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The sequence of integers

The sequence {n},>¢ is remarkable for integer-valued polynomials.
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Introduction

The sequence of integers

The sequence {n},>¢ is remarkable for integer-valued polynomials.
One can test polynomials of degree at most non 0,1,...,n:

£(0), f(1),...,f(n) € Z = f(Z) C Z.

Indeed, one can (uniquely) write

X X
f:ao+a1X+a2<2>+...+an<n>,

e (X) = Dosize(X =)
k) kI ;
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The sequence of integers

The sequence {n},>¢ is remarkable for integer-valued polynomials.
One can test polynomials of degree at most non 0,1,...,n:

£(0), f(1),...,f(n) € Z = f(Z) C Z.

Indeed, one can (uniquely) write

X X
f:ao+a1X+a2<2>+...+an<n>,

e (X) = Dosize(X =)
k) kI ;

and then compute the ay's in term of £(0), f(1),...f(n).
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Introduction

The sequence of integers

The sequence {n},>¢ is remarkable for integer-valued polynomials.
One can test polynomials of degree at most non 0,1,...,n:

£(0), f(1),...,f(n) € Z = f(Z) C Z.

Indeed, one can (uniquely) write

X X
f:ao+a1X+a2<2>+...+an<n>,

e (X) = Dosize(X =)
k) kI ;

and then compute the ay's in term of £(0), f(1),...f(n).
One says {n},>0 is a Newton sequence.
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The sequence of integers

In fact this sequence is even more remarkable:
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The sequence of integers

In fact this sequence is even more remarkable:
Considering (X — k), one can test f on n+ 1 consecutive integers!
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The sequence of integers

In fact this sequence is even more remarkable:
Considering (X — k), one can test f on n+ 1 consecutive integers!

One says {n},>0 is a strong Newton sequence.
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The sequence of integers

In fact this sequence is even more remarkable:
Considering (X — k), one can test f on n+ 1 consecutive integers!

One says {n},>0 is a strong Newton sequence.

Unfortunately, in more general settings, there are often no strong
Newton sequences (let alone strong ones!), either for

Paul-Jean Cahen n-universal subsets and Newton sequences



Introduction

The sequence of integers
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Considering (X — k), one can test f on n+ 1 consecutive integers!

One says {n},>0 is a strong Newton sequence.
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Newton sequences (let alone strong ones!), either for
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Introduction

The sequence of integers

In fact this sequence is even more remarkable:
Considering (X — k), one can test f on n+ 1 consecutive integers!

One says {n},>0 is a strong Newton sequence.

Unfortunately, in more general settings, there are often no strong
Newton sequences (let alone strong ones!), either for

@ integer-valued polynomials on the ring Ok of integers of a
number field K, *

@ integer-valued polynomials on a subset (of Z, or a domain D.)
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Introduction

Definitions and notations

Let D be a domain with quotient field K.
o If E is a subset of D,

Int(E, D) = {f € K[X] | f(E) C D}

denotes the ring of integer-valued polynomials on E
(with respect to D).
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Introduction

Definitions and notations

Let D be a domain with quotient field K.
o If E is a subset of D,

Int(E, D) = {f € K[X] | f(E) C D}

denotes the ring of integer-valued polynomials on E
(with respect to D).

@ One simply writes Int(D) for the ring Int(D, D) of
integer-valued polynomials on D.
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Definitions and notations

We can test integer-valued polynomials on subsets:
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Definitions and notations

We can test integer-valued polynomials on subsets:

Definition

A subset S of E is said to be an n-universal subset of E (with
respect to D) if, for each f € K[X] with deg(f) < n,

f(S) C D = f(E) C D.
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Definitions and notations

We can test integer-valued polynomials on subsets:

Definition
A subset S of E is said to be an n-universal subset of E (with
respect to D) if, for each f € K[X] with deg(f) < n,

f(S) C D = f(E) C D.

