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all rings considered in this talk are assumed to be commutative
with an identity; in particular, R denotes such a ring, and all
modules are assumed to be unitary modules.

Definition
The trivial extension of R by an R-module M is the ring denoted by
R n M whose underlying additive group is R ⊕M with multiplication
given by (r ,m)(r ′,m′) = (rr ′, rm′ + mr ′).

In this talk we present a part of a joint work on an extension of the
classical trivial extension. For more details see arXiv:1604.01486.
The paper presents various algebraic aspects of this new ring
construction. Here, we present some of them with a special focus
on the ideal structure.
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Outline

1 Motivation, Definition and Examples

2 Some basic algebraic properties of R nn M

3 Homogeneous ideals of n-trivial extensions
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Motivation
I Generalized triangular matrix ring.

The trivial extension is related to some classical ring
constructions. Namely, it is related with the following ones:



Motivation
I Generalized triangular matrix ring.

Let R := (Ri)
n
i=1 be a family of rings and M := (Mi,j)1≤i<j≤n be a

family of modules such that for each 1 ≤ i < j ≤ n, Mi,j is an
(Ri ,Rj)-bimodule.
Assume for every 1 ≤ i < j < k ≤ n, there exists an (Ri ,Rk )-bimodule
homomorphism Mi,j ⊗Rj Mj,k −→ Mi,k denoted multiplicatively such that
(mi,jmj,k )mk ,l = mi,j(mj,kmk ,l).
Then the set Tn(R,M ) consisting of matrices

m1,1 m1,2 · · · · · · m1,n−1 m1,n
0 m2,2 · · · · · · m2,n−1 m2,n
...

. . . . . . . . .
...

...
...

. . . . . . . . .
...

...
0 0 · · · 0 mn−1,n−1 mn−1,n
0 0 · · · 0 0 mn,n


, where mi,i ∈ Ri and

mi,j ∈ Mi,j (1 ≤ i < j ≤ n), with the usual matrix addition and
multiplication is a ring called a generalized (or formal) triangular matrix
ring.



Motivation
I Generalized triangular matrix ring.

The trivial extension R n M is naturally isomorphic to the subring of the
generalized triangular matrix ring

T2((R,R),M) :=

(
R M
0 R

)

consisting of matrices
(

r m
0 r

)
where r ∈ R and m ∈ M.
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Motivation
I Symmetric algebra.

æ The symmetric algebra associated to an R-module M is the
graded ring quotient SR(M) := TR(M)/H, where TR(M) is the
graded tensor R-algebra with T n

R(M) = M⊗n and H is the
homogeneous ideal of TR(M) generated by
{m ⊗ n − n ⊗m|m,n ∈ M}.
Note that SR(M) =

∞
⊕

n=0
Sn

R(M) is a graded R-algebra with

S0
R(M) = R and S1

R(M) = M and, in general, Si
R(M) is the image

of T i
R(M) in SR(M).

The trivial extension R n M is naturally isomorphic to
SR(M)/ ⊕

n≥2
Sn

R(M).
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Motivation

If M is a free R-module with a basis B, then the trivial extension R n M
is naturally isomorphic to the ring quotient R[{Xb}b∈B]/({Xb}b∈B)2

where {Xb}b∈B is a set of indeterminates over R.

In particular, R n R ∼= R[X ]/(X 2).



Defintion of n-trivial extension.

Let M = (Mi)
n
i=1 be a family of R-modules and ϕ = {ϕi,j} i+j≤n

1≤i,j≤n−1
be a

family of R-module homomorphisms such that each ϕi,j is written

multiplicatively:
ϕi,j : Mi ⊗Mj −→ Mi+j

mi ⊗mj 7−→ ϕi,j(mi ,mj) := mimj .
such that

(mimj)mk = mi(mjmk ) for mi ∈ Mi , mj ∈ Mj and mk ∈ Mk with
1 ≤ i , j , k ≤ n − 2 and i + j + k ≤ n, and
mimj = mjmi for every mi ∈ Mi and mj ∈ Mj with 1 ≤ i , j ≤ n − 1
and i + j ≤ n.

Then, the additive group R ⊕M1 ⊕ · · · ⊕Mn endowed with the
multiplication

(m0, ...,mn)(m′0, ...,m
′
n) = (

∑
j+k=i

mjm′k )

for all (mi), (m′i ) ∈ R nϕ M, is a ring called the n-ϕ-trivial extension of
R by M or simply the n-trivial extension of R by M. It will be denoted by
R nϕ M1 n · · ·n Mn or simply R nϕ M.
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Relations with some classical ring constructions.

