}$$

Elimination of \underline{u}_i :

$$\underline{u}_{i} = \big[\tilde{S}_{i,h}^{\mathsf{FEM}/\mathsf{BEM}}\big]^{-1}\big[\underline{f}_{i}^{\mathsf{FEM}/\mathsf{BEM}} - B_{i}^{\top}\big] + \gamma_{i}\,\underline{e}_{i}$$

Dual problem: $F := \sum_{i \in I} B_i \left[\tilde{S}_{i,h}^{\mathsf{FEM/BEM}} \right]^{-1} B_i^{\top}, \quad G := (B_i e_i)_{i \in I}^{\mathsf{floating}}$ $\begin{pmatrix} F & -G \\ G^{\top} & \end{pmatrix} \begin{pmatrix} \frac{\lambda}{2} \end{pmatrix} = \begin{pmatrix} \frac{d}{2} \end{pmatrix}$

Projected dual problem: $P := I - G(G^{\top}G)^{-1}G^{\top}$

$$PF\underline{\lambda} = P\underline{d}$$

FETI/BETI – Preconditioners

Projected dual problem solved with CG-iteration. Preconditioners: [Langer, Steinbach, Klawonn, Widlund, Brenner]

$$C_{\mathsf{FETI}}^{-1} = (BC_{\alpha}^{-1}B^{\top})^{-1}BC_{\alpha}^{-1} \Big[\sum_{i \in I} B_i S_{i,h}^{\mathsf{FEM/BEM}} B_i^{\top} \Big] C_{\alpha}^{-1}B^{\top}) (BC_{\alpha}^{-1}B^{\top})^{-1}$$
$$C_{\mathsf{BETI}}^{-1} = (BC_{\alpha}^{-1}B^{\top})^{-1}BC_{\alpha}^{-1} \Big[\sum_{i \in I} B_i D_{i,h} B_i^{\top} \Big] C_{\alpha}^{-1}B^{\top}) (BC_{\alpha}^{-1}B^{\top})^{-1}$$

Spectral Equivalence:

$$S_{i,h}^{\mathsf{BEM}} \simeq S_{i,h}^{\mathsf{FEM}} \simeq S_{i,h} \simeq D_{i,h}$$

Condition Estimate:

$$\kappa(P C_{\mathsf{FETI}/\mathsf{BETI}}^{-1} P^{\top} P^{\top} F P) \preceq (1 + \log(H/h))^2$$

Nonlinear Potential Problems

Nonlinear Coefficient $\nu_i : \mathbb{R}_0^+ \to \mathbb{R}^+$, $\nu_i(\cdot) \equiv \text{const for } i \in I^{\text{BEM}}$ $s \mapsto \nu(s)s$ strongly monotone and Lipschitz-continuous

$$-\nabla \cdot \left[\nu_i(|\nabla u|) \nabla u \right] = f \quad \text{in } \Omega_i$$
$$u = 0 \quad \text{on } \Gamma$$
$$\nu_i(|\nabla u|) \nabla u \cdot \vec{n}_i + \nu_j(|\nabla u|) \nabla u \cdot \vec{n}_j = 0 \quad \text{on } \Gamma_{ij}$$

Problem: In magnetostatics, ν_i not available in analytical form \rightsquigarrow Approximation

Approximation of B-H-Curves

Approximation of B-H-Curves

Approximation of f in the class of strongly monotone cubic C^1 splines, such that $|\tilde{f}(H_k) - B_k| \le c \, \delta_k$

Minimization of $\int_{0}^{H_N} [f''(s)]^2 \frac{ds}{\omega(s)}$ (Data Dependent Functional)

~ Quadratic Optimization Problem

 \rightsquigarrow Spline Representation of $\tilde{f} \xrightarrow{\text{Newton+Trick}}$ Fast Evaluation of ν , ν' , etc.

