On *n*-trivial Extensions of Rings

Driss BENNIS

Rabat - Morocco

joint work with D. D. Anderson, B. Fahid and A. Shaiea

Conference on Rings and Polynomials

- Graz, Austria -

July 3 - 8, 2016

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 1 / 20

(4 同) (4 日) (4 日)

Definition

The trivial extension of *R* by an *R*-module *M* is the ring denoted by $R \ltimes M$ whose underlying additive group is $R \oplus M$ with multiplication given by (r, m)(r', m') = (rr', rm' + mr').

- In this talk we present a part of a joint work on an extension of the classical trivial extension. For more details see arXiv:1604.01486.
- The paper presents various algebraic aspects of this new ring construction. Here, we present some of them with a special focus on the ideal structure.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

The trivial extension of *R* by an *R*-module *M* is the ring denoted by $R \ltimes M$ whose underlying additive group is $R \oplus M$ with multiplication given by (r, m)(r', m') = (rr', rm' + mr').

- In this talk we present a part of a joint work on an extension of the classical trivial extension. For more details see arXiv:1604.01486.
- The paper presents various algebraic aspects of this new ring construction. Here, we present some of them with a special focus on the ideal structure.

イロト イポト イヨト イヨト

Definition

The trivial extension of *R* by an *R*-module *M* is the ring denoted by $R \ltimes M$ whose underlying additive group is $R \oplus M$ with multiplication given by (r, m)(r', m') = (rr', rm' + mr').

- In this talk we present a part of a joint work on an extension of the classical trivial extension. For more details see arXiv:1604.01486.
- The paper presents various algebraic aspects of this new ring construction. Here, we present some of them with a special focus on the ideal structure.

Definition

The trivial extension of *R* by an *R*-module *M* is the ring denoted by $R \ltimes M$ whose underlying additive group is $R \oplus M$ with multiplication given by (r, m)(r', m') = (rr', rm' + mr').

- In this talk we present a part of a joint work on an extension of the classical trivial extension. For more details see arXiv:1604.01486.
- The paper presents various algebraic aspects of this new ring construction. Here, we present some of them with a special focus on the ideal structure.

Motivation, Definition and Examples

- 2) Some basic algebraic properties of $R \ltimes_n M$
- 3 Homogeneous ideals of *n*-trivial extensions

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 3 / 20

A (B) > A (B) > A (B) >

Motivation, Definition and Examples

- 2 Some basic algebraic properties of $R \ltimes_n M$
- 3 Homogeneous ideals of *n*-trivial extensions

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 3 / 20

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation, Definition and Examples

- **2** Some basic algebraic properties of $R \ltimes_n M$
- 3 Homogeneous ideals of *n*-trivial extensions

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 3 / 20

イロト イポト イヨト イヨト

Motivation, Definition and Examples

- 2 Some basic algebraic properties of $R \ltimes_n M$
- **3** Homogeneous ideals of *n*-trivial extensions

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 4 / 20

(4 同) (4 日) (4 日)

▲□▶ ▲御▶ ★臣▶ ★臣▶ 三臣 - のへで

Generalized triangular matrix ring.

• The trivial extension is related to some classical ring constructions. Namely, it is related with the following ones:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Generalized triangular matrix ring.

Let $\mathscr{R} := (R_i)_{i=1}^n$ be a family of rings and $\mathscr{M} := (M_{i,j})_{1 \le i < j \le n}$ be a family of modules such that for each $1 \le i < j \le n$, $M_{i,j}$ is an (R_i, R_j) -bimodule.

Assume for every $1 \le i < j < k \le n$, there exists an (R_i, R_k) -bimodule homomorphism $M_{i,j} \otimes_{R_j} M_{j,k} \longrightarrow M_{i,k}$ denoted multiplicatively such that $(m_{i,j}m_{j,k})m_{k,l} = m_{i,j}(m_{j,k}m_{k,l})$.

Then the set $T_n(\mathcal{R}, \mathcal{M})$ consisting of matrices

 $\begin{pmatrix} m_{1,1} & m_{1,2} & \cdots & m_{1,n-1} & m_{1,n} \\ 0 & m_{2,2} & \cdots & m_{2,n-1} & m_{2,n} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & m_{n-1,n-1} & m_{n-1,n} \\ 0 & 0 & \cdots & 0 & 0 & m_{n,n} \end{pmatrix}$, where $m_{i,i} \in R_i$ and $m_{i,j} \in M_{i,j}$ ($1 \le i < j \le n$), with the usual matrix addition and multiplication is a ring called a *generalized (or formal) triangular matrix*

- 2

ring.

• Generalized triangular matrix ring.

The trivial extension $R \ltimes M$ is naturally isomorphic to the subring of the generalized triangular matrix ring

$$T_2((R,R),M) := \begin{pmatrix} R & M \\ 0 & R \end{pmatrix}$$

▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨー わんで

consisting of matrices $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$ where $r \in R$ and $m \in M$.

• Generalized triangular matrix ring.

The trivial extension $R \ltimes M$ is naturally isomorphic to the subring of the generalized triangular matrix ring

$$T_2((R,R),M) := \begin{pmatrix} R & M \\ 0 & R \end{pmatrix}$$

▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨー わんで

consisting of matrices $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$ where $r \in R$ and $m \in M$.

The symmetric algebra associated to an *R*-module *M* is the graded ring quotient S_R(M) := T_R(M)/H, where T_R(M) is the graded tensor *R*-algebra with Tⁿ_R(M) = M^{⊗n} and *H* is the homogeneous ideal of T_R(M) generated by {m ⊗ n − n ⊗ m|m, n ∈ M}. Note that S_R(M) = [∞]_{n=0} Sⁿ_R(M) is a graded *R*-algebra with S⁰_R(M) = R and S¹_R(M) = M and, in general, Sⁱ_R(M) is the image of Tⁱ_R(M) in S_R(M).

◆□▶ ◆圖▶ ◆理▶ ◆理▶ 三語…

• The trivial extension $R \ltimes M$ is naturally isomorphic to $S_R(M) / \bigoplus_{n \ge 2} S_R^n(M)$.

The symmetric algebra associated to an *R*-module *M* is the graded ring quotient S_R(M) := T_R(M)/H, where T_R(M) is the graded tensor *R*-algebra with Tⁿ_R(M) = M^{⊗n} and *H* is the homogeneous ideal of T_R(M) generated by {m ⊗ n − n ⊗ m|m, n ∈ M}. Note that S_R(M) = ⊕ Sⁿ_R(M) is a graded *R*-algebra with S⁰_R(M) = R and S¹_R(M) = M and, in general, Sⁱ_R(M) is the image of Tⁱ_R(M) in S_R(M).

▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨー わんで

The trivial extension $R \ltimes M$ is naturally isomorphic to $S_R(M) / \bigoplus_{n \ge 2} S_R^n(M)$.

If *M* is a free *R*-module with a basis *B*, then the trivial extension $R \ltimes M$ is naturally isomorphic to the ring quotient $R[\{X_b\}_{b\in B}]/(\{X_b\}_{b\in B})^2$ where $\{X_b\}_{b\in B}$ is a set of indeterminates over *R*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

In particular, $R \ltimes R \cong R[X]/(X^2)$.

Definiton of *n*-trivial extension.

Let $M = (M_i)_{i=1}^n$ be a family of *R*-modules and $\varphi = \{\varphi_{i,j}\}_{\substack{i+j \leq n \\ 1 \leq i,j \leq n-1}}$ be a family of *R*-module homomorphisms such that each $\varphi_{i,j}$ is written multiplicatively: $\varphi_{i,j}: \begin{array}{cc} M_i \otimes M_j & \longrightarrow & M_{i+j} \\ m_i \otimes m_j & \longmapsto & \varphi_{i,j}(m_i, m_j) := m_i m_j. \end{array}$ such that

- $(m_i m_j)m_k = m_i(m_j m_k)$ for $m_i \in M_i$, $m_j \in M_j$ and $m_k \in M_k$ with $1 \le i, j, k \le n-2$ and $i+j+k \le n$, and
- $m_i m_j = m_j m_i$ for every $m_i \in M_i$ and $m_j \in M_j$ with $1 \le i, j \le n-1$ and $i + j \le n$.

Then, the additive group $R \oplus M_1 \oplus \cdots \oplus M_n$ endowed with the multiplication

$$(m_0, ..., m_n)(m'_0, ..., m'_n) = (\sum_{j+k=i} m_j m'_k)$$

for all (m_i) , $(m'_i) \in R \ltimes_{\varphi} M$, is a ring called the *n*- φ -trivial extension of R by M or simply the *n*-trivial extension of R by M. It will be denoted by $R \ltimes_{\varphi} M_1 \ltimes \cdots \ltimes M_n$ or simply $R \ltimes_{\varphi} M$.

