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Torsion pairs

Let R be a ring with 1.

DEFINITION
A torsion pair is a pair (T ,F) of classes of modules which are
mutually orthogonal with respect to the HomR functor, i.e.:

T = {T ∈ Mod-R | HomR(T ,F ) = 0 for all F ∈ F} = ⊥0F
F = {F ∈ Mod-R | HomR(T ,F ) = 0 for all T ∈ T } = T ⊥0 .

T is the torsion class; F is the torsion-free class

Closure properties:

I T is a torsion class if and only if it is closed under epimorphic
images, direct sums and extensions.

I F is a torsion-free class if and only if it is closed under
submodules, direct products and extensions.
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The functors:

I For every module X there is an exact sequence

0→ t(X )→ X → X/t(X )→ 0

with t(X ) ∈ T and X/t(X ) ∈ F .
I t is a subfunctor of the identity functor and it is an

idempotent radical.
I t : Mod-R −→ T is right adjoint to incl : T −→ Mod-R.

The torsion pair (T ,F) generated by a class M of modules is:

F = {F ∈ Mod-R | HomR(M,F ) = 0}; T = ⊥0F .

EXAMPLE R commutative domain.
• (T ,F) classical torsion pair of torsion - torsion free modules, is
generated by the module

M =
⊕

06=r∈R
R/rR.

• (D,R) torsion pair of divisible - reduced modules.
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The torsion pair generated by a module

Let M be an R-module.
GenM=class of modules generated by M, i.e. epimorphic images
of direct sums of copies of M.

(TM ,FM) torsion pair generated by M
FM = {F ∈ Mod-R | HomR(M,F ) = 0} = M⊥0

TM = ⊥0F contains GenM.

The torsion radical of the torsion pair (TM ,FM) is
the generalized trace defined by transfinite induction starting with
the trace tr of M in every module

I trM(X ) =
∑
{Im f | f : M → X}.

I If α is an ordinal, define trα+1(X )/ trα(X ) = trM (X/ trα(X )) .

I If β is a limit ordinal trβ(X ) =
⋃
α<β

trα(X ).

GenM = {X ∈ Mod-R | X = trM(X )}.
GenM = TM iff trM is the torsion radical.
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The Loewy series

Let {Si ∈ Mod-R | representatives of simple modules}i∈I .

S =
⊕
i∈I

Si , then Gen S=class of semisimple modules.

For X ∈ Mod-R, trS(X ) = socle of X and there is a smallest
ordinal λ such that trλ(X ) = trλ+1(X )

0 < tr(X ) < · · · < trα(X ) < · · · < trλ(X )

is the Loewy series of X and λ is the Loewy length of X .

(TS ,FS) is a hereditary torsion pair
X ∈ TS is called semiartinian.
• If R is right noetherian the Loewy length of any module X is at
most ω. (if R = Z, (TS ,FS) is the classical torsion pair.)

THEOREM (Fuchs ’69)

Let Φ = {I ≤ R | R/I is semiartinian }. κ an infinite cardinal such
that all ideals of Φ can be generated by less than κ elements, then
the Loewy length of every module is at most Ω = the first ordinal
of cardinality κ.
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When is GenM a torsion class?

QUESTION When is GenM a torsion class?

It looks difficult to give characterizations in terms of the module
M.
A better question would be:

QUESTION When is a torsion class T of the form GenM for
some module M?

Find characterizations on the torsion class rather than the module.

Up to now I know only sufficient conditions.
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First sufficient condition

Let M⊥1 = {X | Ext1
R(M,X ) = 0}

• Sufficient condition 1.

If GenM ⊆ M⊥1 , then GenM is a torsion class.

Proof: Le X ∈ TM . Consider:

0→ tr(X )→ X → X/ tr(X )→ 0,

apply the HomR(M,−) functor.

Then HomR(M, tr(X ) = HomR(M,X ) and

HomR(M,X/ tr(X )) = 0, since Ext1
R(M, tr(X )) = 0.

Thus X/ tr(X ) ∈ M⊥0 , hence X = tr(X ) and TM = GenM.
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The tilting case

DEFINITION
A module TR is tilting (1-tilting) if GenT = T⊥1 .

(GenT ,T⊥0) is a torsion pair and GenT is called tilting torsion
class.

Tilting modules (or complexes) are the fundamental tools for
describing equivalences of module categories or of derived
categories.

PROPOSITION (B-Herbera ’07)

A torsion class T ⊆ Mod-R is tilting iff it is of finite type, i.e.
there is set A = {Ai}i∈I of finitely presented right R-modules of
proj. dim ≤ 1 such that

T = {XR | Ext1
R(Ai ,X ) = 0 for all Ai ∈ A} = A⊥1

• A tilting class is a definable class, i.e. closed under direct
products, direct limits and pure submodules.
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The tilting torsion free class

T tilting module. (GenT ,T⊥0).

