On n-trivial Extensions of Rings

Driss BENNIS

Rabat - Morocco
joint work with
D. D. Anderson, B. Fahid and A. Shaiea

```
Conference on Rings and Polynomials
- Graz, Austria -
```

July 3-8, 2016

- all rings considered in this talk are assumed to be commutative with an identity; in particular, R denotes such a ring, and all modules are assumed to be unitary modules.

- In this talk we present a part of a joint work on an extension of the classical trivial extension. For more details see arXiv:1604.01486.
- The paper presents various algebraic aspects of this new ring construction. Here, we present some of them with a special focus on the ideal structure.
- all rings considered in this talk are assumed to be commutative with an identity; in particular, R denotes such a ring, and all modules are assumed to be unitary modules.

Definition

The trivial extension of R by an R-module M is the ring denoted by $R \ltimes M$ whose underlying additive group is $R \oplus M$ with multiplication given by $(r, m)\left(r^{\prime}, m^{\prime}\right)=\left(r r^{\prime}, r m^{\prime}+m r^{\prime}\right)$.

- In this talk we present a part of a joint work on an extension of the classical trivial extension. For more details see arXiv:1604.01486.
- The paper presents various algebraic aspects of this new ring construction. Here, we present some of them with a special focus on the ideal structure.
- all rings considered in this talk are assumed to be commutative with an identity; in particular, R denotes such a ring, and all modules are assumed to be unitary modules.

Definition

The trivial extension of R by an R-module M is the ring denoted by $R \ltimes M$ whose underlying additive group is $R \oplus M$ with multiplication given by $(r, m)\left(r^{\prime}, m^{\prime}\right)=\left(r r^{\prime}, r m^{\prime}+m r^{\prime}\right)$.

- In this talk we present a part of a joint work on an extension of the classical trivial extension. For more details see arXiv:1604.01486.
- The paper presents various algebraic aspects of this new ring construction. Here, we present some of them with a special focus on the ideal structure.
- all rings considered in this talk are assumed to be commutative with an identity; in particular, R denotes such a ring, and all modules are assumed to be unitary modules.

Definition

The trivial extension of R by an R-module M is the ring denoted by $R \ltimes M$ whose underlying additive group is $R \oplus M$ with multiplication given by $(r, m)\left(r^{\prime}, m^{\prime}\right)=\left(r r^{\prime}, r m^{\prime}+m r^{\prime}\right)$.

- In this talk we present a part of a joint work on an extension of the classical trivial extension. For more details see arXiv:1604.01486.
- The paper presents various algebraic aspects of this new ring construction. Here, we present some of them with a special focus on the ideal structure.

Outline

(1) Motivation, Definition and Examples
(2) Some basic algebraic properties of $R \ltimes_{n} M$
(3) Homogeneous ideals of n-trivial extensions

Outline

(1) Motivation, Definition and Examples
(2) Some basic algebraic properties of $R \ltimes_{n} M$

Homogeneous ideals of n-trivial extensions

Outline

(1) Motivation, Definition and Examples
(2) Some basic algebraic properties of $R \ltimes_{n} M$
(3) Homogeneous ideals of n-trivial extensions

Outline

(1) Motivation, Definition and Examples
(2) Some basic algebraic properties of $R \ltimes_{n} M$
(3) Homogeneous ideals of n-trivial extensions

Motivation

Motivation

- Generalized triangular matrix ring.
- The trivial extension is related to some classical ring constructions. Namely, it is related with the following ones:

Motivation

Generalized triangular matrix ring.

Let $\mathscr{R}:=\left(R_{i}\right)_{i=1}^{n}$ be a family of rings and $\mathscr{M}:=\left(M_{i, j}\right)_{1 \leq i<j \leq n}$ be a family of modules such that for each $1 \leq i<j \leq n, M_{i, j}$ is an (R_{i}, R_{j})-bimodule.
Assume for every $1 \leq i<j<k \leq n$, there exists an (R_{i}, R_{k})-bimodule homomorphism $M_{i, j} \otimes_{R_{j}} M_{j, k} \longrightarrow M_{i, k}$ denoted multiplicatively such that $\left(m_{i, j} m_{j, k}\right) m_{k, l}=m_{i, j}\left(m_{j, k} m_{k, l}\right)$.
Then the set $T_{n}(\mathscr{R}, \mathscr{M})$ consisting of matrices
$\left(\begin{array}{cccccc}m_{1,1} & m_{1,2} & \cdots & \cdots & m_{1, n-1} & m_{1, n} \\ 0 & m_{2,2} & \cdots & \cdots & m_{2, n-1} & m_{2, n} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & m_{n-1, n-1} & m_{n-1, n} \\ 0 & 0 & \cdots & 0 & 0 & m_{n, n}\end{array}\right)$, where $m_{i, i} \in R_{i}$ and
$m_{i, j} \in M_{i, j}(1 \leq i<j \leq n)$, with the usual matrix addition and multiplication is a ring called a generalized (or formal) triangular matrix ring.

Motivation

－Generalized triangular matrix ring．

The trivial extension $R \ltimes M$ is naturally isomorphic to the subring of the generalized triangular matrix ring

$$
T_{2}((R, R), M):=\left(\begin{array}{cc}
R & M \\
0 & R
\end{array}\right)
$$

consisting of matrices $\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)$ where $r \in R$ and $m \in M$ ．

Motivation

－Generalized triangular matrix ring．

The trivial extension $R \ltimes M$ is naturally isomorphic to the subring of the generalized triangular matrix ring

$$
T_{2}((R, R), M):=\left(\begin{array}{cc}
R & M \\
0 & R
\end{array}\right)
$$

consisting of matrices $\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)$ where $r \in R$ and $m \in M$ ．

Motivation

Symmetric algebra.

\Rightarrow The symmetric algebra associated to an R-module M is the graded ring quotient $S_{R}(M):=T_{R}(M) / H$, where $T_{R}(M)$ is the graded tensor R-algebra with $T_{R}^{n}(M)=M^{\otimes n}$ and H is the homogeneous ideal of $T_{R}(M)$ generated by $\{m \otimes n-n \otimes m \mid m, n \in M\}$.
Note that $S_{R}(M)=\underset{n=0}{\oplus} S_{R}^{n}(M)$ is a graded R-algebra with $S_{R}^{0}(M)=R$ and $S_{R}^{1}(M)=M$ and, in general, $S_{R}^{i}(M)$ is the image of $T_{R}^{i}(M)$ in $S_{R}(M)$.

- The trivial extension $R \ltimes M$ is naturally isomorphic to $S_{R}(M)$

Motivation

Symmetric algebra.

- The symmetric algebra associated to an R-module M is the graded ring quotient $S_{R}(M):=T_{R}(M) / H$, where $T_{R}(M)$ is the graded tensor R-algebra with $T_{R}^{n}(M)=M^{\otimes n}$ and H is the homogeneous ideal of $T_{R}(M)$ generated by $\{m \otimes n-n \otimes m \mid m, n \in M\}$.
Note that $S_{R}(M)=\underset{n=0}{\infty} S_{R}^{n}(M)$ is a graded R-algebra with $S_{R}^{0}(M)=R$ and $S_{R}^{1}(M)=M$ and, in general, $S_{R}^{i}(M)$ is the image of $T_{R}^{i}(M)$ in $S_{R}(M)$.
\Rightarrow The trivial extension $R \ltimes M$ is naturally isomorphic to $S_{R}(M) / \underset{n \geq 2}{\oplus} S_{R}^{n}(M)$.

Motivation

If M is a free R-module with a basis B, then the trivial extension $R \ltimes M$ is naturally isomorphic to the ring quotient $R\left[\left\{X_{b}\right\}_{b \in B}\right] /\left(\left\{X_{b}\right\}_{b \in B}\right)^{2}$ where $\left\{X_{b}\right\}_{b \in B}$ is a set of indeterminates over R.
In particular, $R \ltimes R \cong R[X] /\left(X^{2}\right)$.