I Generalized triangular matrix ring. R nn M is naturally isomorphic
to the subring of the generalized triangular matrix ring

R M1 M2 · · · · · · Mn
0 R M1 · · · Mn−1
...

. . . . . . . . .
...

0 0 0 · · · M1
0 0 0 · · · R


consisting of matrice

r m1 m2 · · · · · · mn
0 r m1 · · · mn−1
...

. . . . . . . . .
...

0 0 0 · · · m1
0 0 0 · · · r


where r ∈ R and mi ∈ Mi for every i ∈ {1, ...,n}.



Relations with some classical ring constructions.

I Symmetric algebra. When, for every k ∈ {1, ...,n}, Mk = Sk
R(M1),

the ring R nn M is naturally isomorphic to SR(M1)/
⊕

k≥n+1 Sk
R(M1).

I Polynomial ring.
In particular, if M1 = F is a free R-module with a basis B, then the
n-trivial extension R n F n S2

R(F ) n · · ·n Sn
R(F ) is also naturally

isomorphic to R[{Xb}b∈B]/({Xb}b∈B)n+1 where {Xb}b∈B is a set of
indeterminates over R.

Namely, when F ∼= R,

R nn R n · · ·n R ∼= R[X ]/(X n+1).
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n-Trivial extensions is not in general 1-trivial extensions.

Remark
æ If R1 and R2 are two rings and H an (R1,R2)-bimodule. Then,

T2((R1,R2),H) ∼= (R1,R2) n H,

where the actions of R1 × R2 on H are defined as follows:
(r1, r2)h = r1h and h(r1, r2) = hr2 for every (r1, r2) ∈ R1 × R2 and
h ∈ H.
Every generalized triangular matrix ring is isomorphic to an
n-trivial extension.
Every generalized triangular matrix ring is isomorphic to
generalized triangular matrix ring of order 2.
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n-Trivial extensions is not in general 1-trivial extensions.

æ However, an n-trivial extension with n ≥ 2 is not necessarily a
1-trivial extension.
For instance, the 2-trivial extension Z/2Z n2 Z/2Z n Z/2Z cannot
be isomorphic to any 1-trivial extension.



Motivation, Definition and Examples

Examples

Example
Let N1,...,Nn be R-submodules of an R-algebra T with NiNj ⊆ Ni+j for
1 ≤ i , j ≤ n− 1 with i + j ≤ n. Then, if the module homomorphisms are
just the multiplication of L (and so will be, in the sequel, if they are not
specified), then R nn N1 n · · ·n Nn is an n-trivial extension. The
following examples are some special cases:

Let I be an ideal of R. Then R nn I n I2 n · · ·n In is the quotient of
the Rees ring R[It ]/(In+1tn+1), where R[It ] :=

⊕
n≥0 Intn.

Let T be an R-algebra and J1 ⊆ · · · ⊆ Jn ideals of T . Then
R nn J1 n · · ·n Jn is an example of n-trivial extension since
JiJj ⊆ Ji ⊆ Ji+j for i + j ≤ n. For example, we could take
R n2 XR[X ] n R[X ].
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Motivation, Definition and Examples

Particular cases of n-trivial extensions have been
already introduced and used to solve some open
questions.

P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a
particular case of 2-trivial extensions and they used it in the study
of the so-called Faith conjecture.
Also, a particular case of 2-trivial extensions is introduced by V.
Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of
a ring which has a non-self-injective injective hull with compatible
multiplication. This gave a negative answer of a question posed by
Osofsky.
Z. Pogorzaly (2005) introduced and studied a particular case of
3-trivial extensions to obtain a Galois coverings for the enveloping
algebras of trivial extension algebras of triangular algebras.
D. Bachman, N. R. Baeth and A. McQueen (2015) studied
factorization properties of the n-trivial extension R nn R n · · ·n R.
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Some basic algebraic properties of R nn M

Notation

Unless specified otherwise, M = (Mi)
n
i=1 is a family of R-modules with

module homomorphisms as indicated in the definition of the n-trivial
extension. So R nn M is indeed a (commutative) ring with identity
(1,0, ...,0).
Let S be a nonempty subset of R and N = (Ni)

n
i=1 be a family of sets

such that, for every i , Ni ⊆ Mi . Then as a subset of R nn M,
S × N1 × · · · × Nn will be denoted by S nn N1 n · · ·n Nn or simply
S nn N.
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Some basic algebraic properties of R nn M

Observations
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Some basic algebraic properties of R nn M

Observations

æ If there is an integer i ∈ {1, ...,n − 1} such that Mj = 0 for every
j ∈ {i + 1, ...,n}, then

R nn M1 n · · ·n Mi n 0 n · · ·n 0 ∼= R ni M1 n · · ·n Mi .

