### *n*-universal subsets and Newton sequences

#### Paul-Jean Cahen and Jean-Luc Chabert

#### Conference on Rings and Polynomials, Graz, 2016

A - E - A - E

The sequence  $\{n\}_{n\geq 0}$  is remarkable for integer-valued polynomials. One can test polynomials of degree at most n on  $0, 1, \ldots, n$ :

$$f(0), f(1), \ldots, f(n) \in \mathbb{Z} \Longrightarrow f(\mathbb{Z}) \subseteq \mathbb{Z}.$$

Indeed, one can (uniquely) write

$$f = \alpha_0 + \alpha_1 X + \alpha_2 \binom{X}{2} + \ldots + \alpha_n \binom{X}{n},$$
  
where  $\binom{X}{k} = \frac{\prod_{0 \le i < k} (X - i)}{k!},$ 

and then compute the  $\alpha_k$ 's in term of  $f(0), f(1), \dots f(n)$ . One says  $\{n\}_{n\geq 0}$  is a Newton sequence.

# The sequence of integers

The sequence  $\{n\}_{n\geq 0}$  is remarkable for integer-valued polynomials. One can test polynomials of degree at most n on  $0, 1, \ldots, n$ :

 $f(0), f(1), \ldots, f(n) \in \mathbb{Z} \Longrightarrow f(\mathbb{Z}) \subseteq \mathbb{Z}.$ 

Indeed, one can (uniquely) write

$$f = \alpha_0 + \alpha_1 X + \alpha_2 \binom{X}{2} + \ldots + \alpha_n \binom{X}{n},$$
  
where  $\binom{X}{k} = \frac{\prod_{0 \le i < k} (X - i)}{k!},$ 

and then compute the  $\alpha_k$ 's in term of  $f(0), f(1), \dots f(n)$ . One says  $\{n\}_{n\geq 0}$  is a *Newton sequence*.

イロト イポト イラト イ

## The sequence of integers

The sequence  $\{n\}_{n\geq 0}$  is remarkable for integer-valued polynomials. One can test polynomials of degree at most n on  $0, 1, \ldots, n$ :

$$f(0), f(1), \ldots, f(n) \in \mathbb{Z} \Longrightarrow f(\mathbb{Z}) \subseteq \mathbb{Z}.$$

Indeed, one can (uniquely) write

$$F = \alpha_0 + \alpha_1 X + \alpha_2 \binom{X}{2} + \ldots + \alpha_n \binom{X}{n},$$
  
where  $\binom{X}{k} = \frac{\prod_{0 \le i < k} (X - i)}{k!},$ 

and then compute the  $\alpha_k$ 's in term of  $f(0), f(1), \dots f(n)$ . One says  $\{n\}_{n\geq 0}$  is a Newton sequence.

## The sequence of integers

The sequence  $\{n\}_{n\geq 0}$  is remarkable for integer-valued polynomials. One can test polynomials of degree at most n on  $0, 1, \ldots, n$ :

$$f(0), f(1), \ldots, f(n) \in \mathbb{Z} \Longrightarrow f(\mathbb{Z}) \subseteq \mathbb{Z}.$$

Indeed, one can (uniquely) write

$$f = \alpha_0 + \alpha_1 X + \alpha_2 \binom{X}{2} + \ldots + \alpha_n \binom{X}{n},$$
  
where  $\binom{X}{k} = \frac{\prod_{0 \le i < k} (X - i)}{k!},$ 

and then compute the  $\alpha_k$ 's in term of  $f(0), f(1), \dots f(n)$ . One says  $\{n\}_{n\geq 0}$  is a *Newton sequence*.

The sequence  $\{n\}_{n\geq 0}$  is remarkable for integer-valued polynomials. One can test polynomials of degree at most n on  $0, 1, \ldots, n$ :

$$f(0), f(1), \ldots, f(n) \in \mathbb{Z} \Longrightarrow f(\mathbb{Z}) \subseteq \mathbb{Z}.$$

Indeed, one can (uniquely) write

$$f = \alpha_0 + \alpha_1 X + \alpha_2 \binom{X}{2} + \ldots + \alpha_n \binom{X}{n},$$
  
where  $\binom{X}{k} = \frac{\prod_{0 \le i < k} (X - i)}{k!},$ 

and then compute the  $\alpha_k$ 's in term of  $f(0), f(1), \ldots f(n)$ . One says  $\{n\}_{n\geq 0}$  is a Newton sequence.

The sequence  $\{n\}_{n\geq 0}$  is remarkable for integer-valued polynomials. One can test polynomials of degree at most n on  $0, 1, \ldots, n$ :

$$f(0), f(1), \ldots, f(n) \in \mathbb{Z} \Longrightarrow f(\mathbb{Z}) \subseteq \mathbb{Z}.$$

Indeed, one can (uniquely) write

$$f = \alpha_0 + \alpha_1 X + \alpha_2 \binom{X}{2} + \ldots + \alpha_n \binom{X}{n},$$
  
where  $\binom{X}{k} = \frac{\prod_{0 \le i < k} (X - i)}{k!},$ 

and then compute the  $\alpha_k$ 's in term of  $f(0), f(1), \dots f(n)$ . One says  $\{n\}_{n\geq 0}$  is a Newton sequence.

## The sequence of integers

### In fact this sequence is even more remarkable:

Considering f(X - k), one can test f on n + 1 consecutive integers!

One says  $\{n\}_{n\geq 0}$  is a strong Newton sequence.

Unfortunately, in more general settings, there are often no strong Newton sequences (let alone strong ones!), either for

- integer-valued polynomials on the ring O<sub>K</sub> of integers of a number field K, \*
- integer-valued polynomials on a subset (of  $\mathbb{Z}$ , or a domain D.)

## The sequence of integers

### In fact this sequence is even more remarkable: Considering f(X - k), one can test f on n + 1 consecutive integers!

One says  $\{n\}_{n\geq 0}$  is a strong Newton sequence.

Unfortunately, in more general settings, there are often no strong Newton sequences (let alone strong ones!), either for

- integer-valued polynomials on the ring O<sub>K</sub> of integers of a number field K, \*
- integer-valued polynomials on a subset (of  $\mathbb{Z}$ , or a domain D.)

### In fact this sequence is even more remarkable: Considering f(X - k), one can test f on n + 1 consecutive integers!

### One says $\{n\}_{n\geq 0}$ is a strong Newton sequence.

Unfortunately, in more general settings, there are often no strong Newton sequences (let alone strong ones!), either for

- integer-valued polynomials on the ring O<sub>K</sub> of integers of a number field K, \*
- integer-valued polynomials on a subset (of  $\mathbb{Z}$ , or a domain D.)

In fact this sequence is even more remarkable: Considering f(X - k), one can test f on n + 1 consecutive integers!

One says  $\{n\}_{n\geq 0}$  is a strong Newton sequence.

Unfortunately, in more general settings, there are often no strong Newton sequences (let alone strong ones!), either for

- integer-valued polynomials on the ring O<sub>K</sub> of integers of a number field K, \*
- integer-valued polynomials on a subset (of  $\mathbb{Z}$ , or a domain D.)

In fact this sequence is even more remarkable: Considering f(X - k), one can test f on n + 1 consecutive integers!

One says  $\{n\}_{n\geq 0}$  is a strong Newton sequence.

Unfortunately, in more general settings, there are often no strong Newton sequences (let alone strong ones!), either for

- integer-valued polynomials on the ring O<sub>K</sub> of integers of a number field K, \*
- integer-valued polynomials on a subset (of  $\mathbb{Z}$ , or a domain D.)

In fact this sequence is even more remarkable: Considering f(X - k), one can test f on n + 1 consecutive integers!

One says  $\{n\}_{n\geq 0}$  is a strong Newton sequence.

Unfortunately, in more general settings, there are often no strong Newton sequences (let alone strong ones!), either for

- integer-valued polynomials on the ring O<sub>K</sub> of integers of a number field K, \*
- integer-valued polynomials on a subset (of  $\mathbb{Z}$ , or a domain D.)

### Definitions and notations

#### Notations

Let D be a domain with quotient field K.

• If E is a subset of D,

$$\operatorname{Int}(E,D) = \{f \in K[X] \mid f(E) \subseteq D\}$$

denotes the ring of *integer-valued polynomials* on E (with respect to D).

• One simply writes Int(D) for the ring Int(D, D) of *integer-valued polynomials on D*.

▲ 同 ▶ ▲ 国 ▶ ▲

### Definitions and notations

#### Notations

Let D be a domain with quotient field K.

• If E is a subset of D,

$$\operatorname{Int}(E,D) = \{f \in K[X] \mid f(E) \subseteq D\}$$

denotes the ring of *integer-valued polynomials on* E (with respect to D).

• One simply writes Int(D) for the ring Int(D, D) of *integer-valued polynomials on D*.

b) A (B) b)

## Definitions and notations

### We can test integer-valued polynomials on subsets:

#### Definition

A subset S of E is said to be an *n*-universal subset of E (with respect to D) if, for each  $f \in K[X]$  with  $\deg(f) \leq n$ ,

 $f(S) \subseteq D \Longrightarrow f(E) \subseteq D.$ 

That is,  $f \in \operatorname{Int}(S, D) \Longleftrightarrow f \in \operatorname{Int}(E, D).*$ 

If S is an n-universal subset S of E then  $Card(S) \ge n + 1$ .

By Lagrange interpolation (of course if  $Card(E) \ge n + 1. *$ )

## Definitions and notations

We can test integer-valued polynomials on subsets:

#### Definition

A subset S of E is said to be an *n*-universal subset of E (with respect to D) if, for each  $f \in K[X]$  with deg $(f) \leq n$ ,

### $f(S) \subseteq D \Longrightarrow f(E) \subseteq D.$

That is,  $f \in \operatorname{Int}(S,D) \Longleftrightarrow f \in \operatorname{Int}(E,D).*$ 

If S is an n-universal subset S of E then  $Card(S) \ge n + 1$ .

By Lagrange interpolation (of course if  $Card(E) \geq n+1. *$ )

## Definitions and notations

We can test integer-valued polynomials on subsets:

#### Definition

A subset S of E is said to be an *n*-universal subset of E (with respect to D) if, for each  $f \in K[X]$  with deg $(f) \leq n$ ,

 $f(S) \subseteq D \Longrightarrow f(E) \subseteq D.$ 

That is,  $f \in \text{Int}(S, D) \iff f \in \text{Int}(E, D).*$ 

If S is an n-universal subset S of E then  $Card(S) \ge n + 1$ .

By Lagrange interpolation (of course if  $Card(E) \ge n + 1. *$ )

## Definitions and notations

We can test integer-valued polynomials on subsets:

#### Definition

A subset S of E is said to be an *n*-universal subset of E (with respect to D) if, for each  $f \in K[X]$  with deg $(f) \leq n$ ,

 $f(S) \subseteq D \Longrightarrow f(E) \subseteq D.$ 

That is,  $f \in \text{Int}(S, D) \iff f \in \text{Int}(E, D).*$ 

If S is an n-universal subset S of E then  $Card(S) \ge n + 1$ .

By Lagrange interpolation (of course if  $Card(E) \ge n + 1. *$ )

## Definitions and notations

We can test integer-valued polynomials on subsets:

#### Definition

A subset S of E is said to be an *n*-universal subset of E (with respect to D) if, for each  $f \in K[X]$  with deg $(f) \leq n$ ,

$$f(S) \subseteq D \Longrightarrow f(E) \subseteq D.$$

That is,  $f \in \text{Int}(S, D) \iff f \in \text{Int}(E, D).*$ 

If S is an n-universal subset S of E then  $Card(S) \ge n + 1$ .

By Lagrange interpolation (of course if  $Card(E) \ge n + 1. *$ )

### Definitions and notations

#### Definition

An *n*-universal subset S such that Card(S) = n + 1 is called an *n*-optimal subset (of E, with respect to D).

#### Definition

A Newton sequence of length n of E is a sequence  $a_0, \ldots, a_n$  in E such that, for each  $k \le n$ ,  $\{a_0, \ldots, a_k\}$  is a k-optimal subset of E.

Its terms must be distinct (we assume,  $Card(E) \ge n+1$ ). There may be no *n*-optimal subset, a fortiori no Newton sequence!

### Definitions and notations

#### Definition

An *n*-universal subset S such that Card(S) = n + 1 is called an *n*-optimal subset (of E, with respect to D).

#### Definition

A Newton sequence of length n of E is a sequence  $a_0, \ldots, a_n$  in E such that, for each  $k \leq n$ ,  $\{a_0, \ldots, a_k\}$  is a k-optimal subset of E.

Its terms must be distinct (we assume,  ${\sf Card}(E) \geq n+1)$ . There may be no *n*-optimal subset, a fortiori no Newton sequence!

### Definitions and notations

#### Definition

An *n*-universal subset S such that Card(S) = n + 1 is called an *n*-optimal subset (of E, with respect to D).

#### Definition

A Newton sequence of length n of E is a sequence  $a_0, \ldots, a_n$  in E such that, for each  $k \leq n$ ,  $\{a_0, \ldots, a_k\}$  is a k-optimal subset of E.

Its terms must be distinct (we assume,  $Card(E) \ge n+1$ ).

There may be no *n*-optimal subset, a fortiori no Newton sequence!

## Definitions and notations

#### Definition

An *n*-universal subset S such that Card(S) = n + 1 is called an *n*-optimal subset (of E, with respect to D).

#### Definition

A Newton sequence of length n of E is a sequence  $a_0, \ldots, a_n$  in E such that, for each  $k \le n$ ,  $\{a_0, \ldots, a_k\}$  is a k-optimal subset of E.

Its terms must be distinct (we assume,  $Card(E) \ge n + 1$ ). There may be no *n*-optimal subset, a fortiori no Newton sequence!