Definiton of *n*-trivial extension.

Let $M = (M_i)_{i=1}^n$ be a family of *R*-modules and $\varphi = \{\varphi_{i,j}\}_{\substack{i+j \leq n \\ 1 \leq i,j \leq n-1}}$ be a family of *R*-module homomorphisms such that each $\varphi_{i,j}$ is written multiplicatively: $\varphi_{i,j}: \begin{array}{cc} M_i \otimes M_j & \longrightarrow & M_{i+j} \\ m_i \otimes m_j & \longmapsto & \varphi_{i,j}(m_i, m_j) := m_i m_j. \end{array}$ such that

- $(m_i m_j)m_k = m_i(m_j m_k)$ for $m_i \in M_i$, $m_j \in M_j$ and $m_k \in M_k$ with $1 \le i, j, k \le n-2$ and $i+j+k \le n$, and
- $m_i m_j = m_j m_i$ for every $m_i \in M_i$ and $m_j \in M_j$ with $1 \le i, j \le n-1$ and $i + j \le n$.

Then, the additive group $R \oplus M_1 \oplus \cdots \oplus M_n$ endowed with the multiplication

$$(m_0,...,m_n)(m'_0,...,m'_n) = (\sum_{j+k=i}m_jm'_k)$$

for all (m_i) , $(m'_i) \in R \ltimes_{\varphi} M$, is a ring called the *n*- φ -trivial extension of R by M or simply the *n*-trivial extension of R by M. It will be denoted by $R \ltimes_{\varphi} M_1 \ltimes \cdots \ltimes M_n$ or simply $R \ltimes_{\varphi} M$.

► Generalized triangular matrix ring. $R \ltimes_n M$ is **naturally isomorphic** to the subring of the generalized triangular matrix ring

(R)	M_1	M_2		M_n
0	R	M_1		M_{n-1}
÷	۰.	•••	•	:
0	0	0		<i>M</i> ₁
0/	0	0		r j

consisting of matrice

$$\begin{pmatrix} r & m_1 & m_2 & \cdots & m_n \\ 0 & r & m_1 & \cdots & m_{n-1} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & m_1 \\ 0 & 0 & 0 & \cdots & r \end{pmatrix}$$

where $r \in R$ and $m_i \in M_i$ for every $i \in \{1, ..., n\}$.

▶ Symmetric algebra. When, for every $k \in \{1, ..., n\}$, $M_k = S_R^k(M_1)$, the ring $R \ltimes_n M$ is **naturally isomorphic** to $S_R(M_1) / \bigoplus_{k \ge n+1} S_R^k(M_1)$.

► Polynomial ring.

In particular, if $M_1 = F$ is a free *R*-module with a basis *B*, then the *n*-trivial extension $R \ltimes F \ltimes S_R^2(F) \ltimes \cdots \ltimes S_R^n(F)$ is also **naturally isomorphic** to $R[\{X_b\}_{b \in B}]/(\{X_b\}_{b \in B})^{n+1}$ where $\{X_b\}_{b \in B}$ is a set of indeterminates over *R*.

Namely, when $F \cong R$,

$$R \ltimes_n R \ltimes \cdots \ltimes R \cong R[X]/(X^{n+1})$$

▶ Symmetric algebra. When, for every $k \in \{1, ..., n\}$, $M_k = S_R^k(M_1)$, the ring $R \ltimes_n M$ is **naturally isomorphic** to $S_R(M_1) / \bigoplus_{k \ge n+1} S_R^k(M_1)$.

Polynomial ring.

In particular, if $M_1 = F$ is a free *R*-module with a basis *B*, then the *n*-trivial extension $R \ltimes F \ltimes S_R^2(F) \ltimes \cdots \ltimes S_R^n(F)$ is also **naturally isomorphic** to $R[\{X_b\}_{b \in B}]/(\{X_b\}_{b \in B})^{n+1}$ where $\{X_b\}_{b \in B}$ is a set of indeterminates over *R*.

Namely, when $F \cong R$,

$$R \ltimes_n R \ltimes \cdots \ltimes R \cong R[X]/(X^{n+1})$$

▶ Symmetric algebra. When, for every $k \in \{1, ..., n\}$, $M_k = S_R^k(M_1)$, the ring $R \ltimes_n M$ is **naturally isomorphic** to $S_R(M_1) / \bigoplus_{k \ge n+1} S_R^k(M_1)$.

Polynomial ring.

In particular, if $M_1 = F$ is a free *R*-module with a basis *B*, then the *n*-trivial extension $R \ltimes F \ltimes S_R^2(F) \ltimes \cdots \ltimes S_R^n(F)$ is also **naturally isomorphic** to $R[\{X_b\}_{b \in B}]/(\{X_b\}_{b \in B})^{n+1}$ where $\{X_b\}_{b \in B}$ is a set of indeterminates over *R*.

Namely, when $F \cong R$,

$$R \ltimes_n R \ltimes \cdots \ltimes R \cong R[X]/(X^{n+1}).$$

▶ Symmetric algebra. When, for every $k \in \{1, ..., n\}$, $M_k = S_R^k(M_1)$, the ring $R \ltimes_n M$ is **naturally isomorphic** to $S_R(M_1) / \bigoplus_{k \ge n+1} S_R^k(M_1)$.

Polynomial ring.

In particular, if $M_1 = F$ is a free *R*-module with a basis *B*, then the *n*-trivial extension $R \ltimes F \ltimes S_R^2(F) \ltimes \cdots \ltimes S_R^n(F)$ is also **naturally isomorphic** to $R[\{X_b\}_{b \in B}]/(\{X_b\}_{b \in B})^{n+1}$ where $\{X_b\}_{b \in B}$ is a set of indeterminates over *R*.

Namely, when $F \cong R$,

$$R \ltimes_n R \ltimes \cdots \ltimes R \cong R[X]/(X^{n+1}).$$

・ ロト ・ 団 ト ・ ヨト ・ ヨー・ つへぐ

Remark

→ If R_1 and R_2 are two rings and H an (R_1, R_2) -bimodule. Then,

$$T_2((R_1, R_2), H) \cong (R_1, R_2) \ltimes H,$$

where the actions of $R_1 \times R_2$ on H are defined as follows: $(r_1, r_2)h = r_1h$ and $h(r_1, r_2) = hr_2$ for every $(r_1, r_2) \in R_1 \times R_2$ and $h \in H$.

(日) (四) (三) (三) (三)

- Every generalized triangular matrix ring is isomorphic to an *n*-trivial extension.
- Every generalized triangular matrix ring is isomorphic to generalized triangular matrix ring of order 2.

Remark

• If R_1 and R_2 are two rings and H an (R_1, R_2) -bimodule. Then,

$$T_2((R_1,R_2),H)\cong (R_1,R_2)\ltimes H,$$

where the actions of $R_1 \times R_2$ on H are defined as follows: $(r_1, r_2)h = r_1h$ and $h(r_1, r_2) = hr_2$ for every $(r_1, r_2) \in R_1 \times R_2$ and $h \in H$.

<ロト <回ト <注ト <注ト = 三

- Every generalized triangular matrix ring is isomorphic to an *n*-trivial extension.
- Every generalized triangular matrix ring is isomorphic to generalized triangular matrix ring of order 2.

Remark

• If R_1 and R_2 are two rings and H an (R_1, R_2) -bimodule. Then,

$$T_2((R_1, R_2), H) \cong (R_1, R_2) \ltimes H,$$

<ロト (四) (注) (注) (注) (注) (注)

where the actions of $R_1 \times R_2$ on H are defined as follows: $(r_1, r_2)h = r_1h$ and $h(r_1, r_2) = hr_2$ for every $(r_1, r_2) \in R_1 \times R_2$ and $h \in H$.

- Every generalized triangular matrix ring is isomorphic to an *n*-trivial extension.
- Every generalized triangular matrix ring is isomorphic to generalized triangular matrix ring of order 2.

However, an *n*-trivial extension with n ≥ 2 is not necessarily a 1-trivial extension.