However, if n ≥ 3 and there is an integer i ∈ {1, ...,n − 2} such
that, for j ∈ {1, ...,n}, Mj = 0 if and only if j ∈ {1, ..., i}, then
R nn−i Mi+1 n · · ·n Mn has no sense, since (when, for example,
2i + 2 ≤ n) ϕi+1,i+1(Mi+1 ⊗Mi+1) is a subset of M2i+2 not of Mi+2.
If M2k = 0 for every k ∈ N with 1 ≤ 2k ≤ n, then

R nn M ∼= R n1 (M1 ×M3 × · · · ×M2n′+1),

where 2n′ + 1 is the biggest odd integer in {1, ...,n}.
If M2k+1 = 0 for every k ∈ N with 1 ≤ 2k + 1 ≤ n, then

R nn M ∼= R nn′′ M2 n M4 n · · ·n M2n′′

where 2n′′ is the biggest even integer in {1, ...,n}.
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Some basic algebraic properties of R nn M

Observations

Convention. Unless explicitly stated otherwise, when we consider an
n-trivial extension for a given n, then we implicitly suppose that Mi 6= 0
for every i ∈ {1, ...,n}.
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Some basic algebraic properties of R nn M

Particular kind of ideals
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Some basic algebraic properties of R nn M

Particular kind of ideals

Proposition
We have the following (natural) ring extension :
in : R ↪→ R nn M1 n · · ·n Mn. Then, for an ideal I of R, the ideal
I nn IM1 n · · ·n IMn of R nn M is the extension of I under the ring
homomorphism in.
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Some basic algebraic properties of R nn M

Particular kind of ideals

Remark
æ In the case of n = 1, the ideal structure of 0 n1 M1 is the same as

the R-module structure of 0 n1 M1.
However, for n ≥ 2, the R-module structure of 0 nn M1 n · · ·n Mn
need not be the same as the ideal structure.
For instance, consider the 2-trivial extension Z n2 Z n Z. Then
Z(0,1,1) = {(0,m,m)|m ∈ Z} while the ideal of Z n2 Z n Z
generated by (0,1,1) is 0 n2 Z n Z.

D. Bennis (Rabat - Morocco) n-Trivial Extensions of Rings Graz, Austria — July 2016 12 / 20



Some basic algebraic properties of R nn M

Particular kind of ideals

Remark
In the case of n = 1, the ideal structure of 0 n1 M1 is the same as
the R-module structure of 0 n1 M1.

æ However, for n ≥ 2, the R-module structure of 0 nn M1 n · · ·n Mn
need not be the same as the ideal structure.
For instance, consider the 2-trivial extension Z n2 Z n Z. Then
Z(0,1,1) = {(0,m,m)|m ∈ Z} while the ideal of Z n2 Z n Z
generated by (0,1,1) is 0 n2 Z n Z.

D. Bennis (Rabat - Morocco) n-Trivial Extensions of Rings Graz, Austria — July 2016 12 / 20



Some basic algebraic properties of R nn M

Particular kind of ideals

Remark
In the case of n = 1, the ideal structure of 0 n1 M1 is the same as
the R-module structure of 0 n1 M1.
However, for n ≥ 2, the R-module structure of 0 nn M1 n · · ·n Mn
need not be the same as the ideal structure.

æ For instance, consider the 2-trivial extension Z n2 Z n Z. Then
Z(0,1,1) = {(0,m,m)|m ∈ Z} while the ideal of Z n2 Z n Z
generated by (0,1,1) is 0 n2 Z n Z.

D. Bennis (Rabat - Morocco) n-Trivial Extensions of Rings Graz, Austria — July 2016 12 / 20



Some basic algebraic properties of R nn M

Particular kind of ideals

Proposition
æ For every m ∈ {1, ...,n}, 0 nn 0 n · · ·n 0 n Mm n · · ·n Mn is an

ideal of R nn M and an R nj M1 n · · ·n Mj -module for every
j ∈ {n −m, ...,n} via the action

(x0, ..., xj )(0, ...,0, ym, ..., yn) := (x0, x1, ..., xj ,0, ...,0)(0, ...,0, ym, ..., yn)
= (x0, x1, ..., xn−m,0, ...,0)(0, ...,0, ym, ..., yn).

