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What is this talk about?

The valuative capacity is an important invariant for rings of integer
valued polynomials that was first introduced by Chabert in the
Arabian Journal for Science and Engineering, it also relates to
many other areas of mathematics such as:

• Polya-Szegö theorem (Fares and Petite)

• Integer polynomial approximation (Ferguson)

• Algebraic geometry, Néron height pairing (Rumeley)
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Outline

This talk will go through the following:

• The definition of valuative capacity and, some known and new
formulas to calculate it.

• Number theoretical properties of the sets of sums of d-th
powers.

• How we can connect the two previous to calculate the
valuative capacity of the the sets of sums of d-th powers.
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Preliminary Definitions

Definition

For any subset E , the ring of integer valued polynomials on E is
defined to be

Int(E ,D) = {f (x) ∈ K [x ] | f (E ) ⊆ D}.

Definition

The sequence of characteristic ideals of E is (In | n = 0, 1, 2, . . .)
where In is the fractional ideal of K formed by 0 and the leading
coefficients of the elements of Int(E ,D) of degree no more than n.
The characteristic sequence of E with respect to a fixed prime p is
the sequence of negatives of the p-adic valuations of these ideals,
denoted by αE ,p(n).
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The valuative capacity

Definition

For E a subset of D and p a fixed prime, the valuative capacity of
E with respect to the prime p is the following limit:

LE ,p = lim
n→∞

αE ,p(n)

n
.

The positive integers in increasing order are a p-ordering of Z and
we have that αZ,p(n) = νp(n!). By Legendre’s formula

νp(n!) = n−
∑

ni
p−1 , we can compute

LZ,p = lim
n→∞

αZ,p(n)

n
=

1

p − 1
.
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Tricks for Calculating

Proposition

Let p be a fixed prime and A be a subset of Z.

1 [BC00] LαA,p
= LαA,p

, since αA,p = αA,p.

2 [Joh09b] If A has characteristic sequence αA,p(n) then for any
c ∈ Z the characteristic sequence of A + c is also αA,p(n) and
the characteristic sequence of pkA is αA,p(n) + kn.

3 [Joh09b] If B is another subset of Z, with the property that
for any a ∈ A and b ∈ B it is the case that νp(a− b) = 0,
then the characteristic sequence of A ∪ B is the disjoint union
of the sequences αA,p(n) and αB,p(n) sorted into
nondecreasing order.
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Tricks for Calculating - Continued

Proposition (continued)

4 [Joh09a] If αA,p(n) and αB,p(n) are the characteristic
sequences of A and B respectively, for a prime p, and A, B
satisfying (3), with valuative capacity LA,p and LB,p
respectively, then

1
LA∪B,p

= 1
LA,p

+ 1
LB,p

.

5 [Joh15] Given a prime p, if A and B are disjoint subsets with
the property that there is a nonnegative integer k such that
νp(a− b) = k for any a ∈ A and b ∈ B, then

1
LA∪B,p−k = 1

LA,p−k + 1
LB,p−k .
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Continued Fractions

We use the concise notation, where [a; a0, a1, . . . , ak ] denotes

a +
1

a0 +
1

a1 +
.. . +

1

ak

.

When a contined fraction is periodic it evaluates to the root of a
quadratic polynomial.
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What we will need

Proposition

(a) [BL] If A is a union of cosets modulo pm for some m, then the
valuative capacity of A is rational and recursively computable.

(b) [BL] If A0,A1, . . . ,Am are disjoint subsets of Z such that,
whenever 0 ≤ k < h ≤ m, a ∈ Ak , and b ∈ Ah, one has
νp(a− b) = k, then, the p-valuative capacity of
A = A0 ∪ · · · ∪ Am, has the following continued fraction
expansion:

LA = [0; a0, a1, . . . , a2(m−1), a2m−1]

where a2k = 1
LAk−k

for 0 ≤ k ≤ m − 1, a2k+1 = 1 for

0 ≤ k < m − 1, and a2m−1 = LAm − (m − 1).
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What we will need - Continued

Proposition (continued)

(c) [BL] If E = E ′ ∪ pmE , where E ′ is a union of nonzero cosets
(mod pm), then LE is the root of a quadratic polynomial in
Q[x ], whose coefficients are recursively computable.
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Example

Example (a): We illustrate this with p = 3, and
A = {0, 1, 2, 3, 10, 11, 12, 19, 20, 21}+ 33Z. We decompose A:

A0 = {1, 2, 10, 11, 19, 20}+ 33Z
A1 = {3, 12, 21}+ 33Z
A2 = {0}+ 33Z

We can rewrite A0:

A0 = (1 + {0, 9, 18}+ 33Z) ∪ (2 + {0, 9, 18}+ 33Z).

L1+{0,9,18}+33Z = L2+{0,9,18}+33Z = L{0,9,18}+33Z

= L9({0,1,2}+3Z) = 2 + LZ = 2 + 1
2 = 5

2
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Example - Continued

Now we can find LA0 = 5
4 , LA1 = 5

2 and LA2 = 7
2 . We are ready to

compute the valuative capacity of A:

LA =
1

1

LA0

+
1

1 +
1

1

LA1 − 1
+

1

LA2 − 1

=
1

1

5
4

+
1

1 +
1

1

5
2
− 1

+
1

7
2
− 1

=
155

204

(b): Now we look into the valuative capacity of the set
E = E ′ ∪ 36E , where E ′ is A0 ∪ A1 from part (a).

Then we have that LE = [0; a0, a1, a2, LA2 − 1], where
a0 = 1

LA0
= 4

5 , a1 = 1, a2 = 1
LA1−1

= 2
3 , and LA2 = L36E = 6 + LE .