For instance, the 2-trivial extension $\mathbb{Z}/2\mathbb{Z} \ltimes_2 \mathbb{Z}/2\mathbb{Z} \ltimes \mathbb{Z}/2\mathbb{Z}$ cannot be isomorphic to any 1-trivial extension.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Example

Let $N_1,...,N_n$ be *R*-submodules of an *R*-algebra *T* with $N_iN_j \subseteq N_{i+j}$ for $1 \leq i, j \leq n-1$ with $i+j \leq n$. Then, if the module homomorphisms are just the multiplication of *L* (and so will be, in the sequel, if they are not specified), then $R \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is an *n*-trivial extension. The following examples are some special cases:

- Let *I* be an ideal of *R*. Then *R* × ⁿ *I* × ^{l²} × · · · × *Iⁿ* is the quotient of the Rees ring *R*[*It*]/(*Iⁿ⁺¹tⁿ⁺¹*), where *R*[*It*] := ⊕_{n>0} *Iⁿtⁿ*.
- Let *T* be an *R*-algebra and $J_1 \subseteq \cdots \subseteq J_n$ ideals of *T*. Then $R \ltimes_n J_1 \ltimes \cdots \ltimes J_n$ is an example of *n*-trivial extension since $J_i J_j \subseteq J_i \subseteq J_{i+j}$ for $i + j \leq n$. For example, we could take $R \ltimes_2 XR[X] \ltimes R[X]$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

Let $N_1,...,N_n$ be *R*-submodules of an *R*-algebra *T* with $N_iN_j \subseteq N_{i+j}$ for $1 \le i, j \le n-1$ with $i+j \le n$. Then, if the module homomorphisms are just the multiplication of *L* (and so will be, in the sequel, if they are not specified), then $R \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is an *n*-trivial extension. The following examples are some special cases:

- Let *I* be an ideal of *R*. Then *R* κ_n *I* κ *I*² κ · · · κ *Iⁿ* is the quotient of the Rees ring *R*[*It*]/(*Iⁿ⁺¹tⁿ⁺¹*), where *R*[*It*] := ⊕_{n>0} *Iⁿtⁿ*.
- Let *T* be an *R*-algebra and $J_1 \subseteq \cdots \subseteq J_n$ ideals of *T*. Then $R \ltimes_n J_1 \ltimes \cdots \ltimes J_n$ is an example of *n*-trivial extension since $J_i J_j \subseteq J_i \subseteq J_{i+j}$ for $i + j \leq n$. For example, we could take $R \ltimes_2 XR[X] \ltimes R[X]$.

< ロ > < 同 > < 回 > < 回 >

Example

Let $N_1,...,N_n$ be *R*-submodules of an *R*-algebra *T* with $N_iN_j \subseteq N_{i+j}$ for $1 \le i, j \le n-1$ with $i+j \le n$. Then, if the module homomorphisms are just the multiplication of *L* (and so will be, in the sequel, if they are not specified), then $R \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is an *n*-trivial extension. The following examples are some special cases:

► Let *I* be an ideal of *R*. Then $R \ltimes_n I \ltimes I^2 \ltimes \cdots \ltimes I^n$ is the quotient of the Rees ring $R[It]/(I^{n+1}t^{n+1})$, where $R[It] := \bigoplus_{n>0} I^n t^n$.

• Let *T* be an *R*-algebra and $J_1 \subseteq \cdots \subseteq J_n$ ideals of *T*. Then $R \ltimes_n J_1 \ltimes \cdots \ltimes J_n$ is an example of *n*-trivial extension since $J_i J_j \subseteq J_i \subseteq J_{i+j}$ for $i + j \leq n$. For example, we could take $R \ltimes_2 XR[X] \ltimes R[X]$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

Let $N_1,...,N_n$ be *R*-submodules of an *R*-algebra *T* with $N_iN_j \subseteq N_{i+j}$ for $1 \le i, j \le n-1$ with $i+j \le n$. Then, if the module homomorphisms are just the multiplication of *L* (and so will be, in the sequel, if they are not specified), then $R \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is an *n*-trivial extension. The following examples are some special cases:

- Let *I* be an ideal of *R*. Then *R* ⋉_n *I* ⋉ *I*² ⋉ ··· ⋉ *Iⁿ* is the quotient of the Rees ring *R*[*It*]/(*Iⁿ⁺¹tⁿ⁺¹*), where *R*[*It*] := ⊕_{n>0} *Iⁿtⁿ*.
- ► Let *T* be an *R*-algebra and $J_1 \subseteq \cdots \subseteq J_n$ ideals of *T*. Then $R \ltimes_n J_1 \ltimes \cdots \ltimes J_n$ is an example of *n*-trivial extension since $J_i J_j \subseteq J_i \subseteq J_{i+j}$ for $i + j \le n$. For example, we could take $R \ltimes_2 XR[X] \ltimes R[X]$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Particular cases of *n*-trivial extensions have been already introduced and used to solve some open questions.

- P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.
- Also, a particular case of 2-trivial extensions is introduced by V. Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.
- Z. Pogorzaly (2005) introduced and studied a particular case of 3-trivial extensions to obtain a Galois coverings for the enveloping algebras of trivial extension algebras of triangular algebras.
- D. Bachman, N. R. Baeth and A. McQueen (2015) studied factorization properties of the *n*-trivial extension *R* ⋈_e *R*, ⋈_e *R*,

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Particular cases of *n*-trivial extensions have been already introduced and used to solve some open questions.

- P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.
 - Also, a particular case of 2-trivial extensions is introduced by V. Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.
 - Z. Pogorzaly (2005) introduced and studied a particular case of 3-trivial extensions to obtain a Galois coverings for the enveloping algebras of trivial extension algebras of triangular algebras.
 - D. Bachman, N. R. Baeth and A. McQueen (2015) studied factorization properties of the *n*-trivial extension *R* ⋈_@ *R*, ⋈_@ *R*,

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Particular cases of *n*-trivial extensions have been already introduced and used to solve some open questions.

- P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.
- Also, a particular case of 2-trivial extensions is introduced by V. Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.
 - Z. Pogorzaly (2005) introduced and studied a particular case of 3-trivial extensions to obtain a Galois coverings for the enveloping algebras of trivial extension algebras of triangular algebras.
 - D. Bachman, N. R. Baeth and A. McQueen (2015) studied factorization properties of the *n*-trivial extension *R* ⋈_e *R*, ⋈_e *R*,

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Particular cases of *n*-trivial extensions have been already introduced and used to solve some open questions.

- P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.
- Also, a particular case of 2-trivial extensions is introduced by V. Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.
- Z. Pogorzaly (2005) introduced and studied a particular case of 3-trivial extensions to obtain a Galois coverings for the enveloping algebras of trivial extension algebras of triangular algebras.
 - D. Bachman, N. R. Baeth and A. McQueen (2015) studied factorization properties of the *n*-trivial extension *R* ⋈_e *R*, ⋈_e *R*,

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Particular cases of *n*-trivial extensions have been already introduced and used to solve some open questions.

- P. Ara, W. K. Nicholson and M. F. Yousif (2001) introduced a particular case of 2-trivial extensions and they used it in the study of the so-called Faith conjecture.
- Also, a particular case of 2-trivial extensions is introduced by V. Camillo, I. Herzog and P. P. Nielsen, (2007), to give an example of a ring which has a non-self-injective injective hull with compatible multiplication. This gave a negative answer of a question posed by Osofsky.
- Z. Pogorzaly (2005) introduced and studied a particular case of 3-trivial extensions to obtain a Galois coverings for the enveloping algebras of trivial extension algebras of triangular algebras.
- D. Bachman, N. R. Baeth and A. McQueen (2015) studied factorization properties of the *n*-trivial extension R K R K : · · K R.

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

8 / 20

Outline

2 Some basic algebraic properties of $R \ltimes_n M$

3 Homogeneous ideals of *n*-trivial extensions

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 9 / 20

・ 同 ト ・ ヨ ト ・ ヨ ト

Notation

Unless specified otherwise, $M = (M_i)_{i=1}^n$ is a family of *R*-modules with module homomorphisms as indicated in the definition of the *n*-trivial extension. So $R \ltimes_n M$ is indeed a (commutative) ring with identity (1, 0, ..., 0). Let *S* be a nonempty subset of *R* and $N = (N_i)_{i=1}^n$ be a family of sets

such that, for every *i*, $N_i \subseteq M_i$. Then as a subset of $R \ltimes_n M$, $S \times N_1 \times \cdots \times N_n$ will be denoted by $S \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ or simply $S \ltimes_n N$.

イロト イロト イヨト イヨト

Notation

Unless specified otherwise, $M = (M_i)_{i=1}^n$ is a family of *R*-modules with module homomorphisms as indicated in the definition of the *n*-trivial extension. So $R \ltimes_n M$ is indeed a (commutative) ring with identity (1, 0, ..., 0).