Moreover, the structure of 0 nn 0 n · · ·n 0 n Mm n · · ·n Mn as an
ideal of R nn M is the same as the R nj M1 n · · ·n Mj -module
structure for every j ∈ {n −m, ...,n}.
In particular, the structure of the ideal 0 nn 0 n · · ·n 0 n Mn is the
same as the one of the R-module Mn.
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Some basic algebraic properties of R nn M

Particular kind of ideals

Lemma
Every ideal of R nn M which contains 0 nn M has the form I nn M for
some ideal I of R. In this case, we have the following natural ring
isomorphism:

R nn M/I nn M ∼= R/I.

Theorem
Radical ideals of R nn M have the form I nn M where I is a radical
ideal of R.
In particular, the maximal (resp., the prime) ideals of R nn M have the
formMnn M (resp, P nn M) whereM (resp., P) is a maximal (resp., a
prime) ideal of R.
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Some basic algebraic properties of R nn M

Particular kind of ideals

Corollary
The Jacobson radical J(R nn M) (resp., the nilradical Nil(R nn M)) of
R nn M is J(R) nn M (resp., Nil(R) nn M) and the Krull dimension of
R nn M is equal to that of R.
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Some basic algebraic properties of R nn M

Proposition
The following assertions are true.

The set Z (R nn M) of zero divisors of R nn M is the set of
elements (r ,m1, ...,mn) such that r ∈ Z (R) ∪ Z (M1) ∪ · · · ∪ Z (Mn).
Hence S nn M where S = R − (Z (R)∪ Z (M1)∪ · · · ∪ Z (Mn)) is the
set of regular elements of R nn M.
The set of units of R nn M is U(R nn M) = U(R) nn M.
The set of idempotents of R nn M is Id(R nn M) = Id(R) nn 0.
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Homogeneous ideals of n-trivial extensions

Graded rings
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Homogeneous ideals of n-trivial extensions

Graded rings

Let Γ be a commutative additive monoid. Recall that a ring S is said to
be a Γ-graded ring, if there is a family of subgroups of S, (Sα)α∈Γ, such
that S = ⊕

α∈Γ
Sα as an abelian group, with SαSβ ⊆ Sα+β for all α, β ∈ Γ.
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Homogeneous ideals of n-trivial extensions

Graded rings

The n-trivial extension R nn M1 n · · ·n Mn may be considered as an
N0-graded ring ( N0 := N ∪ {0}), where, in this case we set Mk = 0 for
all k ≥ n + 1 and ϕi,j are naturally extended to all i , j ≥ 0.
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Homogeneous ideals of n-trivial extensions

Graded rings

Let Γ be a commutative additive monoid and S = ⊕
α∈Γ

Sα be a Γ-graded

ring. And an S-module N is said to be Γ-graded if N = ⊕
α∈Γ

Nα (as an

abelian group) and SαNβ ⊆ Nα+β for all α, β ∈ Γ. Let N = ⊕
α∈Γ

Nα be a

Γ-graded S-module. For every α ∈ Γ, the elements of Nα are said to be
homogeneous of degree α. A submodule N ′ of N is said to be
homogeneous if one of the following equivalent assertions is true.
(1) N ′ is generated by homogeneous elements,
(2) If

∑
α∈G′

nα ∈ N ′, where G′ is a finite subset of Γ and each nα is

homogeneous of degree α, then nα ∈ N ′ for every α ∈ G′, or
(3) N ′ = ⊕

α∈Γ
(N ′ ∩ Nα).
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Homogeneous ideals of n-trivial extensions

Graded rings

In particular, an ideal J of R nn M is homogeneous if and only if
J = (J ∩R)⊕ (J ∩M1)⊕ · · · ⊕ (J ∩Mn). Note that I := J ∩R is an ideal
of R and, for i ∈ {1, ...,n}, Ni := J ∩Mi is an R-submodule of Mi which
satisfies IMi ⊆ Ni and NiMj ⊆ Ni+j for evey i , j ∈ {1, ...,n}.
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Homogeneous ideals of n-trivial extensions

Theorem
1 Let I be an ideal of R and let C = (Ci)i∈{1,...,n} be a family of

R-modules such that Ci ⊆ Mi for every i ∈ {1, ...,n}. Then I nn C
is a (homogeneous) ideal of R nn M if and only if IMi ⊆ Ci and
CiMj ⊆ Ci+j for all i , j ∈ {1, ...,n} with i + j ≤ n.