Defintion of n-trivial extension.

Let $M=\left(M_{i}\right)_{i=1}^{n}$ be a family of R-modules and $\varphi=\left\{\varphi_{i, j}\right\}_{\substack{i+j \leq n \leq n \\ 1 \leq i, j \leq n-1}}$ be a family of R-module homomorphisms such that each $\varphi_{i, j}$ is written multiplicatively: $\varphi_{i, j}: M_{i} \otimes M_{j} \longrightarrow M_{i+j}$

$$
m_{i} \otimes m_{j} \longmapsto \varphi_{i, j}\left(m_{i}, m_{j}\right):=m_{i} m_{j} .
$$

such that

- $\left(m_{i} m_{j}\right) m_{k}=m_{i}\left(m_{j} m_{k}\right)$ for $m_{i} \in M_{i}, m_{j} \in M_{j}$ and $m_{k} \in M_{k}$ with $1 \leq i, j, k \leq n-2$ and $i+j+k \leq n$, and
- $m_{i} m_{j}=m_{j} m_{i}$ for every $m_{i} \in M_{i}$ and $m_{j} \in M_{j}$ with $1 \leq i, j \leq n-1$ and $i+j \leq n$.
Then, the additive group $R \oplus M_{1} \oplus \cdots \oplus M_{n}$ endowed with the

Defintion of n-trivial extension.

Let $M=\left(M_{i}\right)_{i=1}^{n}$ be a family of R-modules and $\varphi=\left\{\varphi_{i, j}\right\}_{\substack{i+j \leq n \\ 1 \leq i, j \leq n-1}}$ be a family of R-module homomorphisms such that each $\varphi_{i, j}$ is written multiplicatively: $\varphi_{i, j}: \quad M_{i} \otimes M_{j} \longrightarrow M_{i+j}$

$$
m_{i} \otimes m_{j} \longmapsto \varphi_{i, j}\left(m_{i}, m_{j}\right):=m_{i} m_{j} .
$$

such that

- $\left(m_{i} m_{j}\right) m_{k}=m_{i}\left(m_{j} m_{k}\right)$ for $m_{i} \in M_{i}, m_{j} \in M_{j}$ and $m_{k} \in M_{k}$ with $1 \leq i, j, k \leq n-2$ and $i+j+k \leq n$, and
- $m_{i} m_{j}=m_{j} m_{i}$ for every $m_{i} \in M_{i}$ and $m_{j} \in M_{j}$ with $1 \leq i, j \leq n-1$ and $i+j \leq n$.
Then, the additive group $R \oplus M_{1} \oplus \cdots \oplus M_{n}$ endowed with the multiplication

$$
\left(m_{0}, \ldots, m_{n}\right)\left(m_{0}^{\prime}, \ldots, m_{n}^{\prime}\right)=\left(\sum_{j+k=i} m_{j} m_{k}^{\prime}\right)
$$

for all $\left(m_{i}\right),\left(m_{i}^{\prime}\right) \in R \ltimes_{\varphi} M$, is a ring called the n - φ-trivial extension of R by M or simply the n-trivial extension of R by M. It will be denoted by $R \ltimes_{\varphi} M_{1} \ltimes \cdots \ltimes M_{n}$ or simply $R \ltimes_{\varphi} M$.

Relations with some classical ring constructions.

- Generalized triangular matrix ring. $R \ltimes_{n} M$ is naturally isomorphic to the subring of the generalized triangular matrix ring

$$
\left(\begin{array}{ccccc}
R & M_{1} & M_{2} & \cdots \cdots & M_{n} \\
0 & R & M_{1} & \cdots & M_{n-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & M_{1} \\
0 & 0 & 0 & \cdots & R
\end{array}\right)
$$

consisting of matrice

$$
\left(\begin{array}{ccccc}
r & m_{1} & m_{2} & \cdots \cdots & m_{n} \\
0 & r & m_{1} & \cdots & m_{n-1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & m_{1} \\
0 & 0 & 0 & \cdots & r
\end{array}\right)
$$

where $r \in R$ and $m_{i} \in M_{i}$ for every $i \in\{1, \ldots, n\}$.

Relations with some classical ring constructions.

- Symmetric algebra. When, for every $k \in\{1, \ldots, n\}, M_{k}=S_{R}^{k}\left(M_{1}\right)$, the ring $R \ltimes_{n} M$ is naturally isomorphic to $S_{R}\left(M_{1}\right) / \bigoplus_{k \geq n+1} S_{R}^{k}\left(M_{1}\right)$.

Namely, when $F \cong R$,

Relations with some classical ring constructions.

- Symmetric algebra. When, for every $k \in\{1, \ldots, n\}, M_{k}=S_{R}^{k}\left(M_{1}\right)$, the ring $R \ltimes_{n} M$ is naturally isomorphic to $S_{R}\left(M_{1}\right) / \bigoplus_{k \geq n+1} S_{R}^{k}\left(M_{1}\right)$.
- Polynomial ring.

In particular, if $M_{1}=F$ is a free R-module with a basis B, then the n-trivial extension $R \ltimes F \ltimes S_{R}^{2}(F) \ltimes \cdots \ltimes S_{R}^{n}(F)$ is also naturally isomorphic to $R\left[\left\{X_{b}\right\}_{b \in B}\right] /\left(\left\{X_{b}\right\}_{b \in B}\right)^{n+1}$ where $\left\{X_{b}\right\}_{b \in B}$ is a set of indeterminates over R.

Namely, when $F \cong R$,

Relations with some classical ring constructions.

- Symmetric algebra. When, for every $k \in\{1, \ldots, n\}, M_{k}=S_{R}^{k}\left(M_{1}\right)$, the ring $R \ltimes_{n} M$ is naturally isomorphic to $S_{R}\left(M_{1}\right) / \bigoplus_{k \geq n+1} S_{R}^{k}\left(M_{1}\right)$.
- Polynomial ring.

In particular, if $M_{1}=F$ is a free R-module with a basis B, then the n-trivial extension $R \ltimes F \ltimes S_{R}^{2}(F) \ltimes \cdots \ltimes S_{R}^{n}(F)$ is also naturally isomorphic to $R\left[\left\{X_{b}\right\}_{b \in B}\right] /\left(\left\{X_{b}\right\}_{b \in B}\right)^{n+1}$ where $\left\{X_{b}\right\}_{b \in B}$ is a set of indeterminates over R.

Namely, when $F \cong R$,

$$
R \ltimes_{n} R \ltimes \cdots \ltimes R \cong R[X] /\left(X^{n+1}\right)
$$

Relations with some classical ring constructions.

- Symmetric algebra. When, for every $k \in\{1, \ldots, n\}, M_{k}=S_{R}^{k}\left(M_{1}\right)$, the ring $R \ltimes_{n} M$ is naturally isomorphic to $S_{R}\left(M_{1}\right) / \bigoplus_{k \geq n+1} S_{R}^{k}\left(M_{1}\right)$.
- Polynomial ring.

In particular, if $M_{1}=F$ is a free R-module with a basis B, then the n-trivial extension $R \ltimes F \ltimes S_{R}^{2}(F) \ltimes \cdots \ltimes S_{R}^{n}(F)$ is also naturally isomorphic to $R\left[\left\{X_{b}\right\}_{b \in B}\right] /\left(\left\{X_{b}\right\}_{b \in B}\right)^{n+1}$ where $\left\{X_{b}\right\}_{b \in B}$ is a set of indeterminates over R.

Namely, when $F \cong R$,

$$
R \ltimes_{n} R \ltimes \cdots \ltimes R \cong R[X] /\left(X^{n+1}\right)
$$

n-Trivial extensions is not in general 1-trivial extensions.

n-Trivial extensions is not in general 1-trivial extensions.