Let *S* be a nonempty subset of *R* and $N = (N_i)_{i=1}^n$ be a family of sets such that, for every *i*, $N_i \subseteq M_i$. Then as a subset of $R \ltimes_n M$, $S \times N_1 \times \cdots \times N_n$ will be denoted by $S \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ or simply $S \ltimes_n N$.

Notation

Unless specified otherwise, $M = (M_i)_{i=1}^n$ is a family of *R*-modules with module homomorphisms as indicated in the definition of the *n*-trivial extension. So $R \ltimes_n M$ is indeed a (commutative) ring with identity (1, 0, ..., 0).

Let *S* be a nonempty subset of *R* and $N = (N_i)_{i=1}^n$ be a family of sets such that, for every *i*, $N_i \subseteq M_i$. Then as a subset of $R \ltimes_n M$, $S \times N_1 \times \cdots \times N_n$ will be denoted by $S \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ or simply

 $S \ltimes_n N.$

< ロ > < 同 > < 回 > < 回 > .

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 11 / 20

(a)

→ If there is an integer $i \in \{1, ..., n-1\}$ such that $M_j = 0$ for every $j \in \{i + 1, ..., n\}$, then

$\mathbf{R} \ltimes_n \mathbf{M}_1 \ltimes \cdots \ltimes \mathbf{M}_i \ltimes \mathbf{0} \ltimes \cdots \ltimes \mathbf{0} \cong \mathbf{R} \ltimes_i \mathbf{M}_1 \ltimes \cdots \ltimes \mathbf{M}_i.$

However, if $n \ge 3$ and there is an integer $i \in \{1, ..., n-2\}$ such that, for $j \in \{1, ..., n\}$, $M_j = 0$ if and only if $j \in \{1, ..., i\}$, then $R \ltimes_{n-i} M_{i+1} \ltimes \cdots \ltimes M_n$ has no sense, since (when, for example, $2i + 2 \le n$) $\varphi_{i+1,i+1}(M_{i+1} \otimes M_{i+1})$ is a subset of M_{2i+2} not of M_{i+2} . If $M_{2k} = 0$ for every $k \in \mathbb{N}$ with $1 \le 2k \le n$, then

 $\mathbf{R} \ltimes_n \mathbf{M} \cong \mathbf{R} \ltimes_1 (\mathbf{M}_1 \times \mathbf{M}_3 \times \cdots \times \mathbf{M}_{2n'+1}),$

where 2n' + 1 is the biggest odd integer in $\{1, ..., n\}$. • If $M_{2k+1} = 0$ for every $k \in \mathbb{N}$ with 1 < 2k + 1 < n, then

 $R \ltimes_n M \cong R \ltimes_{n''} M_2 \ltimes M_4 \ltimes \cdots \ltimes M_{2n''}$

where 2n'' is the biggest even integer in $\{1, ..., n\}$.

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 11 / 20

→ If there is an integer $i \in \{1, ..., n-1\}$ such that $M_j = 0$ for every $j \in \{i + 1, ..., n\}$, then

 $R \ltimes_n M_1 \ltimes \cdots \ltimes M_i \ltimes 0 \ltimes \cdots \ltimes 0 \cong R \ltimes_i M_1 \ltimes \cdots \ltimes M_i.$

However, if $n \ge 3$ and there is an integer $i \in \{1, ..., n-2\}$ such that, for $j \in \{1, ..., n\}$, $M_j = 0$ if and only if $j \in \{1, ..., i\}$, then $R \ltimes_{n-i} M_{i+1} \ltimes \cdots \ltimes M_n$ has no sense, since (when, for example, $2i + 2 \le n$) $\varphi_{i+1,i+1}(M_{i+1} \otimes M_{i+1})$ is a subset of M_{2i+2} not of M_{i+2} . • If $M_{2k} = 0$ for every $k \in \mathbb{N}$ with $1 \le 2k \le n$, then

 $R \ltimes_n M \cong R \ltimes_1 (M_1 \times M_3 \times \cdots \times M_{2n'+1}),$

where 2n' + 1 is the biggest odd integer in $\{1, ..., n\}$. • If $M_{2k+1} = 0$ for every $k \in \mathbb{N}$ with 1 < 2k + 1 < n, then

 $R \ltimes_n M \cong R \ltimes_{n''} M_2 \ltimes M_4 \ltimes \cdots \ltimes M_{2n''}$

where 2n'' is the biggest even integer in $\{1, ..., n\}$.

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 11 / 20

→ If there is an integer $i \in \{1, ..., n-1\}$ such that $M_j = 0$ for every $j \in \{i + 1, ..., n\}$, then

 $R \ltimes_n M_1 \ltimes \cdots \ltimes M_i \ltimes 0 \ltimes \cdots \ltimes 0 \cong R \ltimes_i M_1 \ltimes \cdots \ltimes M_i.$

However, if $n \ge 3$ and there is an integer $i \in \{1, ..., n-2\}$ such that, for $j \in \{1, ..., n\}$, $M_j = 0$ if and only if $j \in \{1, ..., i\}$, then $R \ltimes_{n-i} M_{i+1} \ltimes \cdots \ltimes M_n$ has no sense, since (when, for example, $2i + 2 \le n$) $\varphi_{i+1,i+1}(M_{i+1} \otimes M_{i+1})$ is a subset of M_{2i+2} not of M_{i+2} . If $M_{2k} = 0$ for every $k \in \mathbb{N}$ with $1 \le 2k \le n$, then

 $R \ltimes_n M \cong R \ltimes_1 (M_1 \times M_3 \times \cdots \times M_{2n'+1}),$

where 2n' + 1 is the biggest odd integer in $\{1, ..., n\}$.

• If $M_{2k+1} = 0$ for every $k \in \mathbb{N}$ with $1 \le 2k + 1 \le n$, then

 $R \ltimes_n M \cong R \ltimes_{n''} M_2 \ltimes M_4 \ltimes \cdots \ltimes M_{2n''}$

where 2n'' is the biggest even integer in $\{1, ..., n\}$.

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 11 / 20

▶ If there is an integer $i \in \{1, ..., n-1\}$ such that $M_j = 0$ for every $j \in \{i + 1, ..., n\}$, then

 $R \ltimes_n M_1 \ltimes \cdots \ltimes M_i \ltimes 0 \ltimes \cdots \ltimes 0 \cong R \ltimes_i M_1 \ltimes \cdots \ltimes M_i.$

However, if $n \ge 3$ and there is an integer $i \in \{1, ..., n-2\}$ such that, for $j \in \{1, ..., n\}$, $M_j = 0$ if and only if $j \in \{1, ..., i\}$, then $R \ltimes_{n-i} M_{i+1} \ltimes \cdots \ltimes M_n$ has no sense, since (when, for example, $2i + 2 \le n$) $\varphi_{i+1,i+1}(M_{i+1} \otimes M_{i+1})$ is a subset of M_{2i+2} not of M_{i+2} . • If $M_{2k} = 0$ for every $k \in \mathbb{N}$ with $1 \le 2k \le n$, then

 $R \ltimes_n M \cong R \ltimes_1 (M_1 \times M_3 \times \cdots \times M_{2n'+1}),$

where 2n' + 1 is the biggest odd integer in $\{1, ..., n\}$.

▶ If $M_{2k+1} = 0$ for every $k \in \mathbb{N}$ with $1 \leq 2k + 1 \leq n$, then

$$R \ltimes_n M \cong R \ltimes_{n''} M_2 \ltimes M_4 \ltimes \cdots \ltimes M_{2n''}$$

where 2n'' is the biggest even integer in $\{1, ..., n\}$.

Convention. Unless explicitly stated otherwise, when we consider an *n*-trivial extension for a given *n*, then we implicitly suppose that $M_i \neq 0$ for every $i \in \{1, ..., n\}$.

< ロ > < 同 > < 回 > < 回 >

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 12 / 20

(a)

Proposition

We have the following (natural) ring extension : $i_n : R \hookrightarrow R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$. Then, for an ideal *I* of *R*, the ideal $I \ltimes_n IM_1 \ltimes \cdots \ltimes IM_n$ of $R \ltimes_n M$ is the extension of *I* under the ring homomorphism i_n .

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz. Austria — July 2016 12 / 20

< 同 > < 国 > < 国 >

Proposition

We have the following (natural) ring extension : $i_n : R \hookrightarrow R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$. Then, for an ideal *I* of *R*, the ideal $I \ltimes_n IM_1 \ltimes \cdots \ltimes IM_n$ of $R \ltimes_n M$ is the extension of *I* under the ring homomorphism i_n .