## Definitions and notations

#### Definition

An *n*-universal subset S such that Card(S) = n + 1 is called an *n*-optimal subset (of E, with respect to D).

#### Definition

A Newton sequence of length n of E is a sequence  $a_0, \ldots, a_n$  in E such that, for each  $k \le n$ ,  $\{a_0, \ldots, a_k\}$  is a k-optimal subset of E.

Its terms must be distinct (we assume,  $Card(E) \ge n + 1$ ). There may be no *n*-optimal subset, a fortiori no Newton sequence!

### What we are up to

#### We are inspired by [BFS]: Simultaneous p-orderings and minimising volumes in number fields. J. Byszewski, M. Frączyk, and A. Szumowicz, arXiv:1506.02696 [math.NT], 8 Jun. 2015.

They study *n*-universal subsets of a Dedekind domain *D*.

We wish to

- generalize their results to *n*-universal subsets of a subset *E* of *D* (rather than *D* itself),
- show one can always obtain *almost* strong Newton sequences of Dedekind domains.

### What we are up to

#### We are inspired by [BFS]: Simultaneous p-orderings and minimising volumes in number fields. J. Byszewski, M. Frączyk, and A. Szumowicz, arXiv:1506.02696 [math.NT], 8 Jun. 2015.

They study n-universal subsets of a Dedekind domain D.

We wish to

- generalize their results to *n*-universal subsets of a subset *E* of *D* (rather than *D* itself),
- show one can always obtain *almost* strong Newton sequences of Dedekind domains.

### What we are up to

#### We are inspired by [BFS]: Simultaneous p-orderings and minimising volumes in number fields. J. Byszewski, M. Frączyk, and A. Szumowicz, arXiv:1506.02696 [math.NT], 8 Jun. 2015.

They study *n*-universal subsets of a Dedekind domain *D*.

We wish to

- generalize their results to n-universal subsets of a subset E of D (rather than D itself),
- show one can always obtain *almost* strong Newton sequences of Dedekind domains.

### What we are up to

We are inspired by [BFS]: Simultaneous p-orderings and minimising volumes in number fields. J. Byszewski, M. Frączyk, and A. Szumowicz, arXiv:1506.02696 [math.NT], 8 Jun. 2015.

They study *n*-universal subsets of a Dedekind domain *D*.

We wish to

- generalize their results to n-universal subsets of a subset E of D (rather than D itself),
- show one can always obtain *almost* strong Newton sequences of Dedekind domains.



Throughout this section, E is a subset of a domain D (with quotient field K).

→ < Ξ → <</p>

# Trivial results

By definition an *n*-universal subset is *k*-universal for each  $k \leq n.*$ 

### Proposition (Transitivity)

Let  $T \subseteq S \subseteq E$ . Then T is an n-universal subset of E, if and only if T is an n-universal subset of S, and S is an n-universal subset of E.

#### Corollary

Let S be an n-universal subset of E. Then,

- for each k ≤ n, a k-universal (resp. k-optimal) subset of S, is a k-universal (resp. k-optimal) subset of E.
- a Newton sequence of length n of S is a Newton sequence of length n of E

(日) (同) (三) (

# Trivial results

By definition an *n*-universal subset is *k*-universal for each  $k \leq n.*$ 

### Proposition (Transitivity)

Let  $T \subseteq S \subseteq E$ . Then T is an n-universal subset of E, if and only if T is an n-universal subset of S, and S is an n-universal subset of E.

#### Corollary

### Let S be an n-universal subset of E. Then,

- for each k ≤ n, a k-universal (resp. k-optimal) subset of S, is a k-universal (resp. k-optimal) subset of E.
  - a Newton sequence of length n of S is a Newton sequence of length n of E.

(日) (同) (三) (三)

# Trivial results

By definition an *n*-universal subset is *k*-universal for each  $k \leq n.*$ 

### Proposition (Transitivity)

Let  $T \subseteq S \subseteq E$ . Then T is an n-universal subset of E, if and only if T is an n-universal subset of S, and S is an n-universal subset of E.

#### Corollary

Let S be an n-universal subset of E. Then,

- for each k ≤ n, a k-universal (resp. k-optimal) subset of S, is a k-universal (resp. k-optimal) subset of E.
  - a Newton sequence of length n of S is a Newton sequence of length n of E

(日) (同) (三) (三)

# Trivial results

By definition an *n*-universal subset is *k*-universal for each  $k \leq n.*$ 

### Proposition (Transitivity)

Let  $T \subseteq S \subseteq E$ . Then T is an n-universal subset of E, if and only if T is an n-universal subset of S, and S is an n-universal subset of E.

### Corollary

Let S be an n-universal subset of E. Then,

- for each k ≤ n, a k-universal (resp. k-optimal) subset of S, is a k-universal (resp. k-optimal) subset of E.
- a Newton sequence of length n of S is a Newton sequence of length n of E.

# Trivial results

### Proposition

Let S be a subset of E. Each one of the following assertions implies the next one.

(i) S contains a Newton sequence of length n of E.

(ii) S contains an n-optimal subset of E.

(iii) *S* is an *n*-universal subset of *E*.

The converse of each implication does not hold in general: \* for instance an *n*-optimal subset may fail to contain a *k*-optimal subset for some k < n.

A (1) > (1) > (1)

# Trivial results

### Proposition

Let S be a subset of E. Each one of the following assertions implies the next one.

(i) S contains a Newton sequence of length n of E.

(ii) S contains an n-optimal subset of E.

(iii) *S* is an *n*-universal subset of *E*.

The converse of each implication does not hold in general: \* for instance an *n*-optimal subset may fail to contain a *k*-optimal subset for some k < n.
# Trivial results

### Proposition

Let S be a subset of E. Each one of the following assertions implies the next one.

(i) S contains a Newton sequence of length n of E.

ii) S contains an n-optimal subset of E.

iii) *S* is an *n*-universal subset of *E*.

The converse of each implication does not hold in general: \* for instance an *n*-optimal subset may fail to contain a *k*-optimal subset for some k < n.

• □ ▶ • • □ ▶ • • □ ▶

# Trivial results

### Proposition

Let S be a subset of E. Each one of the following assertions implies the next one.

(i) S contains a Newton sequence of length n of E.

(ii) S contains an n-optimal subset of E.

iii) *S* is an *n*-universal subset of *E*.

The converse of each implication does not hold in general: \* for instance an *n*-optimal subset may fail to contain a *k*-optimal subset for some k < n.

# Trivial results

### Proposition

Let S be a subset of E. Each one of the following assertions implies the next one.

(i) S contains a Newton sequence of length n of E.

(ii) S contains an n-optimal subset of E.

(iii) S is an n-universal subset of E.

The converse of each implication does not hold in general: \* for instance an *n*-optimal subset may fail to contain a *k*-optimal subset for some k < n.

# Trivial results

### Proposition

Let S be a subset of E. Each one of the following assertions implies the next one.

(i) S contains a Newton sequence of length n of E.

(ii) S contains an n-optimal subset of E.

(iii) S is an n-universal subset of E.

The converse of each implication does not hold in general: \*

for instance an *n*-optimal subset may fail to contain a k-optimal subset for some k < n.

# Trivial results

### Proposition

Let S be a subset of E. Each one of the following assertions implies the next one.

(i) S contains a Newton sequence of length n of E.

(ii) S contains an n-optimal subset of E.

(iii) S is an n-universal subset of E.

The converse of each implication does not hold in general: \* for instance an *n*-optimal subset may fail to contain a *k*-optimal subset for some k < n.

<**∂** ► < **≥** ►

# Testing polynomials

As in [BFS]:

### Proposition

 $S = \{a_0, a_1, \dots, a_{n-1}\}$  is an n-optimal subset of E if and only if, for each k, the Lagrange interpolation polynomial

$$Q_k = \prod_{j 
eq k} rac{X - a_j}{a_k - a_j}$$

is integer-valued on E.

# Testing polynomials

### Definition

The generalized binomials associated to a sequence  $a_0, \ldots, a_n$  in E (with distinct terms) are the polynomials

$$\begin{pmatrix} X \\ a_0 \end{pmatrix} = 1, \text{ and, for } 1 \le k \le n, \ \begin{pmatrix} X \\ a_k \end{pmatrix} = \prod_{0 \le i < k} \frac{X - a_i}{a_k - a_i},$$

#### Proposition

 $a_0, a_1, \ldots, a_{n-1}$  is a Newton sequence of length n of E if and only, if, for each  $k \leq n$ ,  $\binom{X}{a_k}$  is integer-valued on E.

# Testing polynomials

### Definition

The generalized binomials associated to a sequence  $a_0, \ldots, a_n$  in E (with distinct terms) are the polynomials

$$\binom{X}{a_0} = 1, \text{ and, for } 1 \le k \le n, \ \binom{X}{a_k} = \prod_{0 \le i < k} \frac{X - a_i}{a_k - a_i},$$

#### Proposition

 $a_0, a_1, \ldots, a_{n-1}$  is a Newton sequence of length n of E if and only, if, for each  $k \leq n$ ,  $\binom{X}{a_k}$  is integer-valued on E.

# Testing polynomials

### Definition

The generalized binomials associated to a sequence  $a_0, \ldots, a_n$  in E (with distinct terms) are the polynomials

$$\binom{X}{a_0} = 1, \text{ and, for } 1 \le k \le n, \ \binom{X}{a_k} = \prod_{0 \le i < k} \frac{X - a_i}{a_k - a_i},$$

#### Proposition

 $a_0, a_1, \ldots, a_{n-1}$  is a Newton sequence of length n of E if and only, if, for each  $k \leq n$ ,  $\binom{X}{a_k}$  is integer-valued on E.

A (1) < (1) < (1) </p>

## Localization

#### Lemma

If S is an n-universal subset of E (resp. of D) with respect to D, and if either S is **finite** or D is **Noetherian**, then S is an n-universal subset of E (resp. of  $T^{-1}D$ ) with respect to  $T^{-1}D$ .

[BFS] gives it as trivial (without hypothesis). But there are counterexamples in the general case.

#### Theorem

S is an n-optimal subset of E (resp. of D) with respect to D if and only if, for each maximal ideal  $\mathfrak{m}$  of D, S is an n-optimal subset of E (resp. of  $D_{\mathfrak{m}}$ ) with respect to  $D_{\mathfrak{m}}$ .

イロト イポト イヨト イヨト

## Localization

#### Lemma

If S is an n-universal subset of E (resp. of D) with respect to D, and if either S is **finite** or D is **Noetherian**, then S is an n-universal subset of E (resp. of  $T^{-1}D$ ) with respect to  $T^{-1}D$ .

[BFS] gives it as trivial (without hypothesis). But there are counterexamples in the general case.

#### Theorem

S is an n-optimal subset of E (resp. of D) with respect to D if and only if, for each maximal ideal  $\mathfrak{m}$  of D, S is an n-optimal subset of E (resp. of  $D_{\mathfrak{m}}$ ) with respect to  $D_{\mathfrak{m}}$ .

イロト イポト イヨト イヨト

## Localization

#### Lemma

If S is an n-universal subset of E (resp. of D) with respect to D, and if either S is **finite** or D is **Noetherian**, then S is an n-universal subset of E (resp. of  $T^{-1}D$ ) with respect to  $T^{-1}D$ .

[BFS] gives it as trivial (without hypothesis). But there are counterexamples in the general case.

#### Theorem

S is an n-optimal subset of E (resp. of D) with respect to D if and only if, for each maximal ideal  $\mathfrak{m}$  of D,

S is an n-optimal subset of E (resp. of  $D_{\mathfrak{m}})$  with respect to  $D_{\mathfrak{m}}.$ 

< ロ > ( 同 > ( 回 > ( 回 > ))

## Localization

#### Lemma

If S is an n-universal subset of E (resp. of D) with respect to D, and if either S is **finite** or D is **Noetherian**, then S is an n-universal subset of E (resp. of  $T^{-1}D$ ) with respect to  $T^{-1}D$ .

[BFS] gives it as trivial (without hypothesis). But there are counterexamples in the general case.

#### Theorem

S is an n-optimal subset of E (resp. of D) with respect to D if and only if, for each maximal ideal  $\mathfrak{m}$  of D, S is an n-optimal subset of E (resp. of  $D_{\mathfrak{m}}$ ) with respect to  $D_{\mathfrak{m}}$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Localization

#### Definition

We say S is an *n*-locally Newton orderable subset of E if, for each maximal ideal  $\mathfrak{m}$  of D, S can be ordered as a Newton sequence of length n of E with respect to  $D_{\mathfrak{m}}$ .

#### Corollary

An n-locally Newton orderable subset is an n-optimal subset.

The converse holds if *D* is a Dedekind domain \*.

・ 同・ ・ ヨ・

## Localization

#### Definition

We say S is an *n*-locally Newton orderable subset of E if, for each maximal ideal  $\mathfrak{m}$  of D, S can be ordered as a Newton sequence of length n of E with respect to  $D_{\mathfrak{m}}$ .

#### Corollary

An n-locally Newton orderable subset is an n-optimal subset.

The converse holds if *D* is a Dedekind domain \*.

## Localization

#### Definition

We say S is an *n*-locally Newton orderable subset of E if, for each maximal ideal  $\mathfrak{m}$  of D, S can be ordered as a Newton sequence of length n of E with respect to  $D_{\mathfrak{m}}$ .

#### Corollary

An n-locally Newton orderable subset is an n-optimal subset.

The converse holds if D is a Dedekind domain \*.