Remark

\Rightarrow If R_{1} and R_{2} are two rings and H an $\left(R_{1}, R_{2}\right)$-bimodule. Then,

$$
T_{2}\left(\left(R_{1}, R_{2}\right), H\right) \cong\left(R_{1}, R_{2}\right) \ltimes H,
$$

where the actions of $R_{1} \times R_{2}$ on H are defined as follows: $\left(r_{1}, r_{2}\right) h=r_{1} h$ and $h\left(r_{1}, r_{2}\right)=h r_{2}$ for every $\left(r_{1}, r_{2}\right) \in R_{1} \times R_{2}$ and $h \in H$.

- Every generalized triangular matrix ring is isomorphic to an n-trivial extension.
- Every generalized triangular matrix ring is isomorphic to generalized triangular matrix ring of order 2.
n-Trivial extensions is not in general 1-trivial extensions.

Remark

- If R_{1} and R_{2} are two rings and H an (R_{1}, R_{2})-bimodule. Then,

$$
T_{2}\left(\left(R_{1}, R_{2}\right), H\right) \cong\left(R_{1}, R_{2}\right) \ltimes H,
$$

where the actions of $R_{1} \times R_{2}$ on H are defined as follows: $\left(r_{1}, r_{2}\right) h=r_{1} h$ and $h\left(r_{1}, r_{2}\right)=h r_{2}$ for every $\left(r_{1}, r_{2}\right) \in R_{1} \times R_{2}$ and $h \in H$.
\Rightarrow Every generalized triangular matrix ring is isomorphic to an n-trivial extension.

- Every generalized triangular matrix ring is isomorphic to generalized triangular matrix ring of order 2.
n-Trivial extensions is not in general 1-trivial extensions.

Remark

- If R_{1} and R_{2} are two rings and H an (R_{1}, R_{2})-bimodule. Then,

$$
T_{2}\left(\left(R_{1}, R_{2}\right), H\right) \cong\left(R_{1}, R_{2}\right) \ltimes H,
$$

where the actions of $R_{1} \times R_{2}$ on H are defined as follows: $\left(r_{1}, r_{2}\right) h=r_{1} h$ and $h\left(r_{1}, r_{2}\right)=h r_{2}$ for every $\left(r_{1}, r_{2}\right) \in R_{1} \times R_{2}$ and $h \in H$.

- Every generalized triangular matrix ring is isomorphic to an n-trivial extension.
\Rightarrow Every generalized triangular matrix ring is isomorphic to generalized triangular matrix ring of order 2.

n－Trivial extensions is not in general 1－trivial extensions．

\Rightarrow However，an n－trivial extension with $n \geq 2$ is not necessarily a 1－trivial extension． For instance，the 2－trivial extension $\mathbb{Z} / 2 \mathbb{Z} \ltimes_{2} \mathbb{Z} / 2 \mathbb{Z} \ltimes \mathbb{Z} / 2 \mathbb{Z}$ cannot be isomorphic to any 1－trivial extension．

Examples

Example
 Let N_{1}, \ldots, N_{n} be R-submodules of an R-algebra T with $N_{i} N_{j} \subseteq N_{i+j}$ for $1 \leq i, j \leq n-1$ with $i+j \leq n$. Then, if the module homomorphisms are just the multiplication of L (and so will be, in the sequel, if they are not specified), then $R \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$ is an n-trivial extension.

Examples

Example

Let N_{1}, \ldots, N_{n} be R-submodules of an R-algebra T with $N_{i} N_{j} \subseteq N_{i+j}$ for $1 \leq i, j \leq n-1$ with $i+j \leq n$. Then, if the module homomorphisms are just the multiplication of L (and so will be, in the sequel, if they are not specified), then $R \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$ is an n-trivial extension.
following examples are some special cases:

Examples

Example

Let N_{1}, \ldots, N_{n} be R-submodules of an R-algebra T with $N_{i} N_{j} \subseteq N_{i+j}$ for $1 \leq i, j \leq n-1$ with $i+j \leq n$. Then, if the module homomorphisms are just the multiplication of L (and so will be, in the sequel, if they are not specified), then $R \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$ is an n-trivial extension. The following examples are some special cases:
\Rightarrow Let I be an ideal of R. Then $R \ltimes_{n} I \ltimes I^{2} \ltimes \cdots \ltimes I^{n}$ is the quotient of the Rees ring $R[I t] /\left(I^{n+1} t^{n+1}\right)$, where $R[I t]:=\bigoplus_{n \geq 0} I^{n} t^{n}$.

Examples

Example

Let N_{1}, \ldots, N_{n} be R-submodules of an R-algebra T with $N_{i} N_{j} \subseteq N_{i+j}$ for $1 \leq i, j \leq n-1$ with $i+j \leq n$. Then, if the module homomorphisms are just the multiplication of L (and so will be, in the sequel, if they are not specified), then $R \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$ is an n-trivial extension. The following examples are some special cases:

- Let I be an ideal of R. Then $R \ltimes_{n} I \ltimes I^{2} \ltimes \cdots \ltimes I^{n}$ is the quotient of the Rees ring $R[I t] /\left(I^{n+1} t^{n+1}\right)$, where $R[I t]:=\bigoplus_{n \geq 0} I^{n} t^{n}$.
\Rightarrow Let T be an R-algebra and $J_{1} \subseteq \cdots \subseteq J_{n}$ ideals of T. Then $R \ltimes_{n} J_{1} \ltimes \cdots \ltimes J_{n}$ is an example of n-trivial extension since $J_{i} J_{j} \subseteq J_{i} \subseteq J_{i+j}$ for $i+j \leq n$. For example, we could take $R \ltimes_{2} X R[X] \ltimes R[X]$.

Particular cases of n-trivial extensions have been already introduced and used to solve some open questions.

- P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.
- Also, a particular case of 2-trivial extensions is introduced by V. Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.
- Z. Pogorzaly (2005) introduced and studied a particular case of 3-trivial extensions to obtain a Galois coverings for the enveloping algebras of trivial extension algebras of triangular algebras.
- D. Bachman, N. R. Baeth and A. McQueen (2015) studied $\begin{array}{llll}\text { factorization properties of the n-trivial extension } \\ \text { ennis (Rabat } \boldsymbol{-} \mathbf{M o r o c c o}) & n \text {-Trivial Extensions of Rings } & \text { Graz, } \mathbf{A u s t r i a} \text { - July } & \mathbf{2 0 1 6} \\ \mathbf{8 / \mathbf { 2 0 }}\end{array}$

Particular cases of n-trivial extensions have been already introduced and used to solve some open questions.

\Leftrightarrow P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.

Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.

- Z. Pogorzaly (2005) introduced and studied a particular case of 3-trivial extensions to obtain a Galois coverings for the enveloping algebras of trivial extension algebras of triangular algebras.
- D. Bachman, N. R. Baeth and A. McQueen (2015) studied $\begin{array}{llll}\text { factorization properties of the } n \text {-trivial extension } \\ \text { Bennis (Rabat } \boldsymbol{-} \text { Morocco) } & n \text {-Trivial Extensions of Rings } & \text { Graz, } \mathbf{A u s t r i a} \text { - July } \mathbf{2 0 1 6} & \mathbf{8 / \mathbf { 2 0 }}\end{array}$

Particular cases of n-trivial extensions have been already introduced and used to solve some open questions.

- P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.
\Rightarrow Also, a particular case of 2-trivial extensions is introduced by V . Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.

Particular cases of n-trivial extensions have been already introduced and used to solve some open questions.

- P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.
- Also, a particular case of 2-trivial extensions is introduced by V . Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.
\Rightarrow Z. Pogorzaly (2005) introduced and studied a particular case of 3-trivial extensions to obtain a Galois coverings for the enveloping algebras of trivial extension algebras of triangular algebras.

Particular cases of n-trivial extensions have been already introduced and used to solve some open questions.

- P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.
- Also, a particular case of 2-trivial extensions is introduced by V . Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.
- Z. Pogorzaly (2005) introduced and studied a particular case of 3-trivial extensions to obtain a Galois coverings for the enveloping algebras of trivial extension algebras of triangular algebras.
\Rightarrow D. Bachman, N. R. Baeth and A. McQueen (2015) studied factorization properties of the n-trivial extension $R \ltimes_{n} R \ltimes \cdots \ltimes R$.