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz. Austria — July 2016 12 / 20

・吊り ・ラト ・ラ

Remark

- ▶ In the case of n = 1, the ideal structure of $0 \ltimes_1 M_1$ is the same as the *R*-module structure of $0 \ltimes_1 M_1$.
- However, for $n \ge 2$, the *R*-module structure of $0 \ltimes_n M_1 \ltimes \cdots \ltimes M_n$ need not be the same as the ideal structure.
- For instance, consider the 2-trivial extension Z ⋈₂ Z ⋈ Z. Then Z(0,1,1) = {(0, m, m) | m ∈ Z} while the ideal of Z ⋈₂ Z ⋈ Z generated by (0,1,1) is 0 ⋈₂ Z ⋈ Z.

イヨト イラト イラト

Remark

- In the case of n = 1, the ideal structure of $0 \ltimes_1 M_1$ is the same as the *R*-module structure of $0 \ltimes_1 M_1$.
- ► However, for $n \ge 2$, the *R*-module structure of $0 \ltimes_n M_1 \ltimes \cdots \ltimes M_n$ need not be the same as the ideal structure.
 - For instance, consider the 2-trivial extension Z ⋈₂ Z ⋈ Z. Then Z(0,1,1) = {(0, m, m) | m ∈ Z} while the ideal of Z ⋈₂ Z ⋈ Z generated by (0,1,1) is 0 ⋈₂ Z ⋈ Z.

イロト イポト イラト イラト

Remark

- In the case of n = 1, the ideal structure of $0 \ltimes_1 M_1$ is the same as the *R*-module structure of $0 \ltimes_1 M_1$.
- However, for $n \ge 2$, the *R*-module structure of $0 \ltimes_n M_1 \ltimes \cdots \ltimes M_n$ need not be the same as the ideal structure.
- For instance, consider the 2-trivial extension Z ⋈₂ Z ⋈ Z. Then Z(0, 1, 1) = {(0, m, m) | m ∈ Z} while the ideal of Z ⋈₂ Z ⋈ Z generated by (0, 1, 1) is 0 ⋈₂ Z ⋈ Z.

イロト イポト イラト イラト

Proposition

For every $m \in \{1, ..., n\}$, $0 \ltimes_n 0 \ltimes \cdots \ltimes 0 \ltimes M_m \ltimes \cdots \ltimes M_n$ is an ideal of $R \ltimes_n M$ and an $R \ltimes_j M_1 \ltimes \cdots \ltimes M_j$ -module for every $j \in \{n - m, ..., n\}$ via the action

$$(x_0, ..., x_j)(0, ..., 0, y_m, ..., y_n) := (x_0, x_1, ..., x_j, 0, ..., 0)(0, ..., 0, y_m, ..., y_n)$$

= $(x_0, x_1, ..., x_{n-m}, 0, ..., 0)(0, ..., 0, y_m, ..., y_n)$

- Moreover, the structure of $0 \ltimes_n 0 \ltimes \cdots \ltimes 0 \ltimes M_m \ltimes \cdots \ltimes M_n$ as an ideal of $R \ltimes_n M$ is the same as the $R \ltimes_j M_1 \ltimes \cdots \ltimes M_j$ -module structure for every $j \in \{n m, ..., n\}$.
- In particular, the structure of the ideal $0 \ltimes_n 0 \ltimes \cdots \ltimes 0 \ltimes M_n$ is the same as the one of the *R*-module M_n .

Proposition

• For every $m \in \{1, ..., n\}$, $0 \ltimes_n 0 \ltimes \cdots \ltimes 0 \ltimes M_m \ltimes \cdots \ltimes M_n$ is an ideal of $R \ltimes_n M$ and an $R \ltimes_j M_1 \ltimes \cdots \ltimes M_j$ -module for every $j \in \{n - m, ..., n\}$ via the action

$$(x_0, ..., x_j)(0, ..., 0, y_m, ..., y_n) := (x_0, x_1, ..., x_j, 0, ..., 0)(0, ..., 0, y_m, ..., y_n)$$

= $(x_0, x_1, ..., x_{n-m}, 0, ..., 0)(0, ..., 0, y_m, ..., y_n)$

▶ Moreover, the structure of $0 \ltimes_n 0 \ltimes \cdots \ltimes 0 \ltimes M_m \ltimes \cdots \ltimes M_n$ as an ideal of $R \ltimes_n M$ is the same as the $R \ltimes_j M_1 \ltimes \cdots \ltimes M_j$ -module structure for every $j \in \{n - m, ..., n\}$.

In particular, the structure of the ideal 0 × n 0 × · · · × 0 × M_n is the same as the one of the *R*-module M_n.

D. Bennis (Rabat - Morocco)

Proposition

• For every $m \in \{1, ..., n\}$, $0 \ltimes_n 0 \ltimes \cdots \ltimes 0 \ltimes M_m \ltimes \cdots \ltimes M_n$ is an ideal of $R \ltimes_n M$ and an $R \ltimes_j M_1 \ltimes \cdots \ltimes M_j$ -module for every $j \in \{n - m, ..., n\}$ via the action

$$\begin{array}{ll} (x_0,...,x_j)(0,...,0,y_m,...,y_n) & := (x_0,x_1,...,x_j,0,...,0)(0,...,0,y_m,...,y_n) \\ & = (x_0,x_1,...,x_{n-m},0,...,0)(0,...,0,y_m,...,y_n) \end{array}$$

- Moreover, the structure of $0 \ltimes_n 0 \ltimes \cdots \ltimes 0 \ltimes M_m \ltimes \cdots \ltimes M_n$ as an ideal of $R \ltimes_n M$ is the same as the $R \ltimes_j M_1 \ltimes \cdots \ltimes M_j$ -module structure for every $j \in \{n m, ..., n\}$.
- ▶ In particular, the structure of the ideal $0 \ltimes_n 0 \ltimes \cdots \ltimes 0 \ltimes M_n$ is the same as the one of the *R*-module M_n .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma

Every ideal of $R \ltimes_n M$ which contains $0 \ltimes_n M$ has the form $I \ltimes_n M$ for some ideal *I* of *R*. In this case, we have the following natural ring isomorphism:

 $R \ltimes_n M/I \ltimes_n M \cong R/I.$

Theorem

Radical ideals of $R \ltimes_n M$ have the form $I \ltimes_n M$ where I is a radical ideal of R. In particular, the maximal (resp., the prime) ideals of $R \ltimes_n M$ have the form $\mathcal{M} \ltimes_n M$ (resp, $P \ltimes_n M$) where \mathcal{M} (resp., P) is a maximal (resp., a prime) ideal of R.

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz. Austria — July 2016 12 / 20

Lemma

Every ideal of $R \ltimes_n M$ which contains $0 \ltimes_n M$ has the form $I \ltimes_n M$ for some ideal *I* of *R*. In this case, we have the following natural ring isomorphism:

 $R \ltimes_n M/I \ltimes_n M \cong R/I.$

Theorem

Radical ideals of $R \ltimes_n M$ have the form $I \ltimes_n M$ where *I* is a radical ideal of *R*. In particular, the maximal (resp., the prime) ideals of $R \ltimes_n M$ have the form $\mathcal{M} \ltimes_n M$ (resp, $P \ltimes_n M$) where \mathcal{M} (resp., *P*) is a maximal (resp., a prime) ideal of *R*.

D. Bennis (Rabat - Morocco)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Corollary

The Jacobson radical $J(R \ltimes_n M)$ (resp., the nilradical $Nil(R \ltimes_n M)$) of $R \ltimes_n M$ is $J(R) \ltimes_n M$ (resp., $Nil(R) \ltimes_n M$) and the Krull dimension of $R \ltimes_n M$ is equal to that of R.

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz. Austria — July 2016 12 / 20

不得 トイラトイラ

The following assertions are true.

- The set $Z(R \ltimes_n M)$ of zero divisors of $R \ltimes_n M$ is the set of elements $(r, m_1, ..., m_n)$ such that $r \in Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n)$. Hence $S \ltimes_n M$ where $S = R - (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$ is the set of regular elements of $R \ltimes_n M$.
- The set of units of $R \ltimes_n M$ is $U(R \ltimes_n M) = U(R) \ltimes_n M$.
- The set of idempotents of $R \ltimes_n M$ is $Id(R \ltimes_n M) = Id(R) \ltimes_n 0$.

・ 同 ト ・ ヨ ト ・ ヨ

The following assertions are true.