## Generalized factorial ideals

### Definition

The  $n^{th}$  generalized factorial ideal of E (with respect to D) is

$$n!^D_E = \{ a \in D \mid orall f \in \operatorname{Int}(E,D), \operatorname{\mathsf{deg}}(f) \leq n, af \in D[X] \}.$$

In case E = D, one simply writes  $n!_D$  for  $n!_D^D$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Generalized factorial ideals

### Definition

The  $n^{th}$  generalized factorial ideal of E (with respect to D) is

$$n!_E^D = \{a \in D \mid \forall f \in \operatorname{Int}(E, D), \deg(f) \le n, af \in D[X]\}.$$

In case E = D, one simply writes  $n!_D$  for  $n!_D^D$ .

→ < Ξ → <</p>

## Generalized factorial ideals

### Proposition

The ideals n!<sup>D</sup><sub>E</sub> form a decreasing sequence, with 0!<sup>D</sup><sub>E</sub> = D.
n!<sup>D</sup><sub>E</sub> ≠ (0), if and only if Card(E) ≥ n + 1.
If S ⊆ E, then n!<sup>D</sup><sub>S</sub> ⊆ n!<sup>D</sup><sub>E</sub>.
If S is an n-universal subset of E, then n!<sup>D</sup><sub>S</sub> = n!<sup>D</sup><sub>E</sub>.
If moreover D is Noetherian, then
For each maximal ideal m of D,

b) 4 (E) b)

## Generalized factorial ideals

### Proposition

- The ideals n!<sup>D</sup><sub>E</sub> form a decreasing sequence, with 0!<sup>D</sup><sub>E</sub> = D.
  n!<sup>D</sup><sub>E</sub> ≠ (0), if and only if Card(E) ≥ n + 1.
- $If S \subseteq E, then n!_{S}^{D} \subseteq n!_{E}^{D}.$
- If S is an n-universal subset of E, then  $n!_S^D = n!_E^D$ .

If moreover D is Noetherian, then

I For each maximal ideal m of D,

$$n!_E^{D_{\mathfrak{m}}} = \left(n!_E^D\right)_{\mathfrak{m}}$$

b) 4 (E) b)

## Generalized factorial ideals

### Proposition

- The ideals n!<sup>D</sup><sub>E</sub> form a decreasing sequence, with 0!<sup>D</sup><sub>E</sub> = D.
   n!<sup>D</sup><sub>E</sub> ≠ (0), if and only if Card(E) ≥ n + 1.
- 3 If  $S \subseteq E$ , then  $n!_S^D \subseteq n!_E^D$ .

• If S is an n-universal subset of E, then  $n!_S^D = n!_E^D$ .

If moreover D is Noetherian, then

I For each maximal ideal m of D,

$$n!_E^{D_{\mathfrak{m}}} = \left(n!_E^D\right)_{\mathfrak{m}}$$

b) 4 (E) b)

## Generalized factorial ideals

### Proposition

• The ideals  $n!^{D}_{E}$  form a decreasing sequence, with  $0!^{D}_{E} = D$ .

2 
$$n!^D_E \neq (0)$$
, if and only if  $Card(E) \ge n+1$ .

3 If 
$$S \subseteq E$$
, then  $n!_S^D \subseteq n!_E^D$ .

• If S is an n-universal subset of E, then  $n!_S^D = n!_E^D$ .

If moreover D is Noetherian, then

I For each maximal ideal m of D,

$$n!_E^{D_{\mathfrak{m}}} = \left(n!_E^D\right)_{\mathfrak{m}}$$

## Generalized factorial ideals

### Proposition

• The ideals  $n!^{D}_{E}$  form a decreasing sequence, with  $0!^{D}_{E} = D$ .

2 
$$n!^D_E \neq (0)$$
, if and only if  $Card(E) \ge n+1$ .

$$If S \subseteq E, then n!_{S}^{D} \subseteq n!_{E}^{D}.$$

• If S is an n-universal subset of E, then  $n!_S^D = n!_E^D$ .

If moreover D is Noetherian, then

) For each maximal ideal 
$$\mathfrak m$$
 of  $D,$ 

$$n!_E^{D_{\mathfrak{m}}} = \left(n!_E^D\right)_{\mathfrak{m}}$$

▶ < ∃ ▶</p>

## Generalized factorial ideals

### Proposition

• The ideals  $n!^D_E$  form a decreasing sequence, with  $0!^D_E = D$ .

3 
$$n!_E^D \neq (0)$$
, if and only if  $Card(E) \ge n+1$ .

3 If 
$$S \subseteq E$$
, then  $n!_S^D \subseteq n!_E^D$ .

• If S is an n-universal subset of E, then  $n!_{S}^{D} = n!_{E}^{D}$ .

If moreover D is Noetherian, then

• For each maximal ideal  $\mathfrak{m}$  of D,

$$n!_E^{D_{\mathfrak{m}}} = \left(n!_E^D\right)_{\mathfrak{m}}$$

▶ < ∃ ▶</p>

## Generalized factorial ideals

### Proposition

If E admits a Newton sequence  $a_0, \ldots, a_n$  then

$$n!^D_E = \prod_{0 \le i < n} (a_n - a_i) D.$$

Not difficult to prove using the associated generalized binomials:

$$a \in n!_E^D \iff \forall k \le n, \ a\binom{X}{a_k} \in D[X].$$

#### Corollary

If E admits a Newton sequence of length n, then, for each  $k \leq n$ ,  $k!^{D}_{E}$  is a principal ideal  $(k!^{D}_{E} = \prod_{0 \leq i < k} (a_{k} - a_{i})D)$ .

## Generalized factorial ideals

### Proposition

If E admits a Newton sequence  $a_0, \ldots, a_n$  then

$$n!^D_E = \prod_{0 \le i < n} (a_n - a_i) D.$$

Not difficult to prove using the associated generalized binomials:

$$a \in n!^D_E \iff \forall k \leq n, \ a\binom{X}{a_k} \in D[X].$$

#### Corollary

If E admits a Newton sequence of length n, then, for each  $k \leq n$ ,  $k!^{D}_{E}$  is a principal ideal  $(k!^{D}_{E} = \prod_{0 \leq i < k} (a_{k} - a_{i})D)$ .

## Generalized factorial ideals

### Proposition

If E admits a Newton sequence  $a_0, \ldots, a_n$  then

$$n!^D_E = \prod_{0 \le i < n} (a_n - a_i)D.$$

Not difficult to prove using the associated generalized binomials:

$$a \in n!_E^D \iff \forall k \leq n, \ a\binom{X}{a_k} \in D[X].$$

#### Corollary

If E admits a Newton sequence of length n, then, for each  $k \leq n$ ,  $k!_E^D$  is a principal ideal  $(k!_E^D = \prod_{0 \leq i < k} (a_k - a_i)D)$ .

## Generalized factorial ideals

### Proposition

If E admits a Newton sequence  $a_0, \ldots, a_n$  then

$$n!^D_E = \prod_{0 \le i < n} (a_n - a_i)D.$$

Not difficult to prove using the associated generalized binomials:

$$a \in n!_E^D \iff \forall k \leq n, \ a\binom{X}{a_k} \in D[X].$$

#### Corollary

If E admits a Newton sequence of length n, then, for each  $k \leq n$ ,  $k!_E^D$  is a principal ideal  $(k!_E^D = \prod_{0 \leq i < k} (a_k - a_i)D)$ .

 $\mathfrak{I} \mathfrak{C}$ 

### Volume

### Definition

The volume of  $S = \{a_0, a_1, \dots, a_{n-1}\}$  is the principal ideal

$$\mathsf{Vol}(S) = \prod_{0 \le i < j \le n} (a_j - a_i) D.*$$

#### Corollary

If S can be ordered as a Newton sequence, then

$$\operatorname{Vol}(S) = 1!_E^D \dots n!_E^D.$$

Proof. Write  $\prod_{0\leq i< j\leq n}(a_j-a_i)=\prod_{1\leq k\leq n}\left(\prod_{0\leq i< k}(a_k-a_i)
ight)$  .  $\square$ 

▲ □ ▶ ▲ □ ▶ ▲

### Volume

### Definition

The volume of  $S = \{a_0, a_1, \dots, a_{n-1}\}$  is the principal ideal

$$\mathsf{Vol}(S) = \prod_{0 \le i < j \le n} (a_j - a_i) D.*$$

### Corollary

If S can be ordered as a Newton sequence, then

$$\mathsf{Vol}(S) = 1!^D_E \dots n!^D_E.$$

<u>Proof.</u> Write  $\prod_{0\leq i < j \leq n}(a_j-a_i) = \prod_{1\leq k\leq n}\left(\prod_{0\leq i < k}(a_k-a_i)
ight)$ . D

・ 同 ト ・ 三 ト ・

## Volume

### Definition

The volume of  $S = \{a_0, a_1, \dots, a_{n-1}\}$  is the principal ideal

$$\mathsf{Vol}(S) = \prod_{0 \le i < j \le n} (a_j - a_i) D.*$$

### Corollary

If S can be ordered as a Newton sequence, then

$$Vol(S) = 1!_E^D \dots n!_E^D.$$

<u>Proof.</u> Write  $\prod_{0 \le i < j \le n} (a_j - a_i) = \prod_{1 \le k \le n} \left( \prod_{0 \le i < k} (a_k - a_i) \right)$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Volume

### If D is Noetherian, we can use the good localization properties:

### Corollary

Assume D is a Noetherian domain. If S is an n-locally Newton orderable subset of E then

$$\mathsf{Vol}(S) = 1!^D_E \dots n!^D_E.$$

4 E b

### Volume

### Definition

Let  $S = \{a_0, a_1, \dots, a_{n-1}\} \subseteq E$ . We say that Vol(S) is minimal (in E) if, for each  $T = \{b_0, b_1, \dots, b_{n-1}\} \subseteq E$ , Vol(T)  $\subseteq$  Vol(S), that is,  $\prod_{0 \le i < j \le n} (a_j - a_i)$  divides  $\prod_{0 \le i < j \le n} (b_j - b_i)$ .

As [BFS] (for E = D and D a Dedekind domain):

#### Proposition

If Vol(S) is minimal, then S is an n-optimal subset of E.

Converse? At least in Dedekind domains!.

イロト イポト イヨト イヨト

### Volume

### Definition

Let  $S = \{a_0, a_1, \dots, a_{n-1}\} \subseteq E$ . We say that Vol(S) is minimal (in E) if, for each  $T = \{b_0, b_1, \dots, b_{n-1}\} \subseteq E$ ,  $Vol(T) \subseteq Vol(S)$ , that is,  $\prod_{0 \le i < j \le n} (a_j - a_i)$  divides  $\prod_{0 \le i < j \le n} (b_j - b_i)$ .

### As [BFS] (for E = D and D a Dedekind domain):

#### Proposition

If Vol(S) is minimal, then S is an n-optimal subset of E.

Converse? At least in Dedekind domains!.

イロト イポト イヨト イヨト

### Volume

### Definition

Let 
$$S = \{a_0, a_1, \dots, a_{n-1}\} \subseteq E$$
.  
We say that  $Vol(S)$  is *minimal* (in  $E$ ) if,  
for each  $T = \{b_0, b_1, \dots, b_{n-1}\} \subseteq E$ ,  $Vol(T) \subseteq Vol(S)$ ,  
that is,  $\prod_{0 \le i < j \le n} (a_j - a_i)$  divides  $\prod_{0 \le i < j \le n} (b_j - b_i)$ .

As [BFS] (for E = D and D a Dedekind domain):

### Proposition

If Vol(S) is minimal, then S is an n-optimal subset of E.

Converse? At least in Dedekind domains!.

< ロ > < 同 > < 回 > < 回 >

### Volume

### Definition

Let 
$$S = \{a_0, a_1, \dots, a_{n-1}\} \subseteq E$$
.  
We say that  $Vol(S)$  is *minimal* (in  $E$ ) if,  
for each  $T = \{b_0, b_1, \dots, b_{n-1}\} \subseteq E$ ,  $Vol(T) \subseteq Vol(S)$ ,  
that is,  $\prod_{0 \le i < j \le n} (a_j - a_i)$  divides  $\prod_{0 \le i < j \le n} (b_j - b_i)$ .

As [BFS] (for E = D and D a Dedekind domain):

### Proposition

If Vol(S) is minimal, then S is an n-optimal subset of E.

Converse? At least in Dedekind domains!.

イロト イポト イヨト イヨト
### Volume

### Definition

Let 
$$S = \{a_0, a_1, \dots, a_{n-1}\} \subseteq E$$
.  
We say that  $Vol(S)$  is *minimal* (in  $E$ ) if,  
for each  $T = \{b_0, b_1, \dots, b_{n-1}\} \subseteq E$ ,  $Vol(T) \subseteq Vol(S)$ ,  
that is,  $\prod_{0 \le i < j \le n} (a_j - a_i)$  divides  $\prod_{0 \le i < j \le n} (b_j - b_i)$ .

As [BFS] (for E = D and D a Dedekind domain):

### Proposition

If Vol(S) is minimal, then S is an n-optimal subset of E.

Converse? At least in Dedekind domains!.

イロト イポト イヨト イヨト

# 2-Dedekind domains

We first consider the local case.

### Notations

- V is a discrete valuation domain,
- v the corresponding valuation,
- $\mathfrak{m}$  the maximal ideal of  $V_{i}$
- t a uniformizing element (that is,  $\mathfrak{m} = Vt$ , and v(t) = 1),
- q = Card(V/m) the cardinality (finite or infinite) of the residue field,
- *E* is a subset of *V*.

▲ □ ▶ ▲ □ ▶ ▲

# 2-Dedekind domains

We first consider the local case.

### Notations

- V is a discrete valuation domain,
- v the corresponding valuation,
- $\mathfrak{m}$  the maximal ideal of V
- t a uniformizing element (that is,  $\mathfrak{m} = Vt$ , and v(t) = 1),
- q = Card(V/m) the cardinality (finite or infinite) of the residue field,
- *E* is a subset of *V*.

▲ □ ▶ ▲ □ ▶ ▲

# 2-Dedekind domains

We first consider the local case.