Outline

(1) Motivation, Definition and Examples

(2) Some basic algebraic properties of $R \ltimes_{n} M$

(3) Homogeneous ideals of n-trivial extensions

Notation

Unless specified otherwise, $M=\left(M_{i}\right)_{i=1}^{n}$ is a family of R-modules with

 module homomorphisms as indicated in the definition of the n-trivial extension. So $R \ltimes_{n} M$ is indeed a (commutative) ring with identity $(1,0, \ldots, 0)$.Let S be a nonempty subset of R and $N=\left(N_{i}\right)_{i=1}^{n}$ be a family of sets such that, for every $i, N_{i} \subseteq M_{i}$. Then as a subset of $R \ltimes_{n} M$, $S \times N_{1} \times \cdots \times N_{n}$ will be denoted by $S \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$ or simply $S \ltimes_{n} N$.

Notation

Unless specified otherwise, $M=\left(M_{i}\right)_{i=1}^{n}$ is a family of R-modules with module homomorphisms as indicated in the definition of the n-trivial extension. So $R \ltimes_{n} M$ is indeed a (commutative) ring with identity $(1,0, \ldots, 0)$.
Let S be a nonempty subset of R and $N=\left(N_{i}\right)_{i=1}^{n}$ be a family of sets such that, for every $i, N_{i} \subseteq M_{i}$. Then as a subset of $R \ltimes_{n} M$,

Notation

Unless specified otherwise, $M=\left(M_{i}\right)_{j=1}^{n}$ is a family of R-modules with module homomorphisms as indicated in the definition of the n-trivial extension. So $R \ltimes_{n} M$ is indeed a (commutative) ring with identity $(1,0, \ldots, 0)$.
Let S be a nonempty subset of R and $N=\left(N_{i}\right)_{i=1}^{n}$ be a family of sets such that, for every $i, N_{i} \subseteq M_{i}$. Then as a subset of $R \ltimes_{n} M$, $S \times N_{1} \times \cdots \times N_{n}$ will be denoted by $S \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$ or simply $S \ltimes_{n} N$.

Observations

Observations

\Rightarrow If there is an integer $i \in\{1, \ldots, n-1\}$ such that $M_{j}=0$ for every $j \in\{i+1, \ldots, n\}$, then

$$
R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{i} \ltimes 0 \ltimes \cdots \ltimes 0 \cong R \ltimes_{i} M_{1} \ltimes \cdots \ltimes M_{i} .
$$

where $2 n^{\prime}+1$ is the biggest odd integer in $\{1, \ldots, n\}$. - If $M_{2 k+1}=0$ for every $k \in \mathbb{N}$ with $1 \leq 2 k+1 \leq n$, then

$$
R \ltimes_{n} M \cong R \ltimes_{n^{\prime \prime}} M_{2} \ltimes M_{4} \ltimes \cdots \ltimes M_{2 n^{\prime \prime}}
$$

where $2 n^{\prime \prime}$ is the biggest even integer in $\{1$,

Observations

\Rightarrow If there is an integer $i \in\{1, \ldots, n-1\}$ such that $M_{j}=0$ for every $j \in\{i+1, \ldots, n\}$, then

$$
R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{i} \ltimes 0 \ltimes \cdots \ltimes 0 \cong R \ltimes_{i} M_{1} \ltimes \cdots \ltimes M_{i} .
$$

However, if $n \geq 3$ and there is an integer $i \in\{1, \ldots, n-2\}$ such that, for $j \in\{1, \ldots, n\}, M_{j}=0$ if and only if $j \in\{1, \ldots, i\}$, then $R \ltimes_{n-i} M_{i+1} \ltimes \cdots \ltimes M_{n}$ has no sense, since (when, for example, $2 i+2 \leq n) \varphi_{i+1, i+1}\left(M_{i+1} \otimes M_{i+1}\right)$ is a subset of $M_{2 i+2}$ not of M_{i+2}.
where $2 n^{\prime}+1$ is the biggest odd integer in $\{1, \ldots, n\}$.
If $M_{2 k+1}=0$ for every $k \in \mathbb{N}$ with $1 \leq 2 k+1 \leq n$, then $R \times \times_{n} \simeq R \times{ }_{n^{\prime \prime}} M_{2} \times M_{4} \times \cdots \times M_{2 n^{\prime \prime}}$ where $2 n^{\prime \prime}$ is the biggest even integer in $\{1, \ldots, n\}$

Observations

\Rightarrow If there is an integer $i \in\{1, \ldots, n-1\}$ such that $M_{j}=0$ for every $j \in\{i+1, \ldots, n\}$, then

$$
R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{i} \ltimes 0 \ltimes \cdots \ltimes 0 \cong R \ltimes_{i} M_{1} \ltimes \cdots \ltimes M_{i} .
$$

However, if $n \geq 3$ and there is an integer $i \in\{1, \ldots, n-2\}$ such that, for $j \in\{1, \ldots, n\}, M_{j}=0$ if and only if $j \in\{1, \ldots, i\}$, then $R \ltimes_{n-i} M_{i+1} \ltimes \cdots \ltimes M_{n}$ has no sense, since (when, for example, $2 i+2 \leq n) \varphi_{i+1, i+1}\left(M_{i+1} \otimes M_{i+1}\right)$ is a subset of $M_{2 i+2}$ not of M_{i+2}.
\Rightarrow If $M_{2 k}=0$ for every $k \in \mathbb{N}$ with $1 \leq 2 k \leq n$, then

$$
R \ltimes_{n} M \cong R \ltimes_{1}\left(M_{1} \times M_{3} \times \cdots \times M_{2 n^{\prime}+1}\right),
$$

where $2 n^{\prime}+1$ is the biggest odd integer in $\{1, \ldots, n\}$.
where $2 n^{\prime \prime}$ is the biggest even integer in $\{1$

Observations

\Rightarrow If there is an integer $i \in\{1, \ldots, n-1\}$ such that $M_{j}=0$ for every $j \in\{i+1, \ldots, n\}$, then

$$
R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{i} \ltimes 0 \ltimes \cdots \ltimes 0 \cong R \ltimes_{i} M_{1} \ltimes \cdots \ltimes M_{i} .
$$

However, if $n \geq 3$ and there is an integer $i \in\{1, \ldots, n-2\}$ such that, for $j \in\{1, \ldots, n\}, M_{j}=0$ if and only if $j \in\{1, \ldots, i\}$, then
$R \ltimes_{n-i} M_{i+1} \ltimes \cdots \ltimes M_{n}$ has no sense, since (when, for example, $2 i+2 \leq n) \varphi_{i+1, i+1}\left(M_{i+1} \otimes M_{i+1}\right)$ is a subset of $M_{2 i+2}$ not of M_{i+2}.

- If $M_{2 k}=0$ for every $k \in \mathbb{N}$ with $1 \leq 2 k \leq n$, then

$$
R \ltimes_{n} M \cong R \ltimes_{1}\left(M_{1} \times M_{3} \times \cdots \times M_{2 n^{\prime}+1}\right)
$$

where $2 n^{\prime}+1$ is the biggest odd integer in $\{1, \ldots, n\}$.
\Rightarrow If $M_{2 k+1}=0$ for every $k \in \mathbb{N}$ with $1 \leq 2 k+1 \leq n$, then

$$
R \ltimes_{n} M \cong R \ltimes_{n^{\prime \prime}} M_{2} \ltimes M_{4} \ltimes \cdots \ltimes M_{2 n^{\prime \prime}}
$$

where $2 n^{\prime \prime}$ is the biggest even integer in $\{1, \ldots, n\}$.

Observations

Convention. Unless explicitly stated otherwise, when we consider an n-trivial extension for a given n, then we implicitly suppose that $M_{i} \neq 0$ for every $i \in\{1, \ldots, n\}$.