- ► The set $Z(R \ltimes_n M)$ of zero divisors of $R \ltimes_n M$ is the set of elements $(r, m_1, ..., m_n)$ such that $r \in Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n)$. Hence $S \ltimes_n M$ where $S = R - (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$ is the set of regular elements of $R \ltimes_n M$.
 - The set of units of $R \ltimes_n M$ is $U(R \ltimes_n M) = U(R) \ltimes_n M$.
 - The set of idempotents of $R \ltimes_n M$ is $Id(R \ltimes_n M) = Id(R) \ltimes_n 0$.

マロト イラト イラ

The following assertions are true.

- The set Z(R κ_n M) of zero divisors of R κ_n M is the set of elements (r, m₁, ..., m_n) such that r ∈ Z(R) ∪ Z(M₁) ∪ ··· ∪ Z(M_n). Hence S κ_n M where S = R − (Z(R) ∪ Z(M₁) ∪ ··· ∪ Z(M_n)) is the set of regular elements of R κ_n M.
- ▶ The set of units of $R \ltimes_n M$ is $U(R \ltimes_n M) = U(R) \ltimes_n M$.

• The set of idempotents of $R \ltimes_n M$ is $Id(R \ltimes_n M) = Id(R) \ltimes_n 0$.

イロト イポト イラト イラ

The following assertions are true.

- The set Z(R κ_n M) of zero divisors of R κ_n M is the set of elements (r, m₁, ..., m_n) such that r ∈ Z(R) ∪ Z(M₁) ∪ ··· ∪ Z(M_n). Hence S κ_n M where S = R − (Z(R) ∪ Z(M₁) ∪ ··· ∪ Z(M_n)) is the set of regular elements of R κ_n M.
- The set of units of $R \ltimes_n M$ is $U(R \ltimes_n M) = U(R) \ltimes_n M$.
- ▶ The set of idempotents of $R \ltimes_n M$ is $Id(R \ltimes_n M) = Id(R) \ltimes_n 0$.

イロト イポト イラト イラ

Outline

2 Some basic algebraic properties of $R \ltimes_n M$

3 Homogeneous ideals of *n*-trivial extensions

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 14 / 20

イロト イポト イヨト イヨト

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 15 / 20

э

Let Γ be a commutative additive monoid. Recall that a ring S is said to be a Γ -graded ring, if there is a family of subgroups of S, $(S_{\alpha})_{\alpha \in \Gamma}$, such that $S = \underset{\alpha \in \Gamma}{\oplus} S_{\alpha}$ as an abelian group, with $S_{\alpha}S_{\beta} \subseteq S_{\alpha+\beta}$ for all $\alpha, \beta \in \Gamma$.

イロト イポト イヨト イヨト

The *n*-trivial extension $R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$ may be considered as an \mathbb{N}_0 -graded ring ($\mathbb{N}_0 := \mathbb{N} \cup \{0\}$), where, in this case we set $M_k = 0$ for all $k \ge n + 1$ and $\varphi_{i,j}$ are naturally extended to all $i, j \ge 0$.

イロト イポト イヨト イヨト

Let Γ be a commutative additive monoid and $S = \bigoplus_{\alpha \in \Gamma} S_{\alpha}$ be a Γ -graded ring. And an *S*-module *N* is said to be Γ -graded if $N = \bigoplus_{\alpha \in \Gamma} N_{\alpha}$ (as an abelian group) and $S_{\alpha}N_{\beta} \subseteq N_{\alpha+\beta}$ for all $\alpha, \beta \in \Gamma$. Let $N = \bigoplus_{\alpha \in \Gamma} N_{\alpha}$ be a Γ -graded *S*-module. For every $\alpha \in \Gamma$, the elements of N_{α} are said to be homogeneous of degree α . A submodule *N'* of *N* is said to be homogeneous if one of the following equivalent assertions is true.

(1) N' is generated by homogeneous elements,

(2) If $\sum_{\alpha \in G'} n_{\alpha} \in N'$, where G' is a finite subset of Γ and each n_{α} is homogeneous of degree α , then $n_{\alpha} \in N'$ for every $\alpha \in G'$, or

(3)
$$N' = \bigoplus_{\alpha \in \Gamma} (N' \cap N_{\alpha}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let Γ be a commutative additive monoid and $S = \bigoplus_{\alpha \in \Gamma} S_{\alpha}$ be a Γ -graded ring. And an *S*-module *N* is said to be Γ -graded if $N = \bigoplus_{\alpha \in \Gamma} N_{\alpha}$ (as an abelian group) and $S_{\alpha}N_{\beta} \subseteq N_{\alpha+\beta}$ for all $\alpha, \beta \in \Gamma$. Let $N = \bigoplus_{\alpha \in \Gamma} N_{\alpha}$ be a

Γ-graded S-module. For every $\alpha \in \Gamma$, the elements of N_{α} are said to be homogeneous of degree α . A submodule N' of N is said to be homogeneous if one of the following equivalent assertions is true.

(1) N' is generated by homogeneous elements,

(2) If $\sum_{\alpha \in G'} n_{\alpha} \in N'$, where G' is a finite subset of Γ and each n_{α} is homogeneous of degree α , then $n_{\alpha} \in N'$ for every $\alpha \in G'$, or

(3)
$$N' = \bigoplus_{\alpha \in \Gamma} (N' \cap N_{\alpha}).$$

Let Γ be a commutative additive monoid and $S = \bigoplus_{\alpha \in \Gamma} S_{\alpha}$ be a Γ -graded ring. And an *S*-module *N* is said to be Γ -graded if $N = \bigoplus_{\alpha \in \Gamma} N_{\alpha}$ (as an abelian group) and $S_{\alpha}N_{\beta} \subseteq N_{\alpha+\beta}$ for all $\alpha, \beta \in \Gamma$. Let $N = \bigoplus_{\alpha \in \Gamma} N_{\alpha}$ be a Γ -graded *S*-module. For every $\alpha \in \Gamma$, the elements of N_{α} are said to be homogeneous of degree α . A submodule *N'* of *N* is said to be

homogeneous if one of the following equivalent assertions is true.

(1) N' is generated by homogeneous elements,

(2) If $\sum_{\alpha \in G'} n_{\alpha} \in N'$, where G' is a finite subset of Γ and each n_{α} is homogeneous of degree α , then $n_{\alpha} \in N'$ for every $\alpha \in G'$, or

(3)
$$N' = \bigoplus_{\alpha \in \Gamma} (N' \cap N_{\alpha}).$$

-

In particular, an ideal J of $R \ltimes_n M$ is homogeneous if and only if $J = (J \cap R) \oplus (J \cap M_1) \oplus \cdots \oplus (J \cap M_n)$. Note that $I := J \cap R$ is an ideal of R and, for $i \in \{1, ..., n\}$, $N_i := J \cap M_i$ is an R-submodule of M_i which satisfies $IM_i \subseteq N_i$ and $N_iM_j \subseteq N_{i+j}$ for every $i, j \in \{1, ..., n\}$.

イロト イポト イラト イラト

- Let *I* be an ideal of *R* and let $C = (C_i)_{i \in \{1,...,n\}}$ be a family of *R*-modules such that $C_i \subseteq M_i$ for every $i \in \{1,...,n\}$. Then $I \ltimes_n C$ is a (homogeneous) ideal of $R \ltimes_n M$ if and only if $IM_i \subseteq C_i$ and $C_iM_j \subseteq C_{i+j}$ for all $i, j \in \{1,...,n\}$ with $i + j \leq n$.
- 2 Let *J* be an ideal of $R \ltimes_n M$ and consider *K* the projection of *J* onto *R* and *N_i* the projection of *J* onto *M_i* for every $i \in \{1, ..., n\}$. Then,
 - K is an ideal of R and N_i is a submodule of M_i for every i ∈ {1,..., n} such that KM_i ⊆ N_i and N_iM_j ⊆ N_{i+j} for ever j ∈ {1,..., n} with i + j ≤ n.
 - Thus $K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is a homogeneous ideal of
 - $R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$.

 - Solution The ideal J is homogeneous if and only if $J = K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$.

- Let *I* be an ideal of *R* and let $C = (C_i)_{i \in \{1,...,n\}}$ be a family of *R*-modules such that $C_i \subseteq M_i$ for every $i \in \{1,...,n\}$. Then $I \ltimes_n C$ is a (homogeneous) ideal of $R \ltimes_n M$ if and only if $IM_i \subseteq C_i$ and $C_iM_j \subseteq C_{i+j}$ for all $i, j \in \{1,...,n\}$ with $i + j \leq n$.
- 2 Let *J* be an ideal of $R \ltimes_n M$ and consider *K* the projection of *J* onto *R* and *N_i* the projection of *J* onto *M_i* for every $i \in \{1, ..., n\}$. Then,
 - K is an ideal of R and N_i is a submodule of M_i for every i ∈ {1,..., n} such that KM_i ⊆ N_i and N_iM_j ⊆ N_{i+j} for ever j ∈ {1,..., n} with i + j ≤ n.
 - Thus $K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is a homogeneous ideal of
 - $R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$.