### Notations

- V is a discrete valuation domain,
- v the corresponding valuation,
- $\mathfrak{m}$  the maximal ideal of V,
- t a uniformizing element (that is,  $\mathfrak{m} = Vt$ , and v(t) = 1),
- q = Card(V/m) the cardinality (finite or infinite) of the residue field,
- *E* is a subset of *V*.

▲ □ ▶ ▲ □ ▶ ▲

# 2-Dedekind domains

We first consider the local case.

### Notations

- V is a discrete valuation domain,
- v the corresponding valuation,
- $\mathfrak{m}$  the maximal ideal of V,
- t a uniformizing element (that is,  $\mathfrak{m} = Vt$ , and v(t) = 1),
- q = Card(V/m) the cardinality (finite or infinite) of the residue field,
- *E* is a subset of *V*.

▲ 同 ▶ ▲ 国 ▶ ▲

# 2-Dedekind domains

We first consider the local case.

### Notations

- V is a discrete valuation domain,
- v the corresponding valuation,
- $\mathfrak{m}$  the maximal ideal of V,
- t a uniformizing element (that is,  $\mathfrak{m} = Vt$ , and v(t) = 1),
- q = Card(V/m) the cardinality (finite or infinite) of the residue field,
- *E* is a subset of *V*.

・ 同 ト ・ 三 ト ・

# 2-Dedekind domains

We first consider the local case.

### Notations

- V is a discrete valuation domain,
- v the corresponding valuation,
- $\mathfrak{m}$  the maximal ideal of V,
- t a uniformizing element (that is,  $\mathfrak{m} = Vt$ , and v(t) = 1),
- q = Card(V/m) the cardinality (finite or infinite) of the residue field,
- E is a subset of V.

b) (1) (2) (2) (3)

### Bhargava's v-orderings

### Definition

A v-ordering of E of length n (possibly with  $n = \infty$ ) is a sequence  $a_0, a_1, \ldots, a_n$  in E defined inductively as follows:

- *a*<sub>0</sub> is arbitrarily chosen,
- $a_1$  is chosen such that  $v(a_1 a_0)$  is minimal, that is

$$\forall x \in E, \ v(a_1 - a_0) \leq v(x - a_0),$$

and so on,

$$orall x \in E, \ v\left(\prod_{i=0}^{k-1}(a_k-a_i)
ight) \leq v\left(\prod_{i=0}^{k-1}(x-a_i)
ight).$$
 (1)

イロト イポト イヨト イヨト

### Bhargava's v-orderings

### Definition

A v-ordering of E of length n (possibly with  $n = \infty$ ) is a sequence  $a_0, a_1, \ldots, a_n$  in E defined inductively as follows:

• *a*<sub>0</sub> is arbitrarily chosen,

•  $a_1$  is chosen such that  $v(a_1-a_0)$  is minimal, that is

$$\forall x \in E, \ v(a_1 - a_0) \leq v(x - a_0),$$

and so on,

$$orall x \in E, \ v\left(\prod_{i=0}^{k-1}(a_k-a_i)
ight) \leq v\left(\prod_{i=0}^{k-1}(x-a_i)
ight).$$
 (1)

ヘロト ヘポト ヘヨト ヘヨト

### Bhargava's *v*-orderings

### Definition

A v-ordering of E of length n (possibly with  $n = \infty$ )

- is a sequence  $a_0, a_1, \ldots, a_n$  in E defined inductively as follows:
  - *a*<sub>0</sub> is arbitrarily chosen,
  - $a_1$  is chosen such that  $v(a_1-a_0)$  is minimal, that is

$$\forall x \in E, \ v(a_1 - a_0) \leq v(x - a_0),$$

• and so on,

$$orall x \in E, \ v\left(\prod_{i=0}^{k-1}(a_k-a_i)
ight) \leq v\left(\prod_{i=0}^{k-1}(x-a_i)
ight).$$
 (1)

ヘロト ヘポト ヘヨト ヘヨト

# Bhargava's v-orderings

### Definition

A v-ordering of E of length n (possibly with  $n = \infty$ )

- is a sequence  $a_0, a_1, \ldots, a_n$  in E defined inductively as follows:
  - *a*<sub>0</sub> is arbitrarily chosen,
  - $a_1$  is chosen such that  $v(a_1-a_0)$  is minimal, that is

$$\forall x \in E, \ v(a_1 - a_0) \leq v(x - a_0),$$

and so on,

$$\forall x \in E, \ v\left(\prod_{i=0}^{k-1}(a_k-a_i)\right) \leq v\left(\prod_{i=0}^{k-1}(x-a_i)\right).$$
(1)

(ロ) (四) (日) (日) (日)

 $a_0, \ldots, a_n$  are distinct if and only if  $Card(E) \ge n + 1$ . (our running assumption).

(1) means that  $\binom{X}{a_k} = \prod_{0 \le i < k} \frac{X - a_i}{a_k - a_i}$  is integer-valued:

- A v-ordering of length n of E is nothing else than a Newton sequence of length n of E.
- E always admits a Newton sequence of length n.
- *v*-orderings are not unique, but in (1)  $v\left(\prod_{i=0}^{k-1}(a_k - a_i)\right)$  does not depend on the *v*-ordering.

Indeed

$$n!_E^V = \prod_{0 \le i < n} (a_n - a_i) V.$$

 $a_0, \ldots, a_n$  are distinct if and only if  $Card(E) \ge n + 1$ . (our running assumption). (1) means that  $\binom{X}{a_k} = \prod_{0 \le i < k} \frac{X - a_i}{a_k - a_i}$  is integer-valued:

- A v-ordering of length n of E is nothing else than a Newton sequence of length n of E.
- E always admits a Newton sequence of length n.
- *v*-orderings are not unique, but in (1)  $v\left(\prod_{i=0}^{k-1}(a_k - a_i)\right)$  does not depend on the *v*-ordering.

Indeed

$$n!_E^V = \prod_{0 \le i < n} (a_n - a_i) V.$$

 $a_0, \ldots, a_n$  are distinct if and only if  $Card(E) \ge n + 1$ . (our running assumption). (1) means that  $\binom{X}{a_k} = \prod_{0 \le i < k} \frac{X - a_i}{a_k - a_i}$  is integer-valued:

- A v-ordering of length n of E is nothing else than a Newton sequence of length n of E.
- E always admits a Newton sequence of length n.
- *v*-orderings are not unique, but in (1)

 $arphi\left(\prod_{i=0}^{k-1}(a_k-a_i)
ight)$  does not depend on the v-ordering.

Indeed

$$n!_E^V = \prod_{0 \le i < n} (a_n - a_i) V.$$

▲ 同 ▶ ▲ 国 ▶ ▲

 $a_0, \ldots, a_n$  are distinct if and only if  $Card(E) \ge n + 1$ . (our running assumption). (1) means that  $\binom{X}{a_k} = \prod_{0 \le i < k} \frac{X - a_i}{a_k - a_i}$  is integer-valued:

- A v-ordering of length n of E is nothing else than a Newton sequence of length n of E.
- E always admits a Newton sequence of length n.

• *v*-orderings are not unique, but in (1)  $v\left(\prod_{i=0}^{k-1}(a_k - a_i)\right)$  does not depend on the *v*-ordering.

Indeed

$$n!_E^V = \prod_{0 \le i < n} (a_n - a_i) V.$$

A (B) < (B) < (A)</p>

 $a_0, \ldots, a_n$  are distinct if and only if  $Card(E) \ge n + 1$ . (our running assumption). (1) means that  $\binom{X}{a_k} = \prod_{0 \le i < k} \frac{X - a_i}{a_k - a_i}$  is integer-valued:

- A v-ordering of length n of E is nothing else than a Newton sequence of length n of E.
- E always admits a Newton sequence of length n.
- *v*-orderings are not unique, but in (1)  $v\left(\prod_{i=0}^{k-1}(a_k - a_i)\right)$  does not depend on the *v*-ordering.

Indeed

$$n!_E^V = \prod_{0 \le i < n} (a_n - a_i) V.$$

A (1) > A (2) > A

 $a_0, \ldots, a_n$  are distinct if and only if  $Card(E) \ge n + 1$ . (our running assumption). (1) means that  $\binom{X}{a_k} = \prod_{0 \le i < k} \frac{X - a_i}{a_k - a_i}$  is integer-valued:

- A v-ordering of length n of E is nothing else than a Newton sequence of length n of E.
- E always admits a Newton sequence of length n.
- *v*-orderings are not unique, but in (1)  $v\left(\prod_{i=0}^{k-1}(a_k - a_i)\right)$  does not depend on the *v*-ordering.

Indeed

$$n!_E^V = \prod_{0 \le i < n} (a_n - a_i) V.$$

A (B) < (B) < (A)</p>

# Characterization of *n*-universal subsets (local case)

### Proposition

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) S contains a Newton sequence of length n of E.

iii) *S* contains an n-optimal subset of *E*.

<u>Proof.</u> For (i)  $\implies$  (ii), consider a Newton sequence of S and use transitivity. All other implications hold in any domain D.  $\Box$ 

# Characterization of *n*-universal subsets (local case)

### Proposition

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) S contains a Newton sequence of length n of E.

iii) S contains an n-optimal subset of E.

<u>Proof.</u> For (i)  $\implies$  (ii), consider a Newton sequence of S and use transitivity. All other implications hold in any domain D.  $\Box$ 

# Characterization of *n*-universal subsets (local case)

#### Proposition

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) S contains a Newton sequence of length n of E.

iii) *S* contains an *n*-optimal subset of *E*.

<u>Proof.</u> For (i)  $\implies$  (ii), consider a Newton sequence of S and use transitivity. All other implications hold in any domain D.  $\Box$ 

# Characterization of *n*-universal subsets (local case)

### Proposition

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) S contains a Newton sequence of length n of E.

(iii) S contains an n-optimal subset of E.

<u>Proof.</u> For (i)  $\implies$  (ii), consider a Newton sequence of S and use transitivity. All other implications hold in any domain D.  $\Box$ 

# Characterization of *n*-universal subsets (local case)

#### Proposition

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) S contains a Newton sequence of length n of E.

(iii) S contains an n-optimal subset of E.

<u>Proof.</u> For (i)  $\implies$  (ii), consider a Newton sequence of S and use transitivity. All other implications hold in any domain D.

### Proposition

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) S contains a Newton sequence of length n of E.

(iii) S contains an n-optimal subset of E.

<u>Proof.</u> For (i)  $\implies$  (ii), consider a Newton sequence of S and use transitivity. All other implications hold in any domain D.  $\Box$ 

# We now turn to a Dedekind domain D and a subset E of D, always with $Card(E) \ge n + 1$ .

Each maximal ideal  $\mathfrak{m}$  is associated to a discrete valuation  $v_{\mathfrak{m}}$ .

### Definition

An m-ordering of length n of E is a  $v_m$ -ordering  $a_0, \ldots, a_n$ , that is, a Newton sequence of E with respect to  $D_m$ .

#### Corollary

Let S be a subset of E. The following assertions are equivalent.

- (i) S is an n-universal subset of E.
- (ii) for each  $\mathfrak{m}$ , S contains an  $\mathfrak{m}$ -ordering of length n of E.

We now turn to a Dedekind domain D and a subset E of D, always with  $Card(E) \ge n + 1$ . Each maximal ideal  $\mathfrak{m}$  is associated to a discrete valuation  $v_{\mathfrak{m}}$ .

### Definition

An m-ordering of length n of E is a  $v_m$ -ordering  $a_0, \ldots, a_n$ , that is, a Newton sequence of E with respect to  $D_m$ .

#### Corollary

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) for each  $\mathfrak{m}$ , S contains an  $\mathfrak{m}$ -ordering of length n of E.

We now turn to a Dedekind domain D and a subset E of D, always with  $Card(E) \ge n + 1$ . Each maximal ideal  $\mathfrak{m}$  is associated to a discrete valuation  $v_{\mathfrak{m}}$ .

### Definition

An m-ordering of length n of E is a  $v_m$ -ordering  $a_0, \ldots, a_n$ , that is, a Newton sequence of E with respect to  $D_m$ .

#### Corollary

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) for each  $\mathfrak{m}$ , S contains an  $\mathfrak{m}$ -ordering of length n of E.

We now turn to a Dedekind domain D and a subset E of D, always with  $Card(E) \ge n + 1$ . Each maximal ideal  $\mathfrak{m}$  is associated to a discrete valuation  $v_{\mathfrak{m}}$ .

### Definition

An m-ordering of length n of E is a  $v_m$ -ordering  $a_0, \ldots, a_n$ , that is, a Newton sequence of E with respect to  $D_m$ .

### Corollary

Let S be a subset of E. The following assertions are equivalent.

i) *S* is an *n*-universal subset of *E*.

(ii) for each  $\mathfrak{m}$ , S contains an  $\mathfrak{m}$ -ordering of length n of E.

(iii) for each m, S contains an n-optimal subset of E with respect to D<sub>m</sub>

We now turn to a Dedekind domain D and a subset E of D, always with  $Card(E) \ge n + 1$ . Each maximal ideal  $\mathfrak{m}$  is associated to a discrete valuation  $v_{\mathfrak{m}}$ .

### Definition

An m-ordering of length n of E is a  $v_{\mathfrak{m}}$ -ordering  $a_0, \ldots, a_n$ , that is, a Newton sequence of E with respect to  $D_{\mathfrak{m}}$ .

### Corollary

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) for each m, S contains an m-ordering of length n of E.
(iii) for each m, S contains an n-optimal subset of E with respect to D<sub>m</sub>.

We now turn to a Dedekind domain D and a subset E of D, always with  $Card(E) \ge n + 1$ . Each maximal ideal  $\mathfrak{m}$  is associated to a discrete valuation  $v_{\mathfrak{m}}$ .