Approximation of *B*-*H*-**Curves** – **Results**

Nonlinear Potential Problem

Nonlinear Coefficient $\nu_i \in \mathcal{C}^1(\mathbb{R}^+_0 \to \mathbb{R}^+)$, $\nu_i(\cdot) \equiv \text{const for } i \in I^{\text{BEM}}$ $\nu_i(t)t$ strongly monotone, Lipschitz-continuous

$$-\nabla \cdot \left[\mathbf{\nu}_i(|\nabla u|) \nabla u \right] = f \text{ in } \Omega_i$$

 $u = 0 \text{ on } \Gamma$

 $u_i(|\nabla u|) \nabla u \cdot \vec{n}_i + \nu_j(|\nabla u|) \nabla u \cdot \vec{n}_j = 0 \quad \text{on } \Gamma_{ij}$

Weak formulation: Find $u \in H_0^1(\Omega)$:

$$\begin{split} \sum_{i \in I^{\mathsf{FEM}} \Omega_i} &\int _{\Omega_i} \boldsymbol{\nu}_i (|\nabla \boldsymbol{u}|) \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{v} \, \mathrm{d}\boldsymbol{x} + \sum_{i \in I^{\mathsf{BEM}} \Gamma_i} \int _{\Gamma_i} (S_i^{(\nu_i)} \boldsymbol{u}) \boldsymbol{v} \, \mathrm{d}\mathbf{s}_{\boldsymbol{x}} = \\ &= \sum_{i \in I^{\mathsf{FEM}} \Omega_i} \int _{\Omega_i} f \, \boldsymbol{v} \, \mathrm{d}\boldsymbol{x} + \sum_{i \in I^{\mathsf{BEM}} \Gamma_i} \int _{\Gamma_i} (N_i f) \boldsymbol{v} \, \mathrm{d}\mathbf{s}_{\boldsymbol{x}} \qquad \forall \boldsymbol{v} \in H^1_0(\Omega) \end{split}$$

Newton Iteration

$$\begin{aligned} \text{Initial } u^{(0)}, \quad \text{e.g. } u^{(0)} &= 0\\ u^{(k+1)} &= u^{(k)} + \rho_k \, w^{(k)}\\ \sum_{i \in I^{\mathsf{FEM}} \Omega_i} \int _{\Omega_i} \left[\zeta_i(|\nabla u^{(k)}|) \nabla w^{(k)} \right] \cdot \nabla v \, \mathrm{d}x + \sum_{i \in I^{\mathsf{BEM}} \int_{\Gamma_i}} \left(S_i^{(\nu_i)} w^{(k)} \right) v \, \mathrm{d}s_x = \\ &= \sum_{i \in I^{\mathsf{FEM}} \Omega_i} \int _{\Omega_i} f \, v - \nu_i(|\nabla u^{(k)}|) \nabla u^{(k)} \cdot \nabla v \, \mathrm{d}x + \sum_{i \in I^{\mathsf{BEM}} \int_{\Gamma_i}} \left[(N_i f) - \left(S_i u^{(k)} \right) \right] v \, \mathrm{d}s_x \end{aligned}$$

where

$$\begin{aligned} \zeta_i(p)q &:= \nu_i(|p|)q + \frac{\nu_i'(|p|)}{|p|}(p \cdot q)p & \forall p \in \mathbb{R}^n \setminus \{0\} \quad \forall q \in \mathbb{R}^n \\ \zeta_i(0)q &:= \nu_i(|0|)q & \forall q \in \mathbb{R}^n \end{aligned}$$

FETI/BETI for the *k*-th Newton Equation

Define

$$\begin{split} (K'_{i,h}(\underline{u})\underline{w},\underline{v}) &= \int_{\Omega_i} \left[\zeta_i(u_h) \cdot \nabla w_h \right] \nabla v_h \, \mathrm{d}x \\ (\underline{r}_i^{(k)},\underline{v}) &= (f_i - K_i(\underline{u}^{(k)},\underline{v}) \quad \text{ for } i \in I^{\mathsf{FEM}} \\ (\underline{r}_i^{(k),\mathsf{BEM}},\underline{v}) &= (f_i^{\mathsf{BEM}} - S_{i,h}^{BEM} \underline{u}^{(k)}) \quad \text{ for } i \in I^{\mathsf{BEM}} \end{split}$$