 - Solution The ideal J is homogeneous if and only if $J = K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$.

- Let *I* be an ideal of *R* and let $C = (C_i)_{i \in \{1,...,n\}}$ be a family of *R*-modules such that $C_i \subseteq M_i$ for every $i \in \{1,...,n\}$. Then $I \ltimes_n C$ is a (homogeneous) ideal of $R \ltimes_n M$ if and only if $IM_i \subseteq C_i$ and $C_iM_j \subseteq C_{i+j}$ for all $i, j \in \{1,...,n\}$ with $i + j \le n$.
- 2 Let *J* be an ideal of $R \ltimes_n M$ and consider *K* the projection of *J* onto *R* and *N_i* the projection of *J* onto *M_i* for every $i \in \{1, ..., n\}$. Then,
 - *K* is an ideal of *R* and *N_i* is a submodule of *M_i* for every $i \in \{1, ..., n\}$ such that $KM_i \subseteq N_i$ and $N_iM_j \subseteq N_{i+j}$ for every $j \in \{1, ..., n\}$ with $i + j \leq n$.
 - Thus $K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is a homogeneous ideal of
 - $R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$.
 - $I \subseteq K \ltimes_n N_1 \ltimes \cdots \ltimes N_n.$
 - Solution The ideal J is homogeneous if and only if $J = K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$

< ロ > < 同 > < 回 > < 回 >

- Let *I* be an ideal of *R* and let $C = (C_i)_{i \in \{1,...,n\}}$ be a family of *R*-modules such that $C_i \subseteq M_i$ for every $i \in \{1,...,n\}$. Then $I \ltimes_n C$ is a (homogeneous) ideal of $R \ltimes_n M$ if and only if $IM_i \subseteq C_i$ and $C_iM_j \subseteq C_{i+j}$ for all $i, j \in \{1,...,n\}$ with $i + j \le n$.
- ② Let *J* be an ideal of *R* \ltimes_n *M* and consider *K* the projection of *J* onto *R* and *N_i* the projection of *J* onto *M_i* for every *i* ∈ {1, ..., *n*}. Then,
 - *K* is an ideal of *R* and *N_i* is a submodule of *M_i* for every $i \in \{1, ..., n\}$ such that $KM_i \subseteq N_i$ and $N_iM_j \subseteq N_{i+j}$ for every $j \in \{1, ..., n\}$ with $i + j \leq n$. Thus $K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is a homogeneous ideal of $R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$.
 - **2** $\quad J \subseteq K \ltimes_n N_1 \ltimes \cdots \ltimes N_n.$
 - 3 The ideal *J* is homogeneous if and only if $J = K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$.

- Let *I* be an ideal of *R* and let $C = (C_i)_{i \in \{1,...,n\}}$ be a family of *R*-modules such that $C_i \subseteq M_i$ for every $i \in \{1,...,n\}$. Then $I \ltimes_n C$ is a (homogeneous) ideal of $R \ltimes_n M$ if and only if $IM_i \subseteq C_i$ and $C_iM_j \subseteq C_{i+j}$ for all $i, j \in \{1,...,n\}$ with $i + j \le n$.
- ② Let *J* be an ideal of $R \ltimes_n M$ and consider *K* the projection of *J* onto *R* and *N_i* the projection of *J* onto *M_i* for every *i* ∈ {1, ..., *n*}. Then,
 - *K* is an ideal of *R* and *N_i* is a submodule of *M_i* for every $i \in \{1, ..., n\}$ such that $KM_i \subseteq N_i$ and $N_iM_j \subseteq N_{i+j}$ for every $j \in \{1, ..., n\}$ with $i + j \leq n$. Thus $K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is a homogeneous ideal of $R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$.
 - **2** $\quad J \subseteq K \ltimes_n N_1 \ltimes \cdots \ltimes N_n.$
 - 3 The ideal J is homogeneous if and only if $J = K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$.

- Let *I* be an ideal of *R* and let $C = (C_i)_{i \in \{1,...,n\}}$ be a family of *R*-modules such that $C_i \subseteq M_i$ for every $i \in \{1,...,n\}$. Then $I \ltimes_n C$ is a (homogeneous) ideal of $R \ltimes_n M$ if and only if $IM_i \subseteq C_i$ and $C_iM_j \subseteq C_{i+j}$ for all $i, j \in \{1,...,n\}$ with $i + j \le n$.
- ② Let *J* be an ideal of $R \ltimes_n M$ and consider *K* the projection of *J* onto *R* and *N_i* the projection of *J* onto *M_i* for every *i* ∈ {1, ..., *n*}. Then,
 - *K* is an ideal of *R* and *N_i* is a submodule of *M_i* for every $i \in \{1, ..., n\}$ such that $KM_i \subseteq N_i$ and $N_iM_j \subseteq N_{i+j}$ for every $j \in \{1, ..., n\}$ with $i + j \leq n$. Thus $K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is a homogeneous ideal of $R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$.
 - $2 J \subseteq K \ltimes_n N_1 \ltimes \cdots \ltimes N_n.$

The ideal J is homogeneous if and only if $J = K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$.

< ロ > < 同 > < 回 > < 回 > .

- Let *I* be an ideal of *R* and let $C = (C_i)_{i \in \{1,...,n\}}$ be a family of *R*-modules such that $C_i \subseteq M_i$ for every $i \in \{1,...,n\}$. Then $I \ltimes_n C$ is a (homogeneous) ideal of $R \ltimes_n M$ if and only if $IM_i \subseteq C_i$ and $C_iM_j \subseteq C_{i+j}$ for all $i, j \in \{1,...,n\}$ with $i + j \le n$.
- 2 Let *J* be an ideal of $R \ltimes_n M$ and consider *K* the projection of *J* onto *R* and *N_i* the projection of *J* onto *M_i* for every $i \in \{1, ..., n\}$. Then,
 - *K* is an ideal of *R* and *N_i* is a submodule of *M_i* for every $i \in \{1, ..., n\}$ such that $KM_i \subseteq N_i$ and $N_iM_j \subseteq N_{i+j}$ for every $j \in \{1, ..., n\}$ with $i + j \leq n$. Thus $K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$ is a homogeneous ideal of $R \ltimes_n M_1 \ltimes \cdots \ltimes M_n$.
 - $2 \quad J \subseteq K \ltimes_n N_1 \ltimes \cdots \ltimes N_n.$
 - The ideal J is homogeneous if and only if $J = K \ltimes_n N_1 \ltimes \cdots \ltimes N_n$.

16/20

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 17 / 20

< 同 > < 回 > < 回

Every radical (hence prime) ideal of $R \ltimes_n M$ is homogeneous.

- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous.
 For instance, consider a quasi-local ring *R* with maximal *m*. Then,
 - a proper homogeneous ideal of R ∝ R/m has either the form I ∝ R/m or I ∝ 0 where I is a proper ideal of R, and
 - a proper homogeneous principal ideal of *R* ⊨ *R*/*m* has either the form 0 ⊨ *R*/*m* or *I* ⊨ 0 where *I* is a principal ideal of *R*. Thus,
 - for instance, the principal ideal of R
 R/*m* generated by an element (*a*, *e*), where *a* and *e* are both nonzero with *a* ∈ *m*, is not homogeneous.

- Every radical (hence prime) ideal of $R \ltimes_n M$ is homogeneous.
- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous. For instance, consider a quasi-local ring *R* with maximal *m*. Then,
 - → a proper homogeneous ideal of R × R/m has either the form I × R/m or I × 0 where I is a proper ideal of R, and
 - → a proper homogeneous principal ideal of $R \ltimes R/m$ has either the form $0 \ltimes R/m$ or $I \ltimes 0$ where *I* is a principal ideal of *R*. Thus,
 - → for instance, the principal ideal of R k R/m generated by an element (a, e), where a and e are both nonzero with a ∈ m, is not homogeneous.