### Definition

An m-ordering of length n of E is a  $v_m$ -ordering  $a_0, \ldots, a_n$ , that is, a Newton sequence of E with respect to  $D_m$ .

### Corollary

Let S be a subset of E. The following assertions are equivalent.

- (i) S is an n-universal subset of E.
- (ii) for each  $\mathfrak{m}$ , S contains an  $\mathfrak{m}$ -ordering of length n of E.

 (iii) for each m, S contains an n-optimal subset of E with respect to D<sub>m</sub>.

We now turn to a Dedekind domain D and a subset E of D, always with  $Card(E) \ge n + 1$ . Each maximal ideal  $\mathfrak{m}$  is associated to a discrete valuation  $v_{\mathfrak{m}}$ .

### Definition

An m-ordering of length n of E is a  $v_m$ -ordering  $a_0, \ldots, a_n$ , that is, a Newton sequence of E with respect to  $D_m$ .

### Corollary

Let S be a subset of E. The following assertions are equivalent.

- (i) S is an n-universal subset of E.
- (ii) for each  $\mathfrak{m}$ , S contains an  $\mathfrak{m}$ -ordering of length n of E.

### Characterization of *n*-optimal subsets

#### Theorem

Let S be a subset of E with Card(S) = n + 1. The following assertions are equivalent.

(i) S is an n-optimal subset of E,
(ii) S is an n-locally Newton orderable subset of E
(iii) Vol(S) = 1!<sup>D</sup><sub>E</sub> ... n!<sup>D</sup><sub>E</sub>,
(iv) Vol(S) is minimal in E.

Only (iii) implies (iv) needs a proof \*:

A (1) < A (1) < A (1) < A (1) </p>

### Characterization of *n*-optimal subsets

#### Theorem

Let S be a subset of E with Card(S) = n + 1. The following assertions are equivalent.

(i) S is an n-optimal subset of E,
(ii) S is an n-locally Newton orderable subset of E
(iii) Vol(S) = 1!<sup>D</sup><sub>E</sub> ... n!<sup>D</sup><sub>E</sub>,
(iv) Vol(S) is minimal in E.

Only (iii) implies (iv) needs a proof \*:

▲ 同 ▶ ▲ 国 ▶ ▲

### Characterization of *n*-optimal subsets

#### Theorem

Let S be a subset of E with Card(S) = n + 1. The following assertions are equivalent.

(i) S is an n-optimal subset of E,

(ii) S is an n-locally Newton orderable subset of E,

(iii)  $\operatorname{Vol}(S) = 1!_E^D \dots n!_E^D$ ,

(iv) Vol(S) is minimal in E.

Only (iii) implies (iv) needs a proof \*:

▲ 同 ▶ ▲ 国 ▶ ▲

### Characterization of *n*-optimal subsets

#### Theorem

Let S be a subset of E with Card(S) = n + 1. The following assertions are equivalent.

(ii) S is an n-locally Newton orderable subset of E,

(iii) 
$$\operatorname{Vol}(S) = 1!_E^D \dots n!_E^D$$
,

(iv) Vol(S) is minimal in E.

Only (iii) implies (iv) needs a proof \*:

イロト イポト イヨト イヨト

### Characterization of *n*-optimal subsets

#### Theorem

Let S be a subset of E with Card(S) = n + 1. The following assertions are equivalent.

(ii) S is an n-locally Newton orderable subset of E,

(iii) 
$$\operatorname{Vol}(S) = 1!_E^D \dots n!_E^D$$
,

(iv) Vol(S) is minimal in E.

Only (iii) implies (iv) needs a proof \*:

イロト イポト イヨト イヨト

### Characterization of *n*-optimal subsets

#### Theorem

Let S be a subset of E with Card(S) = n + 1. The following assertions are equivalent.

Only (iii) implies (iv) needs a proof \*:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶
### Characterization of *n*-optimal subsets

#### Lemma

Let 
$$T = \{b_0, \ldots, b_n\}$$
 be a subset of E. Then

 $\operatorname{Vol}(T) \subseteq 1!_E^D \dots n!_E^D.$ 

#### This is a result of Bhargava (in another wording).

<u>Proof.</u>  $\mathcal{T}$  is obviously an *n*-optimal subset of itself. Thus  $\mathcal{T}$  can locally be ordered as a Newton sequence of itself.Therefore

 $\operatorname{Vol}(T) = 1!_T^D \dots n!_T^D.$ 

As  $T \subseteq E$ ,  $k!^{D}_{T} \subseteq k!^{D}_{E}$ , for each k.  $\Box$ 

A (1) < A (1) < A (1) < A (1) </p>

### Characterization of *n*-optimal subsets

#### Lemma

Let 
$$T = \{b_0, \ldots, b_n\}$$
 be a subset of E. Then

$$\operatorname{Vol}(T) \subseteq 1!_E^D \dots n!_E^D$$
.

This is a result of Bhargava (in another wording). Proof. T is obviously an *n*-optimal subset of itself.

Thus  ${\mathcal T}$  can locally be ordered as a Newton sequence of itself.Therefore

 $\operatorname{Vol}(T) = 1!_T^D \dots n!_T^D.$ 

As  $T \subseteq E$ ,  $k!^{D}_{T} \subseteq k!^{D}_{E}$ , for each k.  $\Box$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

### Characterization of *n*-optimal subsets

#### Lemma

Let 
$$T = \{b_0, \ldots, b_n\}$$
 be a subset of E. Then

$$\operatorname{Vol}(T) \subseteq 1!_E^D \dots n!_E^D$$
.

This is a result of Bhargava (in another wording). <u>Proof.</u> T is obviously an *n*-optimal subset of itself. Thus T can locally be ordered as a Newton sequence of itself. Therefore

 $\operatorname{Vol}(T) = 1!_T^D \dots n!_T^D.$ 

As  $T \subseteq E$ ,  $k!^{D}_{T} \subseteq k!^{D}_{E}$ , for each k.  $\Box$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

### Characterization of *n*-optimal subsets

#### Lemma

Let 
$$T = \{b_0, \ldots, b_n\}$$
 be a subset of  $E$ . Then

$$\operatorname{Vol}(T) \subseteq 1!_E^D \dots n!_E^D$$
.

This is a result of Bhargava (in another wording). <u>Proof.</u> T is obviously an *n*-optimal subset of itself. Thus T can locally be ordered as a Newton sequence of itself.Therefore

 $\operatorname{Vol}(T) = 1!_T^D \dots n!_T^D.$ 

As  $T \subseteq E$ ,  $k!_T^D \subseteq k!_E^D$ , for each k.  $\Box$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

### Characterization of *n*-optimal subsets

#### Lemma

Let 
$$T = \{b_0, \ldots, b_n\}$$
 be a subset of E. Then

$$\operatorname{Vol}(T) \subseteq 1!_E^D \dots n!_E^D$$
.

This is a result of Bhargava (in another wording). <u>Proof.</u> T is obviously an *n*-optimal subset of itself. Thus T can locally be ordered as a Newton sequence of itself.Therefore

$$\mathsf{Vol}(T) = 1!_T^D \dots n!_T^D.$$

As  $T \subseteq E$ ,  $k!^{D}_{T} \subseteq k!^{D}_{E}$ , for each k.  $\Box$ 

• • • • •

# Examples

#### First, consider the ring of integers of a quadratic number field.

From a previous study of maximal lengths of Newton sequences:

Adam, P.-J. Cahen, Newtonian and Schinzel quadratic fields, *J. Pure and Appl. Algebra* **215** (2011) 1902–1918.

#### Theorem

Let  $\mathcal{O}_K$  be the ring of integers of  $K = \mathbb{Q}(\sqrt{d})$ . There is no 2-optimal subset of  $\mathcal{O}_K$  but for

$$d = -3, -1, 2, 3, 5, \text{ or } d \equiv 1 \pmod{8}.$$

・ 吊 ト ・ ラ ト ・

# Examples

First, consider the ring of integers of a quadratic number field. From a previous study of maximal lengths of Newton sequences: Adam, P.-J. Cahen, Newtonian and Schinzel quadratic fields, *J. Pure and Appl. Algebra* **215** (2011) 1902–1918.

#### Theorem

Let  $\mathcal{O}_K$  be the ring of integers of  $K = \mathbb{Q}(\sqrt{d})$ . There is no 2-optimal subset of  $\mathcal{O}_K$  but for

$$d = -3, -1, 2, 3, 5, \text{ or } d \equiv 1 \pmod{8}.$$

• □ ▶ • • □ ▶ • • □ ▶ •

# Examples

First, consider the ring of integers of a quadratic number field. From a previous study of maximal lengths of Newton sequences:

Adam, P.-J. Cahen, Newtonian and Schinzel quadratic fields, *J. Pure and Appl. Algebra* **215** (2011) 1902–1918.

#### Theorem

Let  $\mathcal{O}_{K}$  be the ring of integers of  $K = \mathbb{Q}(\sqrt{d})$ . There is no 2-optimal subset of  $\mathcal{O}_{K}$  but for

$$d = -3, -1, 2, 3, 5, \text{ or } d \equiv 1 \pmod{8}.$$

# Second example, a (rank-one) non-discrete valuation domain $V. \ensuremath{\mathsf{It}}$ is well known that

Int(V) = V[X], and for all  $n, \mathfrak{m}$  is an n-universal subset of V.\*

For  $n \ge 1$ , there is no finite n-universal subset of  $\mathfrak{m}$ , a fortiori no n-optimal subset. (n = 0\*)

<u>Proof.</u> Let  $x_0 \in S$  be such that  $\forall x \in S, v(x_0) \leq v(x)$ , then consider the degree one polynomial  $X/x_0$ .  $\Box$ 

#### Remark

Second example, a (rank-one) non-discrete valuation domain  $V. \ \mbox{It is well known that}$ 

 $\operatorname{Int}(V) = V[X]$ , and for all  $n, \mathfrak{m}$  is an n-universal subset of V.\*

For  $n \ge 1$ , there is no finite n-universal subset of  $\mathfrak{m}$ , a fortiori no n-optimal subset. (n = 0\*)

<u>Proof.</u> Let  $x_0 \in S$  be such that  $\forall x \in S, v(x_0) \leq v(x)$ , then consider the degree one polynomial  $X/x_0$ .  $\Box$ 

#### Remark

Second example, a (rank-one) non-discrete valuation domain  $V. \ \mbox{It is well known that}$ 

Int(V) = V[X], and for all  $n, \mathfrak{m}$  is an n-universal subset of V.\*

For  $n \ge 1$ , there is no finite n-universal subset of  $\mathfrak{m}$ , a fortiori no n-optimal subset. (n = 0\*)

<u>Proof.</u> Let  $x_0 \in S$  be such that  $\forall x \in S, v(x_0) \leq v(x)$ , then consider the degree one polynomial  $X/x_0$ .  $\Box$ 

#### Remark

Second example, a (rank-one) non-discrete valuation domain  $V. \ \mbox{It is well known that}$ 

Int(V) = V[X], and for all  $n, \mathfrak{m}$  is an n-universal subset of V.\*

For  $n \ge 1$ , there is no finite n-universal subset of  $\mathfrak{m}$ , a fortiori no n-optimal subset. (n = 0\*)

<u>Proof.</u> Let  $x_0 \in S$  be such that  $\forall x \in S, v(x_0) \leq v(x)$ , then consider the degree one polynomial  $X/x_0$ .  $\Box$ 

#### Remark

Second example, a (rank-one) non-discrete valuation domain  $V. \ \mbox{It is well known that}$ 

Int(V) = V[X], and for all  $n, \mathfrak{m}$  is an n-universal subset of V.\*

For  $n \ge 1$ , there is no finite n-universal subset of  $\mathfrak{m}$ , a fortiori no n-optimal subset. (n = 0\*)

<u>Proof.</u> Let  $x_0 \in S$  be such that  $\forall x \in S, v(x_0) \leq v(x)$ , then consider the degree one polynomial  $X/x_0$ .  $\Box$ 

#### Remark

Second example, a (rank-one) non-discrete valuation domain  $V. \ \mbox{It is well known that}$ 

Int(V) = V[X], and for all  $n, \mathfrak{m}$  is an n-universal subset of V.\*

For  $n \ge 1$ , there is no finite n-universal subset of  $\mathfrak{m}$ , a fortiori no n-optimal subset. (n = 0\*)

<u>Proof.</u> Let  $x_0 \in S$  be such that  $\forall x \in S, v(x_0) \leq v(x)$ , then consider the degree one polynomial  $X/x_0$ .  $\Box$ 

#### Remark

Second example, a (rank-one) non-discrete valuation domain  $V. \ \mbox{It is well known that}$ 

Int(V) = V[X], and for all  $n, \mathfrak{m}$  is an n-universal subset of V.\*

For  $n \ge 1$ , there is no finite n-universal subset of  $\mathfrak{m}$ , a fortiori no n-optimal subset. (n = 0\*)

<u>Proof.</u> Let  $x_0 \in S$  be such that  $\forall x \in S, v(x_0) \leq v(x)$ , then consider the degree one polynomial  $X/x_0$ .  $\Box$ 

#### Remark

Second example, a (rank-one) non-discrete valuation domain V. It is well known that

Int(V) = V[X], and for all  $n, \mathfrak{m}$  is an n-universal subset of V.\*

For  $n \ge 1$ , there is no finite n-universal subset of  $\mathfrak{m}$ , a fortiori no n-optimal subset. (n = 0\*)

<u>Proof.</u> Let  $x_0 \in S$  be such that  $\forall x \in S, v(x_0) \leq v(x)$ , then consider the degree one polynomial  $X/x_0$ .  $\Box$ 

#### Remark

# Examples

### Last, $D = \mathbb{F}_2[[x^2, x^3]]$ ( $\mathbb{F}_2$ the field with 2 elements).

D is a pseudo-valuation domain (contained in  $V = \mathbb{F}_2[[x]]$ ). It is a one-dimensional Noetherian local domain, with maximal ideal  $\mathfrak{m} = (x^2, x^3)$ .