Thatis, f € Int(S,D) < f € Int(E, D).x

If S is an n-universal subset S of E then Card(S) > n+ 1. J
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Definitions and notations

We can test integer-valued polynomials on subsets:

Definition

A subset S of E is said to be an n-universal subset of E (with
respect to D) if, for each f € K[X] with deg(f) < n,

f(S) C D = f(E) C D.

Thatis, f € Int(S,D) < f € Int(E, D).x

If S is an n-universal subset S of E then Card(S) > n+ 1. J

By Lagrange interpolation
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Introduction

Definitions and notations

We can test integer-valued polynomials on subsets:

Definition

A subset S of E is said to be an n-universal subset of E (with
respect to D) if, for each f € K[X] with deg(f) < n,

f(S) C D = f(E) C D.

Thatis, f € Int(S,D) < f € Int(E, D).x

If S is an n-universal subset S of E then Card(S) > n+ 1. J

By Lagrange interpolation (of course if Card(E) > n+ 1. x)
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Introduction

Definitions and notations

Definition
An n-universal subset S such that Card(S) = n+ 1 is called
an n-optimal subset (of E, with respect to D).
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Definitions and notations

An n-universal subset S such that Card(S) = n+ 1 is called
an n-optimal subset (of E, with respect to D).

| A

Definition

A Newton sequence of length n of E is a sequence ag,...,a, in E
such that, for each k < n,

{a0,...,ak} is a k-optimal subset of E.

A\
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Introduction

Definitions and notations

An n-universal subset S such that Card(S) = n+ 1 is called
an n-optimal subset (of E, with respect to D).

Definition

| A

A Newton sequence of length n of E is a sequence ag,...,a, in E
such that, for each k < n,
{a0,...,ak} is a k-optimal subset of E.

A\

Its terms must be distinct (we assume, Card(E) > n+1).
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Definitions and notations

An n-universal subset S such that Card(S) = n+ 1 is called
an n-optimal subset (of E, with respect to D).

Definition

| A

A Newton sequence of length n of E is a sequence ag,...,a, in E
such that, for each k < n,
{a0,...,ak} is a k-optimal subset of E.

A\

Its terms must be distinct (we assume, Card(E) > n+1).

There may be no n-optimal subset,
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Introduction

Definitions and notations

An n-universal subset S such that Card(S) = n+ 1 is called
an n-optimal subset (of E, with respect to D).

Definition

| A

A Newton sequence of length n of E is a sequence ag,...,a, in E
such that, for each k < n,
{a0,...,ak} is a k-optimal subset of E.

A\

Its terms must be distinct (we assume, Card(E) > n+1).

There may be no n-optimal subset, a fortiori no Newton sequence!
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Introduction

What we are up to

We are inspired by [BFS]:

Simultaneous p-orderings and minimising volumes in number fields.
J. Byszewski, M. Fraczyk, and A. Szumowicz,
arXiv:1506.02696 [math.NT], 8 Jun. 2015.
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What we are up to

We are inspired by [BFS]:

Simultaneous p-orderings and minimising volumes in number fields.
J. Byszewski, M. Fraczyk, and A. Szumowicz,

arXiv:1506.02696 [math.NT], 8 Jun. 2015.

They study n-universal subsets of a Dedekind domain D.

We wish to

@ generalize their results to n-universal subsets of a subset E of D
(rather than D itself),
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Introduction

What we are up to

We are inspired by [BFS]:

Simultaneous p-orderings and minimising volumes in number fields.
J. Byszewski, M. Fraczyk, and A. Szumowicz,

arXiv:1506.02696 [math.NT], 8 Jun. 2015.

They study n-universal subsets of a Dedekind domain D.