- Every radical (hence prime) ideal of $R \ltimes_n M$ is homogeneous.
- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous.
 For instance, consider a quasi-local ring *R* with maximal *m*. Then,
 - a proper homogeneous ideal of $R \ltimes R/m$ has either the form $I \ltimes R/m$ or $I \ltimes 0$ where *I* is a proper ideal of *R*, and
 - a proper homogeneous principal ideal of *R* ⋉ *R*/*m* has either the form 0 ⋉ *R*/*m* or *I* ⋉ 0 where *I* is a principal ideal of *R*. Thus,
 - for instance, the principal ideal of *R* × *R*/*m* generated by an element (*a*, *e*), where *a* and *e* are both nonzero with *a* ∈ *m*, is not homogeneous.

- Every radical (hence prime) ideal of $R \ltimes_n M$ is homogeneous.
- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous.
 For instance, consider a quasi-local ring *R* with maximal *m*. Then,
 - → a proper homogeneous ideal of $R \ltimes R/m$ has either the form $I \ltimes R/m$ or $I \ltimes 0$ where *I* is a proper ideal of *R*, and
 - a proper homogeneous principal ideal of *R* × *R*/*m* has either the form 0 × *R*/*m* or *I* × 0 where *I* is a principal ideal of *R*. Thus,
 - for instance, the principal ideal of *R* × *R*/*m* generated by an element (*a*, *e*), where *a* and *e* are both nonzero with *a* ∈ *m*, is not homogeneous.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Every radical (hence prime) ideal of $R \ltimes_n M$ is homogeneous.
- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous.
 For instance, consider a quasi-local ring *R* with maximal *m*. Then,
 - a proper homogeneous ideal of $R \ltimes R/m$ has either the form $I \ltimes R/m$ or $I \ltimes 0$ where *I* is a proper ideal of *R*, and
 - → a proper homogeneous principal ideal of R × R/m has either the form 0 × R/m or I × 0 where I is a principal ideal of R. Thus,
 - for instance, the principal ideal of *R* × *R*/*m* generated by an element (*a*, *e*), where *a* and *e* are both nonzero with *a* ∈ *m*, is not homogeneous.

- Every radical (hence prime) ideal of $R \ltimes_n M$ is homogeneous.
- However, it is well-known that the ideals of the classical trivial extensions are not in general homogeneous.
 For instance, consider a quasi-local ring *R* with maximal *m*. Then,
 - a proper homogeneous ideal of $R \ltimes R/m$ has either the form $I \ltimes R/m$ or $I \ltimes 0$ where *I* is a proper ideal of *R*, and
 - a proper homogeneous principal ideal of *R* ⊨ *R*/*m* has either the form 0 ⊨ *R*/*m* or *I* ⊨ 0 where *I* is a principal ideal of *R*. Thus,
 - → for instance, the principal ideal of R k R/m generated by an element (a, e), where a and e are both nonzero with a ∈ m, is not homogeneous.

Then the following natural question arises:

Question

When every ideal in a given class \mathscr{I} of ideals of $R \ltimes_n M$ is homogeneous?

• Various particular classes of ideals were treated. Here we present two of them. Namely, we show when every regular ideal is homogeneous and when every regular ideal is homogeneous.

• Then the following natural question arises:

Question

When every ideal in a given class \mathscr{I} of ideals of $R \ltimes_n M$ is homogeneous?

• Various particular classes of ideals were treated. Here we present two of them. Namely, we show when every regular ideal is homogeneous and when every regular ideal is homogeneous.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• Then the following natural question arises:

Question

When every ideal in a given class \mathscr{I} of ideals of $R \ltimes_n M$ is homogeneous?

Various particular classes of ideals were treated. Here we present two of them. Namely, we show when every regular ideal is homogeneous and when every regular ideal is homogeneous.

・ロト ・ 同ト ・ ヨト ・ ヨト

- An ideal is said to be *regular* if it contains a regular element.
- Thus, an ideal of $R \ltimes_n M$ is regular if and only if it contains an element $(s, m_1, ..., m_n)$ with $s \in R (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$.

Theorem

Let $S = R - (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$. Then the following assertions are equivalent.

(1) Every regular ideal of $R \ltimes_n M$ is homogeneous.

2 For every $s \in S$ and $i \in \{1, ..., n\}$, $sM_i = M_i$ (or equivalently, $M_{iS} = M_i$).

D. Bennis (Rabat - Morocco)

An ideal is said to be *regular* if it contains a regular element.

• Thus, an ideal of $R \ltimes_n M$ is regular if and only if it contains an element $(s, m_1, ..., m_n)$ with $s \in R - (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$.

Theorem

Let $S = R - (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$. Then the following assertions are equivalent.

(1) Every regular ideal of $R \ltimes_n M$ is homogeneous.

2 For every $s \in S$ and $i \in \{1, ..., n\}$, $sM_i = M_i$ (or equivalently, $M_{iS} = M_i$).

D. Bennis (Rabat - Morocco)

-

- An ideal is said to be *regular* if it contains a regular element.
- ▶ Thus, an ideal of $R \ltimes_n M$ is regular if and only if it contains an element $(s, m_1, ..., m_n)$ with $s \in R (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$.

Theorem

Let $S = R - (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$. Then the following assertions are equivalent.

• Every regular ideal of $R \ltimes_n M$ is homogeneous.

2 For every $s \in S$ and $i \in \{1, ..., n\}$, $sM_i = M_i$ (or equivalently, $M_{iS} = M_i$).

-

- An ideal is said to be *regular* if it contains a regular element.
- Thus, an ideal of $R \ltimes_n M$ is regular if and only if it contains an element $(s, m_1, ..., m_n)$ with $s \in R (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$.

Theorem

Let $S = R - (Z(R) \cup Z(M_1) \cup \cdots \cup Z(M_n))$. Then the following assertions are equivalent.

- Every regular ideal of $R \ltimes_n M$ is homogeneous.
- ② For every $s \in S$ and $i \in \{1, ..., n\}$, $sM_i = M_i$ (or equivalently, $M_{iS} = M_i$).

The question of when every ideal of $R \ltimes_n M$ is homogeneous is still open.

Here, we present a partial answer. For this, we need the following definition:

・ロン ・四 ・ ・ ヨン ・ ヨン

Definition

Assume that $n \ge 2$. For $i \in \{1, ..., n-1\}$ and $j \in \{2, ..., n\}$ with $ji \le n$, M_i is said to be *j*-integral if, for any *j* elements $m_{i_1}, ..., m_{i_j}$ of M_i , if the product $m_{i_1} \cdots m_{i_j} = 0$, then at least one of the m_{i_k} 's is zero.

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 19 / 20

Theorem

Suppose that $n \ge 2$ and R is an integral domain. Assume that M_i is torsion-free, for every $i \in \{1, ..., n-1\}$, and that M_1 is k-integral for every $k \in \{2, ..., n-1\}$. Then the following assertions are equivalent.

- Every ideal of $R \ltimes_n M$ is homogeneous.
- The following two conditions are satisfied:
 - i. For every $i \in \{1, ..., n\}$, M_i is divisible, and
 - ii. For every $i \in \{2, ..., n\}$ and every $m_1 \in M_1 \{0\}, M_i = m_1 M_{i-1}$.

Example

Every ideal of the following *n*-trivial extensions $\mathbb{Z} \ltimes_n \mathbb{Q} \ltimes \cdots \ltimes \mathbb{Q}$ and $\mathbb{Z} \ltimes_n \mathbb{Q} \ltimes \cdots \ltimes \mathbb{Q} \ltimes \mathbb{Q}/\mathbb{Z}$ is homogeneous.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

Suppose that $n \ge 2$ and R is an integral domain. Assume that M_i is torsion-free, for every $i \in \{1, ..., n-1\}$, and that M_1 is k-integral for every $k \in \{2, ..., n-1\}$. Then the following assertions are equivalent.

- Every ideal of $R \ltimes_n M$ is homogeneous.
- The following two conditions are satisfied:
 - i. For every $i \in \{1, ..., n\}$, M_i is divisible, and
 - ii. For every $i \in \{2, ..., n\}$ and every $m_1 \in M_1 \{0\}, M_i = m_1 M_{i-1}$.

Example

Every ideal of the following *n*-trivial extensions $\mathbb{Z} \ltimes_n \mathbb{Q} \ltimes \cdots \ltimes \mathbb{Q}$ and $\mathbb{Z} \ltimes_n \mathbb{Q} \ltimes \cdots \ltimes \mathbb{Q} \ltimes \mathbb{Q}/\mathbb{Z}$ is homogeneous.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Thank you!

D. Bennis (Rabat - Morocco)

n-Trivial Extensions of Rings

Graz, Austria — July 2016 20 / 20