Set  $E = \{0, 1, x^2, x^3\}$ .

- E is a 3-universal subset of D.
- There is no 2-optimal subset of E, nor of D.
- $1!^{D}_{E} 2!^{D}_{E} 3!^{D}_{E} \subsetneq Vol(E) = (x^{7} + x^{8})D.$

A (1) < A (1) < A (1) < A (1) </p>

### Examples

Last,  $D = \mathbb{F}_2[[x^2, x^3]]$  ( $\mathbb{F}_2$  the field with 2 elements).

D is a pseudo-valuation domain (contained in  $V = \mathbb{F}_2[[x]]$ ). It is a one-dimensional Noetherian local domain, with maximal ideal  $\mathfrak{m} = (x^2, x^3)$ .

#### Set $E = \{0, 1, x^2, x^3\}$ .

- E is a 3-universal subset of D.
- There is no 2-optimal subset of E, nor of D.
- $1!_E^D 2!_E^D 3!_E^D \subsetneq Vol(E) = (x^7 + x^8)D.$

• □ ▶ • • □ ▶ • • □ ▶ •

### Examples

Last,  $D = \mathbb{F}_2[[x^2, x^3]]$  ( $\mathbb{F}_2$  the field with 2 elements).

D is a pseudo-valuation domain (contained in  $V = \mathbb{F}_2[[x]]$ ). It is a one-dimensional Noetherian local domain, with maximal ideal  $\mathfrak{m} = (x^2, x^3)$ .

### Set $E = \{0, 1, x^2, x^3\}$ .

- E is a 3-universal subset of D.
- There is no 2-optimal subset of E, nor of D.
- $1!^{D}_{E} 2!^{D}_{E} 3!^{D}_{E} \subsetneq Vol(E) = (x^{7} + x^{8})D.$

• □ ▶ • • □ ▶ • • □ ▶ •

# Examples

Last,  $D = \mathbb{F}_2[[x^2, x^3]]$  ( $\mathbb{F}_2$  the field with 2 elements).

D is a pseudo-valuation domain (contained in  $V = \mathbb{F}_2[[x]]$ ). It is a one-dimensional Noetherian local domain, with maximal ideal  $\mathfrak{m} = (x^2, x^3)$ .

Set 
$$E = \{0, 1, x^2, x^3\}$$
.

• E is a 3-universal subset of D.

• There is no 2-optimal subset of E, nor of D.

•  $1!_E^D 2!_E^D 3!_E^D \subsetneq Vol(E) = (x^7 + x^8)D.$ 

イロト イポト イヨト イヨト

# Examples

Last,  $D = \mathbb{F}_2[[x^2, x^3]]$  ( $\mathbb{F}_2$  the field with 2 elements).

D is a pseudo-valuation domain (contained in  $V = \mathbb{F}_2[[x]]$ ). It is a one-dimensional Noetherian local domain, with maximal ideal  $\mathfrak{m} = (x^2, x^3)$ .

Set  $E = \{0, 1, x^2, x^3\}$ .

- E is a 3-universal subset of D.
- There is no 2-optimal subset of E, nor of D.

•  $1!_E^D 2!_E^D 3!_E^D \subsetneq Vol(E) = (x^7 + x^8)D.$ 

# Examples

Last,  $D = \mathbb{F}_2[[x^2, x^3]]$  ( $\mathbb{F}_2$  the field with 2 elements).

D is a pseudo-valuation domain (contained in  $V = \mathbb{F}_2[[x]]$ ). It is a one-dimensional Noetherian local domain, with maximal ideal  $\mathfrak{m} = (x^2, x^3)$ .

Set  $E = \{0, 1, x^2, x^3\}$ .

- E is a 3-universal subset of D.
- There is no 2-optimal subset of E, nor of D.

•  $1!_E^D 2!_E^D 3!_E^D \subsetneq Vol(E) = (x^7 + x^8)D.$ 

### Examples

Last,  $D = \mathbb{F}_2[[x^2, x^3]]$  ( $\mathbb{F}_2$  the field with 2 elements).

D is a pseudo-valuation domain (contained in  $V = \mathbb{F}_2[[x]]$ ). It is a one-dimensional Noetherian local domain, with maximal ideal  $\mathfrak{m} = (x^2, x^3)$ .

Set  $E = \{0, 1, x^2, x^3\}$ .

- E is a 3-universal subset of D.
- There is no 2-optimal subset of E, nor of D.
- $1!^D_E 2!^D_E 3!^D_E \subsetneq \operatorname{Vol}(E) = (x^7 + x^8)D.$

# 3 - Almost strong Newton sequences

#### In all generality

#### Definition

A sequence  $\{a_n\}$  (finite or infinite) in a subset *E* of the domain *D*, is said to be a *strong Newton sequence* of *E* if, for each *k*, every set of k + 1 consecutive terms is a *k*-optimal subset of *E*.

Equivalently:

For each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a Newton sequence of E.

• □ ▶ • • □ ▶ • • □ ▶ •

# 3 - Almost strong Newton sequences

#### In all generality

#### Definition

A sequence  $\{a_n\}$  (finite or infinite) in a subset *E* of the domain *D*, is said to be a *strong Newton sequence* of *E* if, for each *k*, every set of k + 1 consecutive terms is a *k*-optimal subset of *E*.

Equivalently:

For each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a Newton sequence of E.

• □ ▶ • • □ ▶ • • □ ▶ •

# 3 - Almost strong Newton sequences

#### In all generality

#### Definition

A sequence  $\{a_n\}$  (finite or infinite) in a subset *E* of the domain *D*, is said to be a *strong Newton sequence* of *E* if, for each *k*, every set of k + 1 consecutive terms is a *k*-optimal subset of *E*.

Equivalently:

For each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a Newton sequence of E.

### V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case. Just as a Newton sequence is but a *v*-ordering,

A strong Newton sequence is but a strong v-ordering: for each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a v-ordering of E.

There exist infinite strong *v*-orderings of *V*: The *Very well distributed and well ordered* sequences Hersmoortel (1969).

### V.W.D.W.O. sequences

### Back to Dedekind domains, we first look at the local case.

Just as a Newton sequence is but a *v*-ordering,

A strong Newton sequence is but a strong v-ordering: for each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a v-ordering of E.

There exist infinite strong *v*-orderings of *V*: The *Very well distributed and well ordered* sequences Hersmoortel (1969).

### V.W.D.W.O. sequences

#### Back to Dedekind domains, we first look at the local case. Just as a Newton sequence is but a *v*-ordering,

A strong Newton sequence is but a strong v-ordering: for each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a v-ordering of E.

There exist infinite strong *v*-orderings of *V*: The *Very well distributed and well ordered* sequences Hersmoortel (1969).

### V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case. Just as a Newton sequence is but a *v*-ordering,

A strong Newton sequence is but a strong v-ordering: for each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a v-ordering of E.

There exist infinite strong *v*-orderings of *V*: The *Very well distributed and well ordered* sequences Hersmoortel (1969).

### V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case. Just as a Newton sequence is but a *v*-ordering,

A strong Newton sequence is but a strong v-ordering: for each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a v-ordering of E.

#### There exist infinite strong v-orderings of V:

The *Very well distributed and well ordered* sequences Hersmoortel (1969).

### V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case. Just as a Newton sequence is but a *v*-ordering,

A strong Newton sequence is but a strong v-ordering: for each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a v-ordering of E.

There exist infinite strong v-orderings of V: The Very well distributed and well ordered sequences Hersmoortel (1969).

### V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case. Just as a Newton sequence is but a *v*-ordering,

A strong Newton sequence is but a strong v-ordering: for each r, the truncated sequence  $\{a_n\}_{n\geq r}$  is a v-ordering of E.

There exist infinite strong v-orderings of V: The Very well distributed and well ordered sequences Hersmoortel (1969).

### V.W.D.W.O. sequences

#### Notations

As before. In particular,  $Card(V/\mathfrak{m}) = q$ , t a uniformizing element: v(t) = 1. Moreover, for each  $m \in \mathbb{N}$ ,  $v_q(m)$  denotes the largest k such that  $q^k$  divides m.

#### Proposition

The following assertions are equivalent:

(i) 
$$\forall n \neq m, v(a_n - a_m) = v_q(n - m). \star$$

(ii) ∀k, each q<sup>k</sup> consecutive terms form a full set of representatives (mod m<sup>k</sup>).

(iii)  $\{a_n\}_{n\geq 0}$  is a strong v-ordering of V.

< □ > < 同 > < 回 > <</p>

### V.W.D.W.O. sequences

#### Notations

As before. In particular, Card(V/m) = q, t a uniformizing element: v(t) = 1. Moreover, for each  $m \in \mathbb{N}$ ,  $v_q(m)$  denotes the largest k such that  $q^k$  divides m.

#### Proposition

The following assertions are equivalent:

(i) 
$$\forall n \neq m, v(a_n - a_m) = v_q(n - m). \star$$

(ii) ∀k, each q<sup>k</sup> consecutive terms form a full set of representatives (mod m<sup>k</sup>).

(iii)  $\{a_n\}_{n\geq 0}$  is a strong v-ordering of V.

< □ > < 同 > < 三 > .

#### V.W.D.W.O. sequences

#### Notations

As before. In particular,  $Card(V/\mathfrak{m}) = q$ , t a uniformizing element: v(t) = 1. Moreover, for each  $m \in \mathbb{N}$ ,  $v_q(m)$  denotes the largest k such that  $q^k$  divides m.

#### Proposition

The following assertions are equivalent:
(i) ∀n ≠ m, v(a<sub>n</sub> - a<sub>m</sub>) = v<sub>q</sub>(n - m). ★
(ii) ∀k, each q<sup>k</sup> consecutive terms form a full set of representatives (mod m<sup>k</sup>).

(iii)  $\{a_n\}_{n\geq 0}$  is a strong v-ordering of V.
## V.W.D.W.O. sequences

### Notations

As before. In particular,  $Card(V/\mathfrak{m}) = q$ , t a uniformizing element: v(t) = 1. Moreover, for each  $m \in \mathbb{N}$ ,  $v_q(m)$  denotes the largest k such that  $q^k$  divides m.

### Proposition

The following assertions are equivalent:

(i) 
$$\forall n \neq m, v(a_n - a_m) = v_q(n - m). \star$$

 (ii) ∀k, each q<sup>k</sup> consecutive terms form a full set of representatives (mod m<sup>k</sup>).

(iii)  $\{a_n\}_{n\geq 0}$  is a strong v-ordering of V.

イロト イポト イヨト イヨト

## V.W.D.W.O. sequences

### Notations

As before. In particular,  $Card(V/\mathfrak{m}) = q$ , t a uniformizing element: v(t) = 1. Moreover, for each  $m \in \mathbb{N}$ ,  $v_q(m)$  denotes the largest k such that  $q^k$  divides m.

### Proposition

The following assertions are equivalent:

(i) 
$$\forall n \neq m, v(a_n - a_m) = v_q(n - m). \star$$

(ii) ∀k, each q<sup>k</sup> consecutive terms form a full set of representatives (mod m<sup>k</sup>).

iii)  $\{a_n\}_{n\geq 0}$  is a strong v-ordering of V.

イロト イポト イヨト イヨト

## V.W.D.W.O. sequences

### Notations

As before. In particular,  $Card(V/\mathfrak{m}) = q$ , t a uniformizing element: v(t) = 1. Moreover, for each  $m \in \mathbb{N}$ ,  $v_q(m)$  denotes the largest k such that  $q^k$  divides m.

### Proposition

The following assertions are equivalent:

(i) 
$$\forall n \neq m, v(a_n - a_m) = v_q(n - m). \star$$

(ii) ∀k, each q<sup>k</sup> consecutive terms form a full set of representatives (mod m<sup>k</sup>).

(iii)  $\{a_n\}_{n\geq 0}$  is a strong v-ordering of V.

・ロト ・ 同ト ・ ヨト ・

- E - N

# V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in Anneaux de Bhargava, *Comm. in Algebra* **32** (2004) 3043-3069.

#### emma

Recipe to obtain a strong v-ordering  $\{a_n\}_{n\geq 0}$  of V:

- *take a*<sup>0</sup> = 0,
- for 0 < n < q, take  $a_n \ncong a_{n-1} \pmod{\mathfrak{m}}$ , \*
- for  $q^k \leq n < q^{k+1}$ , take

$$a_n \equiv a_i t^k + a_r \pmod{\mathfrak{m}^{k+1}},$$

where  $n = iq^k + r$ , with  $r < q^k$  (euclidian division) and  $i < q^*$ .

Note this recipe fits for  $V/\mathfrak{m}$  infinite. \*.

# V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in Anneaux de Bhargava, *Comm. in Algebra* **32** (2004) 3043-3069.

#### Lemma

Recipe to obtain a strong v-ordering  $\{a_n\}_{n\geq 0}$  of V:

• take  $a_0 = 0$ ,

• for 0 < n < q, take  $a_n \ncong a_{n-1} \pmod{\mathfrak{m}}$ , \* • for  $a^k < n < a^{k+1}$ , take

$$a_n \equiv a_i t^k + a_r \pmod{\mathfrak{m}^{k+1}},$$

where  $n = iq^k + r$ , with  $r < q^k$  (euclidian division) and  $i < q^*$ .

Note this recipe fits for  $V/\mathfrak{m}$  infinite. \*.

# V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in Anneaux de Bhargava, *Comm. in Algebra* **32** (2004) 3043-3069.