We wish to

@ generalize their results to n-universal subsets of a subset E of D
(rather than D itself),

@ show one can always obtain almost strong Newton sequences of Dedekind
domains.
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Generalities

1- Generalities

Throughout this section,
E is a subset of a domain D (with quotient field K).
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Generalities

Trivial results

By definition an n-universal subset is k-universal for each k < n.x

Proposition (Transitivity)
Let T C S CE. Then T is an n-universal subset of E, if and only if
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Generalities

Trivial results

By definition an n-universal subset is k-universal for each k < n.x

Proposition (Transitivity)

Let T C S CE. Then T is an n-universal subset of E, if and only if
T is an n-universal subset of S, and S is an n-universal subset of E.

Corollary

Let S be an n-universal subset of E. Then,
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Generalities

Trivial results

By definition an n-universal subset is k-universal for each k < n.x

Proposition (Transitivity)

Let T C S CE. Then T is an n-universal subset of E, if and only if
T is an n-universal subset of S, and S is an n-universal subset of E.

Corollary

Let S be an n-universal subset of E. Then,

Q for each k < n, a k-universal (resp. k-optimal) subset of S,
is a k-universal (resp. k-optimal) subset of E.
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Generalities

Trivial results

By definition an n-universal subset is k-universal for each k < n.x

Proposition (Transitivity)

Let T C S CE. Then T is an n-universal subset of E, if and only if
T is an n-universal subset of S, and S is an n-universal subset of E.

Corollary

Let S be an n-universal subset of E. Then,
Q for each k < n, a k-universal (resp. k-optimal) subset of S,
is a k-universal (resp. k-optimal) subset of E.

@ a Newton sequence of length n of S
is a Newton sequence of length n of E.

Paul-Jean Cahen n-universal subsets and Newton sequences



Generalities

Trivial results

Let S be a subset of E.
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Generalities

Trivial results

Let S be a subset of E. Each one of the following assertions implies
the next one.
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Generalities

Trivial results

Let S be a subset of E. Each one of the following assertions implies
the next one.

(i) S contains a Newton sequence of length n of E.

Paul-Jean Cahen n-universal subsets and Newton sequences



Generalities

Trivial results

Let S be a subset of E. Each one of the following assertions implies
the next one.

(i) S contains a Newton sequence of length n of E.

(i) S contains an n-optimal subset of E.
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Generalities

Trivial results

Proposition

Let S be a subset of E. Each one of the following assertions implies
the next one.

(i) S contains a Newton sequence of length n of E.

(i) S contains an n-optimal subset of E.

(iii) S is an n-universal subset of E.
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Generalities

Trivial results

Proposition

Let S be a subset of E. Each one of the following assertions implies
the next one.

(i) S contains a Newton sequence of length n of E.

(i) S contains an n-optimal subset of E.

(iii) S is an n-universal subset of E.

The converse of each implication does not hold in general: x
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Generalities

Trivial results

Proposition
Let S be a subset of E. Each one of the following assertions implies
the next one.

(i) S contains a Newton sequence of length n of E.

(i) S contains an n-optimal subset of E.

(iii) S is an n-universal subset of E.

The converse of each implication does not hold in general: x
for instance an n-optimal subset may fail to contain a k-optimal
subset for some k < n.
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Generalities

Testing polynomials

As in [BFS]:

Proposition

S ={ag,a1,...,an—1} is an n-optimal subset of E if and only if,
for each k, the Lagrange interpolation polynomial

X — a;
Qk:|| ¢
. agx — aj

J#k

is integer-valued on E.
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Generalities

Testing polynomials

The generalized binomials associated to a sequence agp, ..., a, in E
(with distinct terms) are the polynomials

)
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Generalities

Testing polynomials

The generalized binomials associated to a sequence agp, ..., a, in E
(with distinct terms) are the polynomials

<X> =1, and,forl < k <n, <X) = H H,
dg ak Ak — a;

0<i<k
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Generalities

Testing polynomials

The generalized binomials associated to a sequence agp, ..., a, in E
(with distinct terms) are the polynomials