Particular kind of ideals

Particular kind of ideals

Proposition

We have the following (natural) ring extension :
$i_{n}: R \hookrightarrow R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{n}$. Then, for an ideal / of R, the ideal
$I \ltimes_{n} I M_{1} \ltimes \cdots \ltimes I M_{n}$ of $R \ltimes_{n} M$ is the extension of $/$ under the ring
homomorphism i_{n}.

Particular kind of ideals

Proposition

We have the following (natural) ring extension : $i_{n}: R \hookrightarrow R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{n}$. Then, for an ideal $/$ of R, the ideal $I \ltimes_{n} I M_{1} \ltimes \cdots \ltimes I M_{n}$ of $R \ltimes_{n} M$ is the extension of $/$ under the ring homomorphism i_{n}.

Particular kind of ideals

Remark

\Rightarrow In the case of $n=1$, the ideal structure of $0 \ltimes_{1} M_{1}$ is the same as the R-module structure of $0 \ltimes_{1} M_{1}$.

- However, for $n \geq 2$, the R-module structure of $0 \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{n}$ need not be the same as the ideal structure.
- For instance, consider the 2-trivial extension $\mathbb{Z} \times_{2} \mathbb{Z} \times \mathbb{Z}$. Then $\mathbb{Z}(0,1,1)=\{(0, m, m) \mid m \in \mathbb{Z}\}$ while the ideal of $\mathbb{Z} \ltimes_{2} \mathbb{Z} \ltimes \mathbb{Z}$ generated by $(0,1,1)$ is $0 \ltimes_{2} \mathbb{Z} \ltimes \mathbb{Z}$.

Particular kind of ideals

Remark

- In the case of $n=1$, the ideal structure of $0 \ltimes_{1} M_{1}$ is the same as the R-module structure of $0 \ltimes_{1} M_{1}$.
\Rightarrow However, for $n \geq 2$, the R-module structure of $0 \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{n}$ need not be the same as the ideal structure.
- For instance, consider the 2-trivial extension $\mathbb{Z} \times_{2} \mathbb{Z} \times \mathbb{Z}$. Then $\mathbb{Z}(0,1,1)=\{(0, m, m) \mid m \in \mathbb{Z}\}$ while the ideal of $\mathbb{Z} \ltimes_{2} \mathbb{Z} \ltimes \mathbb{Z}$ generated by $(0,1,1)$ is $0 \ltimes_{2} \mathbb{Z} \ltimes \mathbb{Z}$.

Particular kind of ideals

Remark

- In the case of $n=1$, the ideal structure of $0 \ltimes_{1} M_{1}$ is the same as the R-module structure of $0 \ltimes_{1} M_{1}$.
- However, for $n \geq 2$, the R-module structure of $0 \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{n}$ need not be the same as the ideal structure.
\Rightarrow For instance, consider the 2-trivial extension $\mathbb{Z} \ltimes_{2} \mathbb{Z} \ltimes \mathbb{Z}$. Then $\mathbb{Z}(0,1,1)=\{(0, m, m) \mid m \in \mathbb{Z}\}$ while the ideal of $\mathbb{Z} \ltimes_{2} \mathbb{Z} \ltimes \mathbb{Z}$ generated by $(0,1,1)$ is $0 \ltimes_{2} \mathbb{Z} \ltimes \mathbb{Z}$.

Particular kind of ideals

Proposition

\Rightarrow For every $m \in\{1, \ldots, n\}, 0 \ltimes_{n} 0 \ltimes \cdots \ltimes 0 \ltimes M_{m} \ltimes \cdots \ltimes M_{n}$ is an ideal of $R \ltimes_{n} M$ and an $R \ltimes_{j} M_{1} \ltimes \cdots \ltimes M_{j}$-module for every $j \in\{n-m, \ldots, n\}$ via the action

$$
\begin{aligned}
\left(x_{0}, \ldots, x_{j}\right)\left(0, \ldots, 0, y_{m}, \ldots, y_{n}\right): & =\left(x_{0}, x_{1}, \ldots, x_{j}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{m}, \ldots, y_{n}\right) \\
& =\left(x_{0}, x_{1}, \ldots, x_{n-m}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{m}, \ldots, y_{n}\right)
\end{aligned}
$$

- Moreover, the structure of $0 \ltimes_{n} 0 \ltimes \cdots \ltimes 0 \ltimes M_{m} \ltimes \cdots \ltimes M_{n}$ as an ideal of $R \ltimes_{n} M$ is the same as the $R \ltimes_{j} M_{1} \ltimes \cdots \ltimes M_{j}$-module structure for every $j \in\{n-m, \ldots, n\}$.
- In particular, the structure of the ideal $0 \ltimes_{n} 0 \ltimes \cdots \ltimes 0 \ltimes M_{n}$ is the same as the one of the R-module M_{n}.

Particular kind of ideals

Proposition

- For every $m \in\{1, \ldots, n\}, 0 \ltimes_{n} 0 \ltimes \cdots \ltimes 0 \ltimes M_{m} \ltimes \cdots \ltimes M_{n}$ is an ideal of $R \ltimes_{n} M$ and an $R \ltimes_{j} M_{1} \ltimes \cdots \ltimes M_{j}$-module for every $j \in\{n-m, \ldots, n\}$ via the action

$$
\begin{aligned}
\left(x_{0}, \ldots, x_{j}\right)\left(0, \ldots, 0, y_{m}, \ldots, y_{n}\right): & =\left(x_{0}, x_{1}, \ldots, x_{j}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{m}, \ldots, y_{n}\right) \\
& =\left(x_{0}, x_{1}, \ldots, x_{n-m}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{m}, \ldots, y_{n}\right)
\end{aligned}
$$

\Rightarrow Moreover, the structure of $0 \ltimes_{n} 0 \ltimes \cdots \ltimes 0 \ltimes M_{m} \ltimes \cdots \ltimes M_{n}$ as an ideal of $R \ltimes_{n} M$ is the same as the $R \ltimes_{j} M_{1} \ltimes \cdots \ltimes M_{j}$-module structure for every $j \in\{n-m, \ldots, n\}$.

$$
\text { same as the one of the } R \text {-module } M_{n} \text {. }
$$

Particular kind of ideals

Proposition

- For every $m \in\{1, \ldots, n\}, 0 \ltimes_{n} 0 \ltimes \cdots \ltimes 0 \ltimes M_{m} \ltimes \cdots \ltimes M_{n}$ is an ideal of $R \ltimes_{n} M$ and an $R \ltimes_{j} M_{1} \ltimes \cdots \ltimes M_{j}$-module for every $j \in\{n-m, \ldots, n\}$ via the action

$$
\begin{aligned}
\left(x_{0}, \ldots, x_{j}\right)\left(0, \ldots, 0, y_{m}, \ldots, y_{n}\right): & =\left(x_{0}, x_{1}, \ldots, x_{j}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{m}, \ldots, y_{n}\right) \\
& =\left(x_{0}, x_{1}, \ldots, x_{n-m}, 0, \ldots, 0\right)\left(0, \ldots, 0, y_{m}, \ldots, y_{n}\right)
\end{aligned}
$$

- Moreover, the structure of $0 \ltimes_{n} 0 \ltimes \cdots \ltimes 0 \ltimes M_{m} \ltimes \cdots \ltimes M_{n}$ as an ideal of $R \ltimes_{n} M$ is the same as the $R \ltimes_{j} M_{1} \ltimes \cdots \ltimes M_{j}$-module structure for every $j \in\{n-m, \ldots, n\}$.
\Rightarrow In particular, the structure of the ideal $0 \ltimes_{n} 0 \ltimes \cdots \ltimes 0 \ltimes M_{n}$ is the same as the one of the R-module M_{n}.