#### Lemma

Recipe to obtain a strong v-ordering  $\{a_n\}_{n\geq 0}$  of V:

- take  $a_0 = 0$ ,
- for 0 < n < q, take  $a_n \ncong a_{n-1} \pmod{\mathfrak{m}}$ , \* • for  $q^k \le n < q^{k+1}$ , take

$$a_n \equiv a_i t^k + a_r \pmod{\mathfrak{m}^{k+1}},$$

where  $n = iq^k + r$ , with  $r < q^k$  (euclidian division) and  $i < q^*$ .

Note this recipe fits for  $V/\mathfrak{m}$  infinite. \*.

# V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in Anneaux de Bhargava, *Comm. in Algebra* **32** (2004) 3043-3069.

#### Lemma

Recipe to obtain a strong v-ordering  $\{a_n\}_{n\geq 0}$  of V:

- *take*  $a_0 = 0$ ,
- for 0 < n < q, take  $a_n \not\cong a_{n-1} \pmod{\mathfrak{m}}$ , \* • for  $a^k < n < a^{k+1}$ , take

$$a_n \equiv a_i t^k + a_r \pmod{\mathfrak{m}^{k+1}},$$

where  $n = iq^k + r$ , with  $r < q^k$  (euclidian division) and  $i < q^*$ .

Note this recipe fits for  $V/\mathfrak{m}$  infinite. \*.

# V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in Anneaux de Bhargava, *Comm. in Algebra* **32** (2004) 3043-3069.

#### Lemma

Recipe to obtain a strong v-ordering  $\{a_n\}_{n\geq 0}$  of V:

• for 
$$0 < n < q$$
, take  $a_n \ncong a_{n-1} \pmod{\mathfrak{m}}$ , \*

• for 
$$q^k \leq n < q^{k+1}$$
, take

$$a_n \equiv a_i t^k + a_r \pmod{\mathfrak{m}^{k+1}},$$

where  $n = iq^k + r$ , with  $r < q^k$  (euclidian division) and  $i < q^*$ .

Note this recipe fits for  $V/\mathfrak{m}$  infinite. \*.

# V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in Anneaux de Bhargava, *Comm. in Algebra* **32** (2004) 3043-3069.

#### Lemma

Recipe to obtain a strong v-ordering  $\{a_n\}_{n\geq 0}$  of V:

• for 
$$0 < n < q$$
, take  $a_n \ncong a_{n-1} \pmod{\mathfrak{m}}$ , \*

• for 
$$q^k \leq n < q^{k+1}$$
, take

$$a_n \equiv a_i t^k + a_r \pmod{\mathfrak{m}^{k+1}},$$

where  $n = iq^k + r$ , with  $r < q^k$  (euclidian division) and  $i < q^*$ .

Note this recipe fits for  $V/\mathfrak{m}$  infinite. \*.

## Almost strong Newton sequence

#### Theorem

Let D be a Dedekind domain. There is a sequence  $\{a_n\}_{n\geq 0}$  in D such that,

- I for each maximal ideal m of D, remove at most one term you get a strong m-ordering!
- Output: Any n+2 consecutive terms form an n-universal subset of D.

Postpone 1, 2 follows:

```
<u>Proof.</u> Consider n + 2 consecutive terms of \{a_n\}_{n \ge 0}.
For each \mathfrak{m}, remove at most one term,
you are left with n + 1 consecutive terms of a strong Newton
sequence of D_{\mathfrak{m}}, thus with an n-optimal subset of D_{\mathfrak{m}}. \Box
```

ト ・ 同 ト ・ ヨ ト ・ ヨ ト

## Almost strong Newton sequence

#### Theorem

Let D be a Dedekind domain. There is a sequence  $\{a_n\}_{n\geq 0}$  in D such that,

I for each maximal ideal m of D, remove at most one term you get a strong m-ordering!

2 Any n+2 consecutive terms form an n-universal subset of D.

Postpone 1, 2 follows:

```
<u>Proof.</u> Consider n + 2 consecutive terms of \{a_n\}_{n \ge 0}.
For each \mathfrak{m}, remove at most one term,
you are left with n + 1 consecutive terms of a strong Newton
sequence of D_{\mathfrak{m}}, thus with an n-optimal subset of D_{\mathfrak{m}}. \Box
```

ト ・ 同 ト ・ ヨ ト ・ ヨ ト

## Almost strong Newton sequence

#### Theorem

Let D be a Dedekind domain. There is a sequence  $\{a_n\}_{n\geq 0}$  in D such that,

- I for each maximal ideal m of D, remove at most one term you get a strong m-ordering!
- 2 Any n + 2 consecutive terms form an n-universal subset of D.

Postpone 1, 2 follows:

```
<u>Proof.</u> Consider n + 2 consecutive terms of \{a_n\}_{n \ge 0}.
For each \mathfrak{m}, remove at most one term,
you are left with n + 1 consecutive terms of a strong Newton
sequence of D_{\mathfrak{m}}, thus with an n-optimal subset of D_{\mathfrak{m}}. \Box
```

▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶

## Almost strong Newton sequence

#### Theorem

Let D be a Dedekind domain. There is a sequence  $\{a_n\}_{n\geq 0}$  in D such that,

- I for each maximal ideal m of D, remove at most one term you get a strong m-ordering!
- 2 Any n + 2 consecutive terms form an n-universal subset of D.

### Postpone 1, 2 follows:

```
<u>Proof.</u> Consider n + 2 consecutive terms of \{a_n\}_{n \ge 0}.
For each \mathfrak{m}, remove at most one term,
you are left with n + 1 consecutive terms of a strong Newton
sequence of D_{\mathfrak{m}}, thus with an n-optimal subset of D_{\mathfrak{m}}. \Box
```

- 4 同 6 4 日 6 4 日 6

### Almost strong Newton sequence

#### Theorem

Let D be a Dedekind domain. There is a sequence  $\{a_n\}_{n\geq 0}$  in D such that,

- I for each maximal ideal m of D, remove at most one term you get a strong m-ordering!
- 2 Any n + 2 consecutive terms form an n-universal subset of D.

### Postpone 1, 2 follows:

```
<u>Proof.</u> Consider n + 2 consecutive terms of \{a_n\}_{n \ge 0}.
```

For each  $\mathfrak{m}$ , remove at most one term, you are left with n+1 consecutive terms of a strong Newton sequence of  $D_{\mathfrak{m}}$ , thus with an *n*-optimal subset of  $D_{\mathfrak{m}}$ .  $\Box$ 

## Almost strong Newton sequence

#### Theorem

Let D be a Dedekind domain. There is a sequence  $\{a_n\}_{n\geq 0}$  in D such that,

- I for each maximal ideal m of D, remove at most one term you get a strong m-ordering!
- 2 Any n + 2 consecutive terms form an n-universal subset of D.

Postpone 1, 2 follows:

```
<u>Proof.</u> Consider n + 2 consecutive terms of \{a_n\}_{n \ge 0}.
For each \mathfrak{m}, remove at most one term,
you are left with n + 1 consecutive terms of a strong Newton
sequence of D_{\mathfrak{m}}, thus with an n-optimal subset of D_{\mathfrak{m}}.
```

## Almost strong Newton sequence

#### Theorem

Let D be a Dedekind domain. There is a sequence  $\{a_n\}_{n\geq 0}$  in D such that,

- I for each maximal ideal m of D, remove at most one term you get a strong m-ordering!
- 2 Any n + 2 consecutive terms form an n-universal subset of D.

Postpone 1, 2 follows:

```
<u>Proof.</u> Consider n + 2 consecutive terms of \{a_n\}_{n \ge 0}.
For each \mathfrak{m}, remove at most one term,
you are left with n + 1 consecutive terms of a strong Newton
sequence of D_{\mathfrak{m}}, thus with an n-optimal subset of D_{\mathfrak{m}}.
```

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Almost strong Newton sequence

#### Theorem

Let D be a Dedekind domain. There is a sequence  $\{a_n\}_{n\geq 0}$  in D such that,

- I for each maximal ideal m of D, remove at most one term you get a strong m-ordering!
- 2 Any n + 2 consecutive terms form an n-universal subset of D.

Postpone 1, 2 follows:

```
<u>Proof.</u> Consider n + 2 consecutive terms of \{a_n\}_{n \ge 0}.
For each \mathfrak{m}, remove at most one term,
you are left with n + 1 consecutive terms of a strong Newton
sequence of D_{\mathfrak{m}}, thus with an n-optimal subset of D_{\mathfrak{m}}. \Box
```

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

## Almost strong Newton sequence

<u>Proof of 1.</u> We build  $\{a_n\}_{n\geq 0}$  inductively, so that, for each  $\mathfrak{m}$ , it (almost) meets the congruence conditions of Julie Yeramian's construction. We use the Chinese remainder theorem. • First take  $a_0 = 0$ .

As we use the Chinese remainder theorem, choose (arbitrarily) a finite set  $M_1$  of maximal ideals.

• Take  $a_1$  to satisfy Julie's conditions with respect to each  $\mathfrak{m} \in M_1$ .

#### Miracle!

In fact,  $a_1$  is suitable for **all** but finitely many maximal ideals. \*

・ロト ・ 同ト ・ ヨト ・

## Almost strong Newton sequence

<u>Proof of 1.</u> We build  $\{a_n\}_{n\geq 0}$  inductively, so that, for each  $\mathfrak{m}$ , it (almost) meets the congruence conditions of Julie Yeramian's construction. We use the Chinese remainder theorem.

• First take  $a_0 = 0$ .

As we use the Chinese remainder theorem, choose (arbitrarily) a finite set  $M_1$  of maximal ideals.

• Take  $a_1$  to satisfy Julie's conditions with respect to each  $\mathfrak{m} \in M_1$ .

#### Miracle!

In fact, a1 is suitable for **all** but finitely many maximal ideals. \*

・ロト ・ 同ト ・ ヨト ・

## Almost strong Newton sequence

<u>Proof of 1.</u> We build  $\{a_n\}_{n\geq 0}$  inductively, so that, for each  $\mathfrak{m}$ , it (almost) meets the congruence conditions of Julie Yeramian's construction. We use the Chinese remainder theorem.

• First take 
$$a_0 = 0$$
.

As we use the Chinese remainder theorem, choose (arbitrarily) a finite set  $M_1$  of maximal ideals.

• Take  $a_1$  to satisfy Julie's conditions with respect to each  $\mathfrak{m} \in M_1$ .

### Miracle!

In fact,  $a_1$  is suitable for **all** but finitely many maximal ideals. \*

## Almost strong Newton sequence

<u>Proof of 1.</u> We build  $\{a_n\}_{n\geq 0}$  inductively, so that, for each  $\mathfrak{m}$ , it (almost) meets the congruence conditions of Julie Yeramian's construction. We use the Chinese remainder theorem.

• First take  $a_0 = 0$ .

As we use the Chinese remainder theorem, choose (arbitrarily) a finite set  $M_1$  of maximal ideals.

• Take  $a_1$  to satisfy Julie's conditions with respect to each  $\mathfrak{m} \in M_1$ .

#### Miracle!

In fact,  $a_1$  is suitable for **all** but finitely many maximal ideals. \*

イロト イポト イヨト イヨト

## Almost strong Newton sequence

<u>Proof of 1.</u> We build  $\{a_n\}_{n\geq 0}$  inductively, so that, for each  $\mathfrak{m}$ , it (almost) meets the congruence conditions of Julie Yeramian's construction. We use the Chinese remainder theorem.

• First take  $a_0 = 0$ .

As we use the Chinese remainder theorem, choose (arbitrarily) a finite set  $M_1$  of maximal ideals.

• Take  $a_1$  to satisfy Julie's conditions with respect to each  $\mathfrak{m} \in M_1$ .

### Miracle!

In fact, a1 is suitable for **all** but finitely many maximal ideals. \*

## Almost strong Newton sequence

<u>Proof of 1.</u> We build  $\{a_n\}_{n\geq 0}$  inductively, so that, for each  $\mathfrak{m}$ , it (almost) meets the congruence conditions of Julie Yeramian's construction. We use the Chinese remainder theorem.

• First take  $a_0 = 0$ .

As we use the Chinese remainder theorem, choose (arbitrarily) a finite set  $M_1$  of maximal ideals.

• Take  $a_1$  to satisfy Julie's conditions with respect to each  $\mathfrak{m} \in M_1$ .

### Miracle!

In fact,  $a_1$  is suitable for **all** but finitely many maximal ideals. \*

・ロト ・ 同ト ・ ヨト ・ ヨト

### Almost strong Newton sequence

Let  $M_2$  be the finite set of offending maximal ideals. Observe that  $M_2$  does not meet  $M_1$ .

Discard  $a_1$  for each  $\mathfrak{m} \in M_2$ .

• Take *a*<sub>2</sub> so that it satisfies Julie's conditions,

- with respect to  $a_0, a_1$  for each  $\mathfrak{m} \in M_1$ ,
- with respect to  $a_0$  only for each  $\mathfrak{m} \in M_2$ .

Again,  $a_2$  suits **all** maximal ideals but those in a finite set  $M_3$ . Discard  $a_2$  for each  $\mathfrak{m} \in M_3$ .

• And so on ... with more and more primes at each step! 🗆

### Almost strong Newton sequence

Let  $M_2$  be the finite set of offending maximal ideals. Observe that  $M_2$  does not meet  $M_1$ . Discard  $a_1$  for each  $\mathfrak{m} \in M_2$ .

• Take *a*<sub>2</sub> so that it satisfies Julie's conditions,

- with respect to  $a_0, a_1$  for each  $\mathfrak{m} \in M_1$ ,
- with respect to  $a_0$  only for each  $\mathfrak{m} \in M_2$ .

Again,  $a_2$  suits **all** maximal ideals but those in a finite set  $M_3$ . Discard  $a_2$  for each  $\mathfrak{m} \in M_3$ .

• And so on ... with more and more primes at each step!