QUESTION (Saoŕın) When is the torsion free class T⊥0 closed
under direct limits?

(T⊥0 is closed under direct limit if and only if the heart of the t-structure

in the derived category induced by the tilting torsion pair is a

Grothendieck category).

PROPOSITION (B’14)

T⊥0 is closed under direct limits iff T is pure projective (direct
summand of a direct sum of finitely presented modules).
If R is a commutative ring, then a pure projective tilting module is
projective. Hence the tilting torsion class is Mod-R = GenR.

PROPOSITION (B, Herzog, Prihoda, Saroch, Trlifaj ’15)

There are examples of pure projective tilting modules not
equivalent to classical tilting modules (i.e. not finitely generated).
(T is pure projective with no finitely generated summands).

torsion pair. . . p. 10
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Gabriel topology

A torsion class T is tilting if and only if

T = {XR | Ext1
R(Ai ,X ) = 0 for all Ai ∈ A}

A class of finitely presented modules of proj. dim ≤ 1.

F = {RY | Tor1
R(Ai ,Y ) = 0 for all Ai ∈ A}

is a cotilting torsion free class (of cofinite type)
To obtain a characterization of tilting classes over commutative rings, we

dualize to cotilting torsion free classes and then go back to tilting classes.

A filter G of right ideals of a ring is a Gabriel topology if
I I ∈ G, r ∈ R implies (I : r) ∈ G.
I J ≤ R, I ∈ G s.t. (J : r) ∈ G for every r ∈ I , implies J ∈ G.

G is a Gabriel topology iff

T = {M | Ann(x) ∈ G, for all x ∈ M} is a (hereditary) torsion class.

torsion pair. . . p. 11
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Characterization over commutative rings

Let G be a Gabriel topology:

• G is finitely generated if it has a basis of finitely generated ideals;

• G is faithful if Ann I = 0 for every ideal I ∈ G. (equiv. R ∈ T ⊥0).

THEOREM (Hrbek ’15)

If R is a commutative ring there is a bijection:

{
T tilting torsion classes

} //
{
G faithful finitely generated

Gabriel topologies

}
nn

T = {M | MI = M for all I ∈ G}
//
G= {I | MI = M for all M ∈ T }oo

torsion pair. . . p. 12
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The silting case

P1
σ→ P0 → T → 0

an exact sequence with P1,P0 projective right R-modules.

Let Dσ = {XR | HomR(σ,X ) is surjective}, i.e.

P1

f
��

σ // P0

g
~~|

|
|

|

X

• Dσ is closed under extensions, epimorphic images, direct
products and Dσ ⊆ T⊥1 .

DEFINITION (Angeleri, Marks, Vitoria ’15)

A module TR is silting if Dσ = GenT .

1. GenT is a torsion class contained in T⊥1 .
(Silting torsion class)

2. GenT is a definable class.

torsion pair. . . p. 13
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Silting modules

A silting module T is a tilting module over R/Ann(T ).

THEOREM (Marks, Stovicek ’16)

Every universal localisation is a silting ring epimorphism

(categorical ring epimorphism).

Schofield ’85: Σ set of morphisms between finitely generated
projective R-modules.

1. There is a ring RΣ (universal localization) and a ring
epimorphism f : R → RΣ such that f is Σ-inverting, i.e.
σ ⊗R RΣ is an isomorphism for every σ ∈ Σ.

2. f has the universal property with respect to being Σ-inverting.

f silting epimorphism: ring epimorphism associated to a silting
module.
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Cosilting modules

0→ C → E 0 σ→ E 1

an exact sequence with E 0,E 1 injective right R-modules.

Let Cσ = {XR | HomR(X , σ) is surjective}, i.e.

X

f
��

g

}}|
|

|
|

E 0 σ // E 1

• Cσ is closed under extensions, submodules, direct sums and
Cσ ⊆ ⊥1C .

DEFINITION (Breaz, Pop ’15)

A module RC is cosilting if Cσ = CogenC .

1. CogenC is a torsionfree class contained in ⊥1C .
2. CogenC is a definable class.
3. C is a cotilting module over R/Ann(C ).
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Characterization over commutative rings

By using the dual notion of cosilting module:

THEOREM (Angeleri, Hrbek ’16)

If R is a commutative ring there is a bijection:

{
T silting torsion classes

} ..
{
G finitely generated
Gabriel topologies

}
nn
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Preenveloping classes

Let C be a class of R-modules; X an R-module.
φ : X → C , C ∈ C is a C-preenvelope or C-left approximation of X
if for every f : X → C ′, with C ′ ∈ C,
∃g : C → C ′ s.t. g ◦ φ = f .