Particular kind of ideals

Lemma

Every ideal of $R \ltimes_{n} M$ which contains $0 \ltimes_{n} M$ has the form $I \ltimes_{n} M$ for some ideal $/$ of R. In this case, we have the following natural ring isomorphism:

$$
R \ltimes_{n} M / I \ltimes_{n} M \cong R / I .
$$

Theorem
Radical ideals of $R \ltimes_{n} M$ have the form $/ \ltimes_{n} M$ where $/$ is a radical ideal of R.
In particular, the maximal (resp., the prime) ideals of $R \ltimes_{n} M$ have the form $\mathcal{M} \ltimes_{n} M\left(\right.$ resp, $P \ltimes_{n} M$) where $\mathcal{M}($ resp., $P)$ is a maximal (resp., a prime) ideal of R.

Particular kind of ideals

Lemma

Every ideal of $R \ltimes_{n} M$ which contains $0 \ltimes_{n} M$ has the form $I \ltimes_{n} M$ for some ideal $/$ of R. In this case, we have the following natural ring isomorphism:

$$
R \ltimes_{n} M / I \ltimes_{n} M \cong R / I .
$$

Theorem

Radical ideals of $R \ltimes_{n} M$ have the form $I \ltimes_{n} M$ where I is a radical ideal of R.
In particular, the maximal (resp., the prime) ideals of $R \ltimes_{n} M$ have the form $\mathcal{M} \ltimes_{n} M\left(\right.$ resp, $\left.P \ltimes_{n} M\right)$ where $\mathcal{M}($ resp., $P)$ is a maximal (resp., a prime) ideal of R.

Particular kind of ideals

Corollary

The Jacobson radical $J\left(R \ltimes_{n} M\right)$ (resp., the nilradical $\operatorname{Nil}\left(R \ltimes_{n} M\right)$) of $R \ltimes_{n} M$ is $J(R) \ltimes_{n} M$ (resp., Nil $(R) \ltimes_{n} M$) and the Krull dimension of $R \ltimes_{n} M$ is equal to that of R.

Proposition

The following assertions are true.

- The set $Z\left(R \ltimes_{n} M\right)$ of zero divisors of $R \ltimes_{n} M$ is the set of elements $\left(r, m_{1}, \ldots, m_{n}\right)$ such that $r \in Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)$. Hence $S \ltimes_{n} M$ where $S=R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$ is the set of regular elements of $R \ltimes_{n} M$.
- The set of units of $R \ltimes_{n} M$ is $U\left(R \ltimes_{n} M\right)=U(R) \ltimes_{n} M$.
- The set of idempotents of $R \ltimes_{n} M$ is $I d\left(R \ltimes_{n} M\right)=I d(R) \ltimes_{n} 0$.

Proposition

The following assertions are true.
\Rightarrow The set $Z\left(R \ltimes_{n} M\right)$ of zero divisors of $R \ltimes_{n} M$ is the set of elements $\left(r, m_{1}, \ldots, m_{n}\right)$ such that $r \in Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)$. Hence $S \ltimes_{n} M$ where $S=R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$ is the set of regular elements of $R \ltimes_{n} M$.

Proposition

The following assertions are true.

- The set $Z\left(R \ltimes_{n} M\right)$ of zero divisors of $R \ltimes_{n} M$ is the set of elements $\left(r, m_{1}, \ldots, m_{n}\right)$ such that $r \in Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)$. Hence $S \ltimes_{n} M$ where $S=R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$ is the set of regular elements of $R \ltimes_{n} M$.
\Rightarrow The set of units of $R \ltimes_{n} M$ is $U\left(R \ltimes_{n} M\right)=U(R) \ltimes_{n} M$.

Proposition

The following assertions are true.

- The set $Z\left(R \ltimes_{n} M\right)$ of zero divisors of $R \ltimes_{n} M$ is the set of elements $\left(r, m_{1}, \ldots, m_{n}\right)$ such that $r \in Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)$. Hence $S \ltimes_{n} M$ where $S=R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$ is the set of regular elements of $R \ltimes_{n} M$.
- The set of units of $R \ltimes_{n} M$ is $U\left(R \ltimes_{n} M\right)=U(R) \ltimes_{n} M$.
\Rightarrow The set of idempotents of $R \ltimes_{n} M$ is $\operatorname{ld}\left(R \ltimes_{n} M\right)=\operatorname{ld}(R) \ltimes_{n} 0$.

Outline

(1) Motivation, Definition and Examples

(2) Some basic algebraic properties of $R \ltimes_{n} M$
(3) Homogeneous ideals of n-trivial extensions

Graded rings

Graded rings

Let Γ be a commutative additive monoid. Recall that a ring S is said to be a Γ-graded ring, if there is a family of subgroups of $S,\left(S_{\alpha}\right)_{\alpha \in \Gamma}$, such that $S=\underset{\alpha \in \Gamma}{\oplus} S_{\alpha}$ as an abelian group, with $S_{\alpha} S_{\beta} \subseteq S_{\alpha+\beta}$ for all $\alpha, \beta \in \Gamma$.

Graded rings

The n-trivial extension $R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{n}$ may be considered as an \mathbb{N}_{0}-graded ring ($\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$), where, in this case we set $M_{k}=0$ for all $k \geq n+1$ and $\varphi_{i, j}$ are naturally extended to all $i, j \geq 0$.

Graded rings

Let Γ be a commutative additive monoid and $S=\underset{\alpha \in \Gamma}{\oplus} S_{\alpha}$ be a Γ-graded

 ring. And an S-module N is said to be Γ-graded if $N=\oplus N_{a}$ (as an abelian group) and $S_{\alpha} N_{\beta} \subseteq N_{\alpha+\beta}$ for all $\alpha, \beta \in \Gamma$. Let $N=\oplus N_{\alpha}$ be a Γ-graded S-module. For every $\alpha \in \Gamma$, the elements of N_{α} are said to be homogeneous of degree α. A submodule N^{\prime} of N is said to be homogeneous if one of the following equivalent assertions is true.(1) N^{\prime} is generated by homogeneous elements,

homogeneous of degree α, then $n_{\alpha} \in N^{\prime}$ for every $\alpha \in G^{\prime}$, or

Graded rings

Let Γ be a commutative additive monoid and $S=\underset{\alpha \in \Gamma}{\oplus} S_{\alpha}$ be a Γ-graded ring. And an S-module N is said to be Γ-graded if $N=\underset{\alpha \in \Gamma}{\oplus} N_{\alpha}$ (as an abelian group) and $S_{\alpha} N_{\beta} \subseteq N_{\alpha+\beta}$ for all $\alpha, \beta \in \Gamma$.

Graded rings

Let Γ be a commutative additive monoid and $S=\underset{\alpha \in \Gamma}{\oplus} S_{\alpha}$ be a Γ-graded ring. And an S-module N is said to be 「-graded if $N=\underset{\alpha \in \Gamma}{\oplus} N_{\alpha}$ (as an abelian group) and $S_{\alpha} N_{\beta} \subseteq N_{\alpha+\beta}$ for all $\alpha, \beta \in \Gamma$. Let $N=\underset{\alpha \in \Gamma}{\oplus} N_{\alpha}$ be a Γ-graded S-module. For every $\alpha \in \Gamma$, the elements of N_{α} are said to be homogeneous of degree α. A submodule N^{\prime} of N is said to be homogeneous if one of the following equivalent assertions is true.
(1) N^{\prime} is generated by homogeneous elements,
(2) If $\sum_{\alpha \in \mathcal{G}^{\prime}} n_{\alpha} \in N^{\prime}$, where G^{\prime} is a finite subset of Γ and each n_{α} is
homogeneous of degree α, then $n_{\alpha} \in N^{\prime}$ for every $\alpha \in G^{\prime}$, or
(3) $N^{\prime}=\underset{\alpha \in \Gamma}{\oplus}\left(N^{\prime} \cap N_{\alpha}\right)$.

Graded rings

In particular, an ideal J of $R \ltimes_{n} M$ is homogeneous if and only if $J=(J \cap R) \oplus\left(J \cap M_{1}\right) \oplus \cdots \oplus\left(J \cap M_{n}\right)$. Note that $I:=J \cap R$ is an ideal of R and, for $i \in\{1, \ldots, n\}, N_{i}:=J \cap M_{i}$ is an R-submodule of M_{i} which satisfies $I M_{i} \subseteq N_{i}$ and $N_{i} M_{j} \subseteq N_{i+j}$ for evey $i, j \in\{1, \ldots, n\}$.