<X>:1,and,for1§k§n, <X): H X—a,-)
ao ak dg — aj

0<i<k

Proposition

ag, ai,...,an—1 Is a Newton sequence of length n of E
if and only, if, for each k < n, (;i) is integer-valued on E.
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Generalities

Localization

If S is an n-universal subset of E (resp. of D) with respect to D,
and if either S is finite or D is Noetherian,

then S is an n-universal subset of E (resp. of T~1D) with respect
to T7'D.
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Generalities

Localization

If S is an n-universal subset of E (resp. of D) with respect to D,
and if either S is finite or D is Noetherian,

then S is an n-universal subset of E (resp. of T~1D) with respect
to T7'D.

[BFS] gives it as trivial (without hypothesis).
But there are counterexamples in the general case.
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Generalities

Localization

If S is an n-universal subset of E (resp. of D) with respect to D,
and if either S is finite or D is Noetherian,

then S is an n-universal subset of E (resp. of T~1D) with respect
to T7'D.

[BFS] gives it as trivial (without hypothesis).
But there are counterexamples in the general case.

Theorem

S is an n-optimal subset of E (resp. of D) with respect to D
if and only if, for each maximal ideal m of D,
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Generalities

Localization

If S is an n-universal subset of E (resp. of D) with respect to D,
and if either S is finite or D is Noetherian,

then S is an n-universal subset of E (resp. of T~1D) with respect
to T7'D.

[BFS] gives it as trivial (without hypothesis).
But there are counterexamples in the general case.

S is an n-optimal subset of E (resp. of D) with respect to D
if and only if, for each maximal ideal m of D,
S is an n-optimal subset of E (resp. of Dy,) with respect to Dy,.
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Generalities

Localization

Definition

We say S is an n-locally Newton orderable subset of E if,

for each maximal ideal m of D, S can be ordered as a Newton
sequence of length n of E with respect to Dy,.
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Generalities

Localization

Definition

We say S is an n-locally Newton orderable subset of E if,

for each maximal ideal m of D, S can be ordered as a Newton
sequence of length n of E with respect to Dy,.

An n-locally Newton orderable subset is an n-optimal subset.
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Generalities

Localization

Definition

We say S is an n-locally Newton orderable subset of E if,

for each maximal ideal m of D, S can be ordered as a Newton
sequence of length n of E with respect to Dy,.

An n-locally Newton orderable subset is an n-optimal subset.

The converse holds if D is a Dedekind domain .
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Generalities

Generalized factorial ideals

The n'" generalized factorial ideal of E (with respect to D) is

n'2 = {a € D | Vf € Int(E, D),deg(f) < n, af € D[X]}.
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Generalities

Generalized factorial ideals

Definition

The n'" generalized factorial ideal of E (with respect to D) is
n'2 = {a € D | Vf € Int(E, D),deg(f) < n, af € D[X]}.

In case E = D, one simply writes nlp for n!2.
) Ply D
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Generalities

Generalized factorial ideals

@ The ideals n!E form a decreasing sequence, with 012 = D.
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Generalities

Generalized factorial ideals

@ The ideals n!E form a decreasing sequence, with 012 = D.
@ n'2 #(0), if and only if Card(E) > n+ 1.
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Generalities

Generalized factorial ideals

@ The ideals n!E form a decreasing sequence, with 012 = D.
@ n'2 #(0), if and only if Card(E) > n+ 1.
© IfS CE, then n!g C n!g.
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Generalities

Generalized factorial ideals

@ The ideals n!E form a decreasing sequence, with 012 = D.
@ n'2 #(0), if and only if Card(E) > n+ 1.
© IfS CE, then n!g C n!g.

Q If S is an n-universal subset of E, then n'2 = n!E.
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Generalities

Generalized factorial ideals

@ The ideals n!E form a decreasing sequence, with 012 = D.

@ n'2 #(0), if and only if Card(E) > n+ 1.