2 Let J be an ideal of Rnn M and consider K the projection of J onto
R and Ni the projection of J onto Mi for every i ∈ {1, ...,n}. Then,

1 K is an ideal of R and Ni is a submodule of Mi for every
i ∈ {1, ...,n} such that KMi ⊆ Ni and NiMj ⊆ Ni+j for every
j ∈ {1, ...,n} with i + j ≤ n.
Thus K nn N1 n · · ·n Nn is a homogeneous ideal of
R nn M1 n · · ·n Mn.

2 J ⊆ K nn N1 n · · ·n Nn.
3 The ideal J is homogeneous if and only if J = K nn N1 n · · ·n Nn.
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CiMj ⊆ Ci+j for all i , j ∈ {1, ...,n} with i + j ≤ n.

2 Let J be an ideal of Rnn M and consider K the projection of J onto
R and Ni the projection of J onto Mi for every i ∈ {1, ...,n}. Then,

1 K is an ideal of R and Ni is a submodule of Mi for every
i ∈ {1, ...,n} such that KMi ⊆ Ni and NiMj ⊆ Ni+j for every
j ∈ {1, ...,n} with i + j ≤ n.
Thus K nn N1 n · · ·n Nn is a homogeneous ideal of
R nn M1 n · · ·n Mn.

2 J ⊆ K nn N1 n · · ·n Nn.
3 The ideal J is homogeneous if and only if J = K nn N1 n · · ·n Nn.
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Homogeneous ideals of n-trivial extensions

Remark and question on homogeneous ideals
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Homogeneous ideals of n-trivial extensions

Remark and question on homogeneous ideals

æ Every radical (hence prime) ideal of R nn M is homogeneous.
However, it is well-known that the ideals of the classical trivial
extensions are not in general homogeneous.
For instance, consider a quasi-local ring R with maximal m. Then,

a proper homogeneous ideal of R n R/m has either the form
I n R/m or I n 0 where I is a proper ideal of R, and
a proper homogeneous principal ideal of R n R/m has either the
form 0 n R/m or I n 0 where I is a principal ideal of R. Thus,
for instance, the principal ideal of R n R/m generated by an
element (a,e), where a and e are both nonzero with a ∈ m, is not
homogeneous.
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Homogeneous ideals of n-trivial extensions

Remark and question on homogeneous ideals

æ Then the following natural question arises:

Question
When every ideal in a given class I of ideals of R nn M is
homogeneous?

Various particular classes of ideals were treated. Here we present
two of them. Namely, we show when every regular ideal is
homogeneous and when every regular ideal is homogeneous.
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Homogeneous ideals of n-trivial extensions

When every regular ideal of R nn M is
homogeneous

An ideal is said to be regular if it contains a regular element.

Thus, an ideal of R nn M is regular if and only if it contains an
element (s,m1, ...,mn) with s ∈ R − (Z (R) ∪ Z (M1) ∪ · · · ∪ Z (Mn)).

Theorem
Let S = R − (Z (R) ∪ Z (M1) ∪ · · · ∪ Z (Mn)). Then the following
assertions are equivalent.

1 Every regular ideal of R nn M is homogeneous.
2 For every s ∈ S and i ∈ {1, ...,n}, sMi = Mi (or equivalently,

MiS = Mi ).
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Homogeneous ideals of n-trivial extensions

When every ideal of R nn M is homogeneous

The question of when every ideal of R nn M is homogeneous is still
open.
Here, we present a partial answer. For this, we need the following
definition:
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Homogeneous ideals of n-trivial extensions

When every ideal of R nn M is homogeneous

Definition
Assume that n ≥ 2. For i ∈ {1, ...,n − 1} and j ∈ {2, ...,n} with ji ≤ n,
Mi is said to be j -integral if, for any j elements mi1 , ...,mij of Mi , if the
product mi1 · · ·mij = 0, then at least one of the mik ’s is zero.
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Homogeneous ideals of n-trivial extensions

When every ideal of R nn M is homogeneous

Theorem
Suppose that n ≥ 2 and R is an integral domain. Assume that Mi is
torsion-free, for every i ∈ {1, ...,n − 1}, and that M1 is k -integral for
every k ∈ {2, ...,n − 1}. Then the following assertions are equivalent.

1 Every ideal of R nn M is homogeneous.
2 The following two conditions are satisfied:

i. For every i ∈ {1, ...,n}, Mi is divisible, and
ii. For every i ∈ {2, ...,n} and every m1 ∈ M1 − {0}, Mi = m1Mi−1.

Example
Every ideal of the following n-trivial extensions Z nn Qn · · ·nQ and
Z nn Qn · · ·nQnQ/Z is homogeneous.
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Thank you!
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