### Almost strong Newton sequence

Let  $M_2$  be the finite set of offending maximal ideals. Observe that  $M_2$  does not meet  $M_1$ . Discard  $a_1$  for each  $\mathfrak{m} \in M_2$ .

- Take  $a_2$  so that it satisfies Julie's conditions,
  - with respect to  $a_0, a_1$  for each  $\mathfrak{m} \in M_1$ ,
  - with respect to  $a_0$  only for each  $\mathfrak{m} \in M_2$ .

Again,  $a_2$  suits **all** maximal ideals but those in a finite set  $M_3$ . Discard  $a_2$  for each  $\mathfrak{m} \in M_3$ .

• And so on ... with more and more primes at each step! 🗆

### Almost strong Newton sequence

Let  $M_2$  be the finite set of offending maximal ideals. Observe that  $M_2$  does not meet  $M_1$ . Discard  $a_1$  for each  $\mathfrak{m} \in M_2$ .

- Take  $a_2$  so that it satisfies Julie's conditions,
  - with respect to  $a_0, a_1$  for each  $\mathfrak{m} \in M_1$ ,
  - with respect to  $a_0$  only for each  $\mathfrak{m} \in M_2$ .

Again,  $a_2$  suits **all** maximal ideals but those in a finite set  $M_3$ . Discard  $a_2$  for each  $\mathfrak{m} \in M_3$ .

• And so on ... with more and more primes at each step! 🗆

## Almost strong Newton sequence

Let  $M_2$  be the finite set of offending maximal ideals. Observe that  $M_2$  does not meet  $M_1$ . Discard  $a_1$  for each  $\mathfrak{m} \in M_2$ .

- Take  $a_2$  so that it satisfies Julie's conditions,
  - with respect to  $a_0, a_1$  for each  $\mathfrak{m} \in M_1$ ,
  - with respect to  $a_0$  only for each  $\mathfrak{m} \in M_2$ .

Again,  $a_2$  suits all maximal ideals but those in a finite set  $M_3$ . Discard  $a_2$  for each  $\mathfrak{m} \in M_3$ .

• And so on ... with more and more primes at each step! 🗆

### Almost strong Newton sequence

Let  $M_2$  be the finite set of offending maximal ideals. Observe that  $M_2$  does not meet  $M_1$ . Discard  $a_1$  for each  $\mathfrak{m} \in M_2$ .

- Take  $a_2$  so that it satisfies Julie's conditions,
  - with respect to  $a_0, a_1$  for each  $\mathfrak{m} \in M_1$ ,
  - with respect to  $a_0$  only for each  $\mathfrak{m} \in M_2$ .

Again,  $a_2$  suits all maximal ideals but those in a finite set  $M_3$ . Discard  $a_2$  for each  $\mathfrak{m} \in M_3$ .

• And so on ... with more and more primes at each step!

### Almost strong Newton sequence

Let  $M_2$  be the finite set of offending maximal ideals. Observe that  $M_2$  does not meet  $M_1$ . Discard  $a_1$  for each  $\mathfrak{m} \in M_2$ .

- Take  $a_2$  so that it satisfies Julie's conditions,
  - with respect to  $a_0, a_1$  for each  $\mathfrak{m} \in M_1$ ,
  - with respect to  $a_0$  only for each  $\mathfrak{m} \in M_2$ .

Again,  $a_2$  suits **all** maximal ideals but those in a finite set  $M_3$ . Discard  $a_2$  for each  $\mathfrak{m} \in M_3$ .

• And so on ... with more and more primes at each step!

## Almost strong Newton sequence

Let  $M_2$  be the finite set of offending maximal ideals. Observe that  $M_2$  does not meet  $M_1$ . Discard  $a_1$  for each  $\mathfrak{m} \in M_2$ .

- Take  $a_2$  so that it satisfies Julie's conditions,
  - with respect to  $a_0, a_1$  for each  $\mathfrak{m} \in M_1$ ,
  - with respect to  $a_0$  only for each  $\mathfrak{m} \in M_2$ .

Again,  $a_2$  suits **all** maximal ideals but those in a finite set  $M_3$ . Discard  $a_2$  for each  $\mathfrak{m} \in M_3$ .

ullet And so on ... with more and more primes at each step!  $\Box$ 

# Subsets

### The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v-ordering if and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964. It is a (somewhat technical) property of repartition. Here is the definition in case the residue field is finite:

#### Definition

A subset *E* of *V* is *regular* when, for each *k*, each class modulo  $\mathfrak{m}^k$  that meets *E* contains the same number of classes modulo  $\mathfrak{m}^{k+1}$  that meets *E*.

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v-ordering if and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964. It is a (somewhat technical) property of repartition. Here is the definition in case the residue field is finite:

#### Definition

A subset *E* of *V* is *regular* when, for each *k*, each class modulo  $\mathfrak{m}^k$  that meets *E* contains the same number of classes modulo  $\mathfrak{m}^{k+1}$  that meets *E*.

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v-ordering if and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964. It is a (somewhat technical) property of repartition. Here is the definition in case the residue field is finite:

#### Definition

A subset *E* of *V* is *regular* when, for each *k*, each class modulo  $\mathfrak{m}^k$  that meets *E* contains the same number of classes modulo  $\mathfrak{m}^{k+1}$  that meets *E*.

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v-ordering if and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964. It is a (somewhat technical) property of repartition.

Here is the definition in case the residue field is finite:

#### Definition

A subset *E* of *V* is *regular* when, for each *k*, each class modulo  $\mathfrak{m}^k$  that meets *E* contains the same number of classes modulo  $\mathfrak{m}^{k+1}$  that meets *E*.

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v-ordering if and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964. It is a (somewhat technical) property of repartition. Here is the definition in case the residue field is finite:

### Definition

A subset E of V is *regular* when, for each k, each class modulo  $\mathfrak{m}^k$  that meets E contains the same number of classes modulo  $\mathfrak{m}^{k+1}$  that meets E.
# Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v-ordering if and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964. It is a (somewhat technical) property of repartition. Here is the definition in case the residue field is finite:

### Definition

A subset E of V is *regular* when, for each k, each class modulo  $\mathfrak{m}^k$  that meets E contains the same number of classes modulo  $\mathfrak{m}^{k+1}$  that meets E.

We can generalize Julie's construction to build inductively strong *v*-orderings of regular subsets by congruence conditions.

# Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are *locally regular*. For instance:

A finite union of classes modulo an ideal is locally regular.

Yet we were able to extend our construction to one class only:

#### Theorem

Let E be a class modulo an ideal. There is a sequence  $\{a_n\}_{n\geq 0}$  in E such that,

- I for each maximal ideal m, the sequence obtained by removing at most one term is a strong m-ordering of E.
- 2 Any n + 2 consecutive terms form an n-universal subset of E.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are *locally regular*. For instance:

A finite union of classes modulo an ideal is locally regular.

Yet we were able to extend our construction to one class only:

#### Theorem

Let E be a class modulo an ideal. There is a sequence  $\{a_n\}_{n\geq 0}$  in E such that,

I for each maximal ideal m, the sequence obtained by removing at most one term is a strong m-ordering of E.

2 Any n + 2 consecutive terms form an n-universal subset of E.

イロト イポト イラト イラト

# Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are *locally regular*. For instance:

A finite union of classes modulo an ideal is locally regular.

Yet we were able to extend our construction to one class only:

#### Theorem

Let E be a class modulo an ideal. There is a sequence  $\{a_n\}_{n\geq 0}$  in E such that,

- I for each maximal ideal m, the sequence obtained by removing at most one term is a strong m-ordering of E.
- ② Any n + 2 consecutive terms form an n-universal subset of E.

イロト イポト イラト イラト

# Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are *locally regular*. For instance:

A finite union of classes modulo an ideal is locally regular.

Yet we were able to extend our construction to one class only:

### Theorem

Let E be a class modulo an ideal. There is a sequence  $\{a_n\}_{n\geq 0}$  in E such that,

 for each maximal ideal m, the sequence obtained by removing at most one term is a strong m-ordering of E.

2 Any n + 2 consecutive terms form an n-universal subset of E.

(日) (同) (三) (三)

# Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are *locally regular*. For instance:

A finite union of classes modulo an ideal is locally regular.

Yet we were able to extend our construction to one class only:

### Theorem

Let E be a class modulo an ideal. There is a sequence  $\{a_n\}_{n\geq 0}$  in E such that,

- for each maximal ideal m, the sequence obtained by removing at most one term is a strong m-ordering of E.
- 2 Any n + 2 consecutive terms form an n-universal subset of E.

・ロト ・ 同ト ・ ヨト ・ ヨト

# Prime numbers

# We finally consider the set $\mathbb{P}$ formed by the prime numbers in $\mathbb{Z}$ . $\mathbb{P}$ is not locally regular subset, but almost:

For each p, the p-adic closure of  $\mathbb{P}$  in  $\mathbb{Z}_{(p)}$  is  $\{p\} \cup \mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$ .

As  $\mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$  is a union of classes modulo p, it is regular.

#### Notation

For each integer m,  $\mathbb{P}_{>m} = \{p \in \mathbb{P} \mid p > m\}$ .

### Proposition

There is a sequence in  $\mathbb{P}_{>m}$  such that, for each n < m, any n + 2 consecutive terms form an n-universal subset of  $\mathbb{P}_{>m}$ .

・ロッ ・雪 ・ ・ ヨ ・

# Prime numbers

We finally consider the set  $\mathbb P$  formed by the prime numbers in  $\mathbb Z.$   $\mathbb P$  is not locally regular subset, but almost:

For each p, the p-adic closure of  $\mathbb{P}$  in  $\mathbb{Z}_{(p)}$  is  $\{p\} \cup \mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$ .

As  $\mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$  is a union of classes modulo p, it is regular.

#### Notation

For each integer m,  $\mathbb{P}_{>m} = \{p \in \mathbb{P} \mid p > m\}$ .

### Proposition

There is a sequence in  $\mathbb{P}_{>m}$  such that, for each n < m, any n + 2 consecutive terms form an n-universal subset of  $\mathbb{P}_{>m}$ .

・ロッ ・雪 ・ ・ ヨ ・

## Prime numbers

We finally consider the set  $\mathbb P$  formed by the prime numbers in  $\mathbb Z.$   $\mathbb P$  is not locally regular subset, but almost:

For each p, the p-adic closure of  $\mathbb{P}$  in  $\mathbb{Z}_{(p)}$  is  $\{p\} \cup \mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$ .

As  $\mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$  is a union of classes modulo p, it is regular.

#### Notation

For each integer m,  $\mathbb{P}_{>m} = \{p \in \mathbb{P} \mid p > m\}$ .

### Proposition

There is a sequence in  $\mathbb{P}_{>m}$  such that, for each n < m, any n + 2 consecutive terms form an n-universal subset of  $\mathbb{P}_{>m}$ .

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

## Prime numbers

We finally consider the set  $\mathbb P$  formed by the prime numbers in  $\mathbb Z.$   $\mathbb P$  is not locally regular subset, but almost:

For each p, the p-adic closure of  $\mathbb{P}$  in  $\mathbb{Z}_{(p)}$  is  $\{p\} \cup \mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$ .

As  $\mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$  is a union of classes modulo p, it is regular.

#### Notation

For each integer m,  $\mathbb{P}_{>m} = \{p \in \mathbb{P} \mid p > m\}$ .

### Proposition

There is a sequence in  $\mathbb{P}_{>m}$  such that, for each n < m, any n + 2 consecutive terms form an n-universal subset of  $\mathbb{P}_{>m}$ .

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

# Prime numbers

We finally consider the set  $\mathbb P$  formed by the prime numbers in  $\mathbb Z.$   $\mathbb P$  is not locally regular subset, but almost:

For each p, the p-adic closure of  $\mathbb{P}$  in  $\mathbb{Z}_{(p)}$  is  $\{p\} \cup \mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$ .

As  $\mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$  is a union of classes modulo p, it is regular.

### Notation

For each integer m,  $\mathbb{P}_{>m} = \{p \in \mathbb{P} \mid p > m\}$ .

### Proposition

There is a sequence in  $\mathbb{P}_{>m}$  such that, for each n < m, any n + 2 consecutive terms form an n-universal subset of  $\mathbb{P}_{>m}$ .

ヘロト ヘポト ヘヨト ヘヨト

# Prime numbers

We finally consider the set  $\mathbb P$  formed by the prime numbers in  $\mathbb Z.$   $\mathbb P$  is not locally regular subset, but almost:

For each p, the p-adic closure of  $\mathbb{P}$  in  $\mathbb{Z}_{(p)}$  is  $\{p\} \cup \mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$ .

As  $\mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)}$  is a union of classes modulo p, it is regular.

### Notation

For each integer m,  $\mathbb{P}_{>m} = \{p \in \mathbb{P} \mid p > m\}$ .

### Proposition

There is a sequence in  $\mathbb{P}_{>m}$  such that, for each n < m, any n + 2 consecutive terms form an n-universal subset of  $\mathbb{P}_{>m}$ .

ヘロト ヘポト ヘヨト ヘヨト

# Prime numbers

### A last one!

#### Proposition

For each n,  $\mathbb{P}$  admits an n-universal subset S with

$$Card(S) = n + \pi(n+1).$$

(As usual,  $\pi(n)$  denotes the number of primes  $p \leq n.) *$ 

▲ 同 ▶ ▲ 国 ▶ ▲

# Prime numbers

### A last one!

Proposition

For each n,  $\mathbb{P}$  admits an n-universal subset S with

$$Card(S) = n + \pi(n+1).$$

(As usual,  $\pi(n)$  denotes the number of primes  $p \leq n$ .) \*

・ 同 ト ・ 三 ト ・



# Thank you for your attention.

Paul-Jean Cahen n-universal subsets and Newton sequences

< ∃ >