Hence LE = [0; 4
5 , 1,

2
3 , LA2 − 1]. Solving the continued fractions

gives that LE is a solution to the following quadratic equation:

30L2E+152LE−140 = 0 which has for positive root LE =
√
2494
15 −

38
15 .
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The important sets

Definition

For a fixed d ∈ Z with d ≥ 0, we define D to be the set of d-th
powers of integers, thus D = {xd | x ∈ Z} and we let
`D = D + · · ·+ D, for ` terms in the sum.

Definition

Let Dpe denote the set of d-th powers modulo pe , for e ≥ 1 and
`Dpe the sets of sums of ` elements to the power of D modulo pe .
We will also make use of D = lim←−−−

m∈N
Dpm , the p-adic closure of D in

Ẑp, and similarly we will consider `D.
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Main Result

Theorem

Suppose p is a prime and d = pjd ′ a positive integer not equal to
4, where p - d ′ and let e = 2j + 1.

Then, L`D,p is an algebraic number of degree at most 2.

When 0 can be written non-trivially as a sum of ` elements to the
power of d (mod pe), L`D,p is a rational number.

Corollary

For a fixed `, if d is odd and p is a prime, then L`D,p ∈ Q.
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Main Result - Outline of the proof

Proof.

We start by looking at

E =
{

[c] ∈ `Dpe | [c] =
∑̀
i=1

[xi ]
d , where at least one of the

xi is not divisible by p
}

Suppose that c ∈ Ẑp is such that [c] ∈ E , and that {xi}`i=1 ⊆ Ẑp

are such that c ≡
∑`

i=1 x
d
i (mod pe).

We show that c ∈ `D in this case. Thus, if E = `Dpe , then `D is a
union of cosets of the form (c + peẐp), and L`D = L`D ∈ Q.
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Main Result - Outline of the proof (continued)

Proof.

If E 6= `Dpe then we claim that `Dpe\E = {[0]}. If [c] ∈ `Dpe\E ,

then pd
∣∣∣∣ ∑̀ xdi and so pd | c , hence [c] = [0].

Let xi = p · x̃i and let c̃ =
∑̀

x̃di . We then have c = pd c̃ with

c̃ ∈ `D. Conversely if c̃ ∈ `D, then c = pd c̃ ∈ `D and c ≡ 0
(mod pe).

Thus `D =
(⋃

(c + peẐp)
)
∪ pd`D, where the union is over

cosets for which [c] ∈ E . Thus L`D,p = L`D is the root of a
quadratic polynomial over Q[x ].
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Possible Formulas - The case p odd

Proposition

For a fixed `, if p - d and d = 2αβ, with β odd, if p ≡ 1
(mod 2α+1) then

L`D,p = 1
|`Dp |

(
1 + 1

p−1

)
.

Proposition

Let p be odd and d an even integer such that d = 2αβ, with β
odd. If p 6≡ 1 (mod 2α+1) and p - d , then L`D,p is the positive
root of the quadratic equation with coefficients in Q:

L2`D,p + dL`D,p − (p−1)d
|`Dp | = 0.
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Possible Formulas

Proposition

If p > (d − 1)4 and d > 2 then

1 For d odd, L`D,p = 1
p−1 .

2 For d even, with d = 2αβ and β odd:

(a) If p ≡ 1 (mod 2α+1), then L`D,p = 1
p−1 .

(b) If p 6≡ 1 (mod 2α+1), then, since p - d ,

(i) if ` = 2, then L2D,p is the root of the quadratic equation

L2
2D,p + dL2D,p − (p−1)d

|2Dp | = 0,

(ii) if ` ≥ 3, then L`D,p = 1
|`Dp |

(
1 + 1

p−1

)
.
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Possible Formulas - Continued

Proposition

For p a prime, with p - d , and d > 2, if gcd(d , p − 1) = 1, then
Dpe = Z/(pe) for e ≥ 1, and for ` > 1, L`D,p = 1

p−1 .
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The case p = 2

Proposition

If d = 2αβ, where α ≥ 1 and β is an odd integer ≥ 1, then we can
write D in the following way:

D = {0}∪(1+2α+2Ẑ2)∪2d(1+2α+2Ẑ2)∪22d(1+2α+2Ẑ2)∪23d(1+2α+2Ẑ2) . . . .

Proposition

For ` = 2 and any d = 2αβ, where α ≥ 1 and β is an odd integer
≥ 1, LD+D is the positive root of the following polynomial
depending on d :

(2α+ 6)L2 + (2αd−2α+ 6d−7)L+ (α+ 3−αd2−6αd−9d) = 0.
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The case p = 2 Legendre’s Theorem

Proposition

For ` = 3 and d = 2, 3D2 = {0}∪
⋃∞

i=0 22i ({1, 2, 3, 4, 5, 6}+ 8Ẑ2).

Proof.

We have shown previously that D2 = {0} ∪
⋃∞

i=0 2i (1 + 8Ẑ2).
Adding the cosets triple-wise gives

3D2 = {0} ∪
∞⋃
i=0

22i ({1, 2, 3, 4, 5, 6}+ 8Ẑ2).

The only elements not in 3D2 are those of the form
22i (7 + 8Ẑ2).
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The case p = 2 - Continued

Proposition

If d = 2, ` ≥ 4 and n ≥ 1, we have that `D2n = Z/(2n) and
L`D2

= 1.

Here is a table of various other valuative capacities (L) for 3Dpe ,
for both odd and even p:

p d L

2 2 21
22

2 4 3
2

2 6 5
4

2 8 14
15

p d L

3 6 155
204

3 12 155
204

3 18 511
488

3 27 143
170
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Thank you

Thank you for listening to this presentation.
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