Linear System

Inner vs. Outer Iteration

Outer Iteration:NewtonInner Iteration:Projected Preconditioned CG

Stopping Criterion (PPCG): $\|PF\underline{\lambda}^{(i)}\| < \varepsilon_{\mathsf{CG}}^{(k)} \lambda_0$

Stopping Criterion (Newton): $\|(r_i^{(k),\text{inner}})_{i\in I^{\text{FEM}}}\| < \varepsilon_{\text{Newton}} r_0$ additionally measure flux jump on the interfaces Γ_{ij}

model problem: coil-core configuration

 $\begin{array}{ll} \operatorname{core} & \mu_r = 10^3 \\ \operatorname{coil} \ / \ \operatorname{coil} & f = \pm 10^3 \\ \operatorname{elsewhere} & \mu_r = 1, f = 0 \end{array}$

Dirichlet: $u|_{\partial\Omega} = 0$

$$\nu = \frac{1}{\mu_r \mu_0} \quad \mu_0 = 4.\pi . 10^{-7}$$

OSTBEM

260 coupling nodes, 911 inner nodes, 276 Lagrange parameters

preconditioner	iterations	residual	total (sec)	one step (sec)
FETI ($C_{\alpha} = 1$)	77	9.38e-13	5.97	0.0775
BETI	84	6.79e-13	5.73	0.0682
FETI (Kla-Wid)	22	1.60e-13	1.89	0.0859
BETI	34	9.26e-13	2.61	0.0768

532 coupling nodes, 3271 inner nodes, 548 Lagrange parameters

preconditioner	iterations	residual	total (sec)	one step (sec)
FETI ($C_{\alpha} = 1$)	96	1.97e-13	38.8	0.404
BETI	98	9.60e-13	37.0	0.377
FETI (Kla-Wid)	23	4.94e-13	10.4	0.453
BETI	39	6.52e-13	15.8	0.404

Concluding Remarks and Outlook

- Family of FEM/BEM Domain Decomposition Techniques Coupled FETI/BETI with two efficient and robust Preconditioners
- Efficient and fast handling of B-H-Curves
- Balancing inner and outer iteration ($\varepsilon_{CG}^{(k)}$, ε_{Newton})
- Meshrefinement (adaptive) Use multilevel structure for good initials $u^{(0)}$ and Multigrid Preconditioning
- Exploit various levels of elimination w.r.t. parallel computing (*K_i*, *S_i*, BETI saddle-point-problem, etc.
- Nonlinear Tearing and Interconnecting

Solution u of the local nonlinear boundary value problem

$$\begin{split} -\nabla \cdot \begin{bmatrix} \nu_i(|\nabla u|) \nabla u \end{bmatrix} &= f & \text{ in } \Omega_i \\ u &= g & \text{ on } \Gamma_i \cap \Gamma \\ u &= v_i & \text{ on } \Gamma_i \setminus \Gamma \end{split}$$

defines the Nonlinear Dirichlet-to-Neumann-map

$$T_i[f,g]: H^{1/2}(\Gamma_i \setminus \Gamma) \to H^{-1/2}(\Gamma_i \setminus \Gamma): v_i \mapsto \nu_i(|\nabla u|) \frac{\partial u}{\partial \vec{n}_i}$$

 $\nu_i(\cdot) \equiv \text{const} \implies T_i[f,g](v_i) = S_ig + S_iv_i - N_if$ Ω_i floating: $T_i[f,g](v_i) = T_i[f](v_i)$, kernel = constant functions Possible Realization of $T_{i,h}[f,g](v_i)$:

Solve nonlinear Dirichlet problem (g, v_i, f) with (damped) Newton Last iterate $u_h^{(k)}$ determines Neumann data via Schur Complement.