Theorem

(1) Let I be an ideal of R and let $C=\left(C_{i}\right)_{i \in\{1, \ldots, n\}}$ be a family of R-modules such that $C_{i} \subseteq M_{i}$ for every $i \in\{1, \ldots, n\}$. Then $I \ltimes_{n} C$ is a (homogeneous) ideal of $R \ltimes_{n} M$ if and only if $I M_{i} \subseteq C_{i}$ and $C_{i} M_{j} \subseteq C_{i+j}$ for all $i, j \in\{1, \ldots, n\}$ with $i+j \leq n$.
(2) Let J be an ideal of $R \ltimes_{n} M$ and consider K the projection of J onto R and N_{i} the projection of J onto M_{i} for every $i \in\{1, \ldots, n\}$. Then,

Theorem

(1) Let I be an ideal of R and let $C=\left(C_{i}\right)_{i \in\{1, \ldots, n\}}$ be a family of R-modules such that $C_{i} \subseteq M_{i}$ for every $i \in\{1, \ldots, n\}$. Then $I \ltimes_{n} C$ is a (homogeneous) ideal of $R \ltimes_{n} M$ if and only if $I M_{i} \subseteq C_{i}$ and $C_{i} M_{j} \subseteq C_{i+j}$ for all $i, j \in\{1, \ldots, n\}$ with $i+j \leq n$.
(2) Let J be an ideal of $R \ltimes_{n} M$ and consider K the projection of J onto R and N_{i} the projection of J onto M_{i} for every $i \in\{1, \ldots, n\}$. Then,

Theorem

(1) Let I be an ideal of R and let $C=\left(C_{i}\right)_{i \in\{1, \ldots, n\}}$ be a family of R-modules such that $C_{i} \subseteq M_{i}$ for every $i \in\{1, \ldots, n\}$. Then $I \ltimes_{n} C$ is a (homogeneous) ideal of $R \ltimes_{n} M$ if and only if $I M_{i} \subseteq C_{i}$ and $C_{i} M_{j} \subseteq C_{i+j}$ for all $i, j \in\{1, \ldots, n\}$ with $i+j \leq n$.
(2) Let J be an ideal of $R \ltimes_{n} M$ and consider K the projection of J onto R and N_{i} the projection of J onto M_{i} for every $i \in\{1, \ldots, n\}$. Then,

Theorem

(1) Let I be an ideal of R and let $C=\left(C_{i}\right)_{i \in\{1, \ldots, n\}}$ be a family of R-modules such that $C_{i} \subseteq M_{i}$ for every $i \in\{1, \ldots, n\}$. Then $I \ltimes_{n} C$ is a (homogeneous) ideal of $R \ltimes_{n} M$ if and only if $I M_{i} \subseteq C_{i}$ and $C_{i} M_{j} \subseteq C_{i+j}$ for all $i, j \in\{1, \ldots, n\}$ with $i+j \leq n$.
(2) Let J be an ideal of $R \ltimes_{n} M$ and consider K the projection of J onto R and N_{i} the projection of J onto M_{i} for every $i \in\{1, \ldots, n\}$. Then,

Theorem

(1) Let I be an ideal of R and let $C=\left(C_{i}\right)_{i \in\{1, \ldots, n\}}$ be a family of R-modules such that $C_{i} \subseteq M_{i}$ for every $i \in\{1, \ldots, n\}$. Then $I \ltimes_{n} C$ is a (homogeneous) ideal of $R \ltimes_{n} M$ if and only if $I M_{i} \subseteq C_{i}$ and $C_{i} M_{j} \subseteq C_{i+j}$ for all $i, j \in\{1, \ldots, n\}$ with $i+j \leq n$.
(2) Let J be an ideal of $R \ltimes{ }_{n} M$ and consider K the projection of J onto R and N_{i} the projection of J onto M_{i} for every $i \in\{1, \ldots, n\}$. Then,
(1) K is an ideal of R and N_{i} is a submodule of M_{i} for every $i \in\{1, \ldots, n\}$ such that $K M_{i} \subseteq N_{i}$ and $N_{i} M_{j} \subseteq N_{i+j}$ for every
$j \in\{1, \ldots, n\}$ with $i+j \leq n$.
Thus $K \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$ is a homogeneous ideal of
$R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{n}$.

Theorem

(1) Let I be an ideal of R and let $C=\left(C_{i}\right)_{i \in\{1, \ldots, n\}}$ be a family of R-modules such that $C_{i} \subseteq M_{i}$ for every $i \in\{1, \ldots, n\}$. Then $/ \ltimes_{n} C$ is a (homogeneous) ideal of $R \ltimes_{n} M$ if and only if $I M_{i} \subseteq C_{i}$ and $C_{i} M_{j} \subseteq C_{i+j}$ for all $i, j \in\{1, \ldots, n\}$ with $i+j \leq n$.
(2) Let J be an ideal of $R \ltimes_{n} M$ and consider K the projection of J onto R and N_{i} the projection of J onto M_{i} for every $i \in\{1, \ldots, n\}$. Then,
(1) K is an ideal of R and N_{i} is a submodule of M_{i} for every $i \in\{1, \ldots, n\}$ such that $K M_{i} \subseteq N_{i}$ and $N_{i} M_{j} \subseteq N_{i+j}$ for every
$j \in\{1, \ldots, n\}$ with $i+j \leq n$.
Thus $K \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$ is a homogeneous ideal of
$R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{n}$.
(2) $J \subseteq K \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$.

Theorem

(1) Let I be an ideal of R and let $C=\left(C_{i}\right)_{i \in\{1, \ldots, n\}}$ be a family of R-modules such that $C_{i} \subseteq M_{i}$ for every $i \in\{1, \ldots, n\}$. Then $I \ltimes_{n} C$ is a (homogeneous) ideal of $R \ltimes_{n} M$ if and only if $I M_{i} \subseteq C_{i}$ and $C_{i} M_{j} \subseteq C_{i+j}$ for all $i, j \in\{1, \ldots, n\}$ with $i+j \leq n$.
(2) Let J be an ideal of $R \ltimes_{n} M$ and consider K the projection of J onto R and N_{i} the projection of J onto M_{i} for every $i \in\{1, \ldots, n\}$. Then,
(1) K is an ideal of R and N_{i} is a submodule of M_{i} for every $i \in\{1, \ldots, n\}$ such that $K M_{i} \subseteq N_{i}$ and $N_{i} M_{j} \subseteq N_{i+j}$ for every $j \in\{1, \ldots, n\}$ with $i+j \leq n$.
Thus $K \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$ is a homogeneous ideal of
$R \ltimes_{n} M_{1} \ltimes \cdots \ltimes M_{n}$.
(2) $J \subseteq K \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$.
(3) The ideal J is homogeneous if and only if $J=K \ltimes_{n} N_{1} \ltimes \cdots \ltimes N_{n}$.

Remark and question on homogeneous ideals

Remark and question on homogeneous ideals

\Rightarrow Every radical (hence prime) ideal of $R \ltimes_{n} M$ is homogeneous.

- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous. For instance, consider a quasi-local ring R with maximal m. Then,

Remark and question on homogeneous ideals

- Every radical (hence prime) ideal of $R \ltimes_{n} M$ is homogeneous.
\Rightarrow However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous. For instance, consider a quasi-local ring R with maximal m. Then,

Remark and question on homogeneous ideals

- Every radical (hence prime) ideal of $R \ltimes_{n} M$ is homogeneous.
- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous. For instance, consider a quasi-local ring R with maximal m. Then,

Remark and question on homogeneous ideals

- Every radical (hence prime) ideal of $R \ltimes_{n} M$ is homogeneous.
- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous. For instance, consider a quasi-local ring R with maximal m. Then,
\rightarrow a proper homogeneous ideal of $R \ltimes R / m$ has either the form $I \ltimes R / m$ or $I \ltimes 0$ where I is a proper ideal of R, and

Remark and question on homogeneous ideals

- Every radical (hence prime) ideal of $R \ltimes_{n} M$ is homogeneous.
- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous. For instance, consider a quasi-local ring R with maximal m. Then,
- a proper homogeneous ideal of $R \ltimes R / m$ has either the form $I \ltimes R / m$ or $I \ltimes 0$ where I is a proper ideal of R, and
\rightarrow a proper homogeneous principal ideal of $R \ltimes R / m$ has either the form $0 \ltimes R / m$ or $l \ltimes 0$ where l is a principal ideal of R. Thus,
element (a, e), where a and e are both nonzero with $a \in m$, is not homogeneous.

Remark and question on homogeneous ideals

- Every radical (hence prime) ideal of $R \ltimes_{n} M$ is homogeneous.
- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous.
For instance, consider a quasi-local ring R with maximal m. Then,
- a proper homogeneous ideal of $R \ltimes R / m$ has either the form $I \ltimes R / m$ or $I \ltimes 0$ where I is a proper ideal of R, and
- a proper homogeneous principal ideal of $R \ltimes R / m$ has either the form $0 \ltimes R / m$ or $I \ltimes 0$ where I is a principal ideal of R. Thus,
\rightarrow for instance, the principal ideal of $R \ltimes R / m$ generated by an element (a, e), where a and e are both nonzero with $a \in m$, is not homogeneous.

Remark and question on homogeneous ideals

\Leftrightarrow Then the following natural question arises:

- Various particular classes of ideals were treated. Here we present two of them. Namely, we show when every regular ideal is homogeneous and when every regular ideal is homogeneous.

Remark and question on homogeneous ideals

- Then the following natural question arises:

Question

When every ideal in a given class \mathscr{I} of ideals of $R \ltimes_{n} M$ is homogeneous?

- Various particular classes of ideals were treated. Here we present two of them. Namely, we show when every regular ideal is homogeneous and when every regular ideal is homogeneous.

Remark and question on homogeneous ideals

- Then the following natural question arises:

Question

When every ideal in a given class \mathscr{I} of ideals of $R \ltimes_{n} M$ is homogeneous?
\Rightarrow Various particular classes of ideals were treated. Here we present two of them. Namely, we show when every regular ideal is homogeneous and when every regular ideal is homogeneous.

When every regular ideal of $R \ltimes_{n} M$ is homogeneous

- An ideal is said to be regular if it contains a regular element.
- Thus, an ideal of $R \ltimes_{n} M$ is regular if and only if it contains an element $\left(s, m_{1}, \ldots, m_{n}\right)$ with $s \in R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$.

Theorem

Let $S=R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$. Then the following assertions are equivalent.
(1) Every regular ideal of $R \ltimes_{n} M$ is homogeneous.
(2) For every $s \in S$ and $i \in\{1, \ldots, n\}, s M_{i}=M_{i}$ (or equivalently, $M_{i S}=M_{i}$).

When every regular ideal of $R \ltimes_{n} M$ is homogeneous

\Rightarrow An ideal is said to be regular if it contains a regular element.

- Thus, an ideal of $R \ltimes_{n} M$ is regular if and only if it contains an element $\left(s, m_{1}, \ldots, m_{n}\right)$ with $s \in R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$.

Theorem

Iet $S=R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$. Then the following
assertions are equivalent.
(1) Every regular ideal of $R \ltimes_{n} M$ is homogeneous.
(2) For every $s \in S$ and $i \in\{1, \ldots, n\}, s M_{i}=M_{i}$ (or equivalently, $\left.M_{i S}=M_{i}\right)$.

When every regular ideal of $R \ltimes_{n} M$ is homogeneous

- An ideal is said to be regular if it contains a regular element.
\Rightarrow Thus, an ideal of $R \ltimes_{n} M$ is regular if and only if it contains an element $\left(s, m_{1}, \ldots, m_{n}\right)$ with $s \in R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$.

Theorem
Let $S=R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$. Then the following
assertions are equivalent.
(1) Every regular ideal of $R \ltimes_{n} M$ is homogeneous.
(2) For every $s \in S$ and $i \in\{1, \ldots, n\}, s M_{i}=M_{i}$ (or equivalently, $\left.M_{i S}=M_{i}\right)$.

When every regular ideal of $R \ltimes_{n} M$ is homogeneous

- An ideal is said to be regular if it contains a regular element.
- Thus, an ideal of $R \ltimes_{n} M$ is regular if and only if it contains an element $\left(s, m_{1}, \ldots, m_{n}\right)$ with $s \in R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$.

Theorem

Let $S=R-\left(Z(R) \cup Z\left(M_{1}\right) \cup \cdots \cup Z\left(M_{n}\right)\right)$. Then the following assertions are equivalent.
(1) Every regular ideal of $R \ltimes_{n} M$ is homogeneous.
(2) For every $s \in S$ and $i \in\{1, \ldots, n\}, s M_{i}=M_{i}$ (or equivalently, $\left.M_{i S}=M_{i}\right)$.

When every ideal of $R \ltimes_{n} M$ is homogeneous

The question of when every ideal of $R \ltimes_{n} M$ is homogeneous is still open.
Here, we present a partial answer. For this, we need the following definition:

When every ideal of $R \ltimes_{n} M$ is homogeneous

Definition

Assume that $n \geq 2$. For $i \in\{1, \ldots, n-1\}$ and $j \in\{2, \ldots, n\}$ with $j i \leq n$, M_{i} is said to be j-integral if, for any j elements $m_{i}, \ldots, m_{i j}$ of M_{i}, if the product $m_{i 1} \cdots m_{i j}=0$, then at least one of the $m_{i k}$'s is zero.

When every ideal of $R \ltimes_{n} M$ is homogeneous

Theorem

Suppose that $n \geq 2$ and R is an integral domain. Assume that M_{i} is torsion-free, for every $i \in\{1, \ldots, n-1\}$, and that M_{1} is k-integral for every $k \in\{2, \ldots, n-1\}$. Then the following assertions are equivalent.
(1) Every ideal of $R \ltimes_{n} M$ is homogeneous.
(2) The following two conditions are satisfied:
i. For every $i \in\{1, \ldots, n\}, M_{i}$ is divisible, and
ii. For every $i \in\{2, \ldots, n\}$ and every $m_{1} \in M_{1}-\{0\}, M_{i}=m_{1} M_{i-1}$.

Example
Every ideal of the following n-trivial extensions $\mathbb{Z} \ltimes_{n} \mathbb{Q} \ltimes \cdots \ltimes \mathbb{Q}$ and

When every ideal of $R \ltimes_{n} M$ is homogeneous

Theorem

Suppose that $n \geq 2$ and R is an integral domain. Assume that M_{i} is torsion-free, for every $i \in\{1, \ldots, n-1\}$, and that M_{1} is k-integral for every $k \in\{2, \ldots, n-1\}$. Then the following assertions are equivalent.
(1) Every ideal of $R \ltimes_{n} M$ is homogeneous.
(2) The following two conditions are satisfied:
i. For every $i \in\{1, \ldots, n\}, M_{i}$ is divisible, and
ii. For every $i \in\{2, \ldots, n\}$ and every $m_{1} \in M_{1}-\{0\}, M_{i}=m_{1} M_{i-1}$.

Example

Every ideal of the following n-trivial extensions $\mathbb{Z} \ltimes_{n} \mathbb{Q} \ltimes \cdots \ltimes \mathbb{Q}$ and $\mathbb{Z} \ltimes_{n} \mathbb{Q} \ltimes \cdots \ltimes \mathbb{Q} \ltimes \mathbb{Q} / \mathbb{Z}$ is homogeneous.

Thank you!

D. Bennis (Rabat - Morocco)