X

f
��

φ // C

g~~~
~

~
~

C ′

C is a preenveloping class if every module X admits a
C-preenvelope.

I If C is closed under direct products and pure submodules, then
C is preenveloping (Rada-Saoŕın ’07).

I In particular, definable classes (hence tilting or silting classes)
are preenveloping.
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Preenveloping torsion classes

Sufficient condition 2: R has a T -preenvelope.

PROPOSITION
Let T be a torsion class. If R

φ→ M is a T -preenvelope of R, then
T = GenM and T is a preenveloping class.

In this case, M is finendo (finitely generated over its endomorphism
ring) and moreover, GenM is closed under direct products.

Counterexample R commutative domain. T classical torsion
class.
T = Gen(

⊕
06=r∈R

R/rR).

1. T is GenM for M =
⊕

0 6=r∈R
R/rR, but R doesn’t have a

T -preenvelope. (T is not closed under direct products.)

2. GenM * M⊥1

torsion pair. . . p. 18
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Counterexample

Example of a torsion pair of the form GenM with GenM * M⊥1 .

EXAMPLE Let R be a maximal valuation domain (i.e. linearly
compact in the discrete topology) with idempotent maximal ideal
P.
Let d(X ) be the divisible submodule of X .

T = {X ∈ Mod-R | X/d(X ) is an R/P-module}.

T is a torsion class, T is definable and contains the injective
modules, but it is not a tilting torsion class.

Being definable, T is preenveloping and moreover, there is a monic

T -preenvelope 0→ R
φ→ M, with M ∈ T .

Thus, T = GenM, but GenM * M⊥1 .
In fact, if GenM ⊆ M⊥1 , then M would be a tilting module, hence
T would be a tilting class.

torsion pair. . . p. 19
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Matlis domains

A commutative domain R is a Matlis domain if the projective
dimension of the quotient field Q is 1.

The torsion pair generated by Q is denoted by (TQ ,FQ).

I FQ = Q⊥0 , GenQ ⊆ TQ .
I GenQ = {D ∈ Mod-R | D = trQ(D)}.
I The divisible modules in GenQ are called h-divisible.

I The modules in FQ are called h-reduced.

PROPOSITION (Matlis ’60)

GenQ is closed under extensions, that is GenQ = TQ , if and only
if proj. dim, Q = 1.

If p.d.Q = 1, then T = Q ⊕ Q/R is a 1-tilting module and
T⊥1 = GenQ= divisible R-modules.

torsion pair. . . p. 20
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The torsion pair generated by Q

PROBLEM: Describe TQ is case proj. dim Q > 1.

TQ is contained in the class D of divisible modules and

I D ∈ TQ if and only if D =
⋃
αλ

Dα continuous well ordered

ascending chain of divisible submodules such that
I Dα = trα(D);

I
Dα+1

Dα
∈ GenQ. i.e. D is GenQ-filtered.

TQ= class of divisible modules if and only if the Fuchs’ divisible
module ∂ is in TQ .

∂ is a tilting module and Gen ∂ is the class of divisible modules.

∂ is generated by (r1, . . . , rn), 0 6= ri ∈ R, n ≥ 1
w with wR ∼= R with relations

(r1, . . . , rn)rn = (r1, . . . rn−1), n > 1, (r1)r1 = w .
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The Fuchs divisible module ∂

torsion pair. . . p. 22



Questions

Assume proj. dim. Q > 1.
TQ is the class of divisible modules filtered by GenQ.

The torsion radical τQ associated with the torsion pair (TQ ,FQ)
commutes with the classical torsion radical.

QUESTION 1: Is TQ closed under direct products?

If every D ∈ TQ is finitely filtered by GenQ, i.e. if D = trn(D), for
some n ∈ N, then TQ is closed under products.

QUESTION 2: Is TQ a preenveloping class?

This is stronger than Question 1. If TQ is preenveloping, then
TQ = GenD, for some module D ∈ TQ and so TQ closed under
direct products.

QUESTION 3 Is TQ = GenD, for some D ∈ TQ?

torsion pair. . . p. 23
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The valuation domain case

Let R be a valuation domain such that proj. dim. Q > 1.

Then HomR(Q, ∂) = 0. So ∂ ∈ FQ

In fact, Q is uniserial uncountably generated and ∂ =
⋃
n∈N

∂n

with ∂n reduced submodules of ∂.

In this case
GenQ ( TQ ( D.

FQ ⊇ Cogen ∂
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