Nonlinear Neumann-to-Dirichlet-Map (nonfloating)

Solve Dirichlet problem

$$egin{aligned} -
abla \cdot ig[
u_i(|
abla u|)
abla uig] &= f, & ext{in } \Omega_i, \ u &= g, & ext{on } \Gamma_i \cap \Gamma, \
u_i(|
abla u|)\partial u/\partial ec{n}_i &= t_i, & ext{on } \Gamma_i \setminus \Gamma, \end{aligned}$$

with a (damped) Newton, take Dirichlet data $\rightsquigarrow T_i[f,g]^{-1}(t_i)$

Nonlinear Neumann-to-Dirichlet-Map (floating) Solve a regularized version of the local Neumann problem

$$-\nabla \cdot \left[\nu_i(|\nabla u|)\nabla u\right] = f \qquad \text{in } \Omega_i$$

$$u_i(|
abla u|)\partial u/\partial ec n_i = t_i$$
 on Γ_i

with (damped) Newton, take Dirichlet data $\rightsquigarrow \tilde{T}_i[f,g]^{-1}(t_i)$

Global Problem

$$t_i = T_i[f,g](u_i)$$
 on Γ_i

$$u_i = u_j$$
 on Γ_{ij}

$$t_i + t_j = 0 \qquad \qquad \text{on } \Gamma_{ij}$$

Eliminating $(t_i) \rightsquigarrow$ Nonlinear Variational Skeleton Problem

$$\sum_{i \in I} \int_{\Gamma_i \setminus \Gamma} T_i[f,g](u) \, v \, \mathsf{ds}_x = 0, \quad \forall v \in H^{1/2}(\cup_{i \in I} \Gamma_i \setminus \Gamma).$$

Discrete approximation of the nonlinear operators:

$$T_{i,h}^{\mathsf{FEM/BEM}}[f,g], \quad ilde{T}_{i,h}^{\mathsf{FEM/BEM}}[f,g]$$

Nonlinear FETI/BETI System

$$\begin{split} T_{i,h}^{\mathsf{FEM/BEM}}[f,g](\underline{u}_i) + B_i^T \underline{\lambda} &= 0, \qquad \forall i \in I, \\ \sum_{i \in I} \ B_i \underline{u}_i &= 0. \end{split}$$

Eliminate (u_i) via solution of local (nonlinear) problems

$$u_{i} = T_{i,h}^{\mathsf{FEM}/\mathsf{BEM}}[f,g]^{\dagger} \big(- B_{i}^{T}\lambda \big) \underbrace{+ \gamma_{i}e_{i}}_{\text{"+ constant"}}$$

Define

$$\begin{split} F(\underline{\lambda}) &:= \sum_{i \in I} \, B_i \, T_{i,h}^{\mathsf{FEM}/\mathsf{BEM}}[f,g]^{\dagger} \big(- B_i^T \underline{\lambda} \big), \\ G &:= (B_i e_i)_{i \in I, \; \Omega_i \; \mathsf{floating}}, \end{split}$$

Nonlinear Dual Equation

$$\begin{array}{rcl} F(\underline{\lambda}) & + & G\underline{\gamma} & = & 0 \\ G^T\underline{\lambda} & & = & 0 \end{array}$$

Linear Projection $P := I - G(G^T G)^{-1}G^T$ \rightsquigarrow Projected Nonlinear Dual Equation

$$PF(\underline{\lambda}) = 0$$

Solution
$$\underline{\lambda} \longrightarrow \underline{\gamma} \longrightarrow (\underline{u}_i) \longrightarrow \text{global field } u_h$$

- Existence of a unique solution λ (Regularity of $F(\cdot)$)
- Fixpoint or Newton Iteration + Analysis
- Preconditioning