© IfS CE, then n!g C n!g.

Q If S is an n-universal subset of E, then n'2 = n!E.

If moreover D is Noetherian, then
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Generalities

Generalized factorial ideals

@ The ideals n!E form a decreasing sequence, with 012 = D.

@ n'2 #(0), if and only if Card(E) > n+ 1.

© IfS CE, then n!g C n!g.

Q If S is an n-universal subset of E, then n'2 = n!E.
If moreover D is Noetherian, then

@ For each maximal ideal m of D,

D D
nlg™ = (n!E) .
m
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Generalities

Generalized factorial ideals

Proposition

If E admits a Newton sequence ay, . .., a, then

nl2 = H (an — a;)D.

0<i<n
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Generalities

Generalized factorial ideals

Proposition
If E admits a Newton sequence ay, . .., a, then
nl2 = H (an — a;)D.
0<i<n

Not difficult to prove using the associated generalized binomials:

X
acnl —vk<n, a<a ) € D[X].
k
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Generalities

Generalized factorial ideals

Proposition
If E admits a Newton sequence ay, . .., a, then
nl2 = H (an — a;)D.
0<i<n

Not difficult to prove using the associated generalized binomials:

X
acnl —vk<n, a<a ) € D[X].
k

Corollary

If E admits a Newton sequence of length n, then, for each k < n,
K12 js a principal ideal
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Generalities

Generalized factorial ideals

Proposition
If E admits a Newton sequence ay, . .., a, then
nl2 = H (an — a;)D.
0<i<n

Not difficult to prove using the associated generalized binomials:

X
acnl —vk<n, a<a ) € D[X].
k

Corollary

If E admits a Newton sequence of length n, then, for each k < n,
KI2 is a principal ideal (k'R = To<;k(ak — ai)D).
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Generalities

Volume

Definition

The volume of S = {ag,a;,...,a,-1} is the principal ideal

Vol(S) = [] (a—ai)Dx

0<i<j<n
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Generalities

Volume

The volume of S = {ag,a;,...,a,-1} is the principal ideal
Vol(S) = [] (a—ai)Dx
0<i<j<n

v

Corollary

If S can be ordered as a Newton sequence, then

Vol(S) = 112.. . nl2.

Paul-Jean Cahen n-universal subsets and Newton sequences



Generalities

Volume

The volume of S = {ag,a;,...,a,-1} is the principal ideal
Vol(S) = [] (a—ai)Dx
0<i<j<n

v

Corollary

If S can be ordered as a Newton sequence, then

Vol(S) = 112.. . nl2.

Proof. Write H0§i<j§n(aj —aj) = ngkgn <H0§i<k(ak — a,-)) .O
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Generalities

Volume

If D is Noetherian, we can use the good localization properties:

Assume D is a Noetherian domain. If S is an n-locally Newton
orderable subset of E then

Vol(S) =112 . n12.
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Generalities

Volume

Definition

Let S ={ap,a1,...,an-1} C E.

We say that Vol(S) is minimal (in E) if,

for each T = {bo, b1,...,bp—1} C E, Vol(T) C Vol(S),
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Generalities

Volume

Definition

Let S ={ap,a1,...,an-1} C E.

We say that Vol(S) is minimal (in E) if,

for each T = {bo, b1,...,bp—1} C E, Vol(T) C Vol(S),
that is, [[o<;<;<n(aj — ai) divides [[o<;;<,(bj — bi).
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Generalities

Volume

Definition

Let S ={ap,a1,...,an-1} C E.

We say that Vol(S) is minimal (in E) if,

for each T = {bo, b1,...,bp—1} C E, Vol(T) C Vol(S),
that is, [[o<;<;<n(aj — ai) divides [[o<;;<,(bj — bi).

As [BFS] (for E = D and D a Dedekind domain):

Proposition

If Vol(S) is minimal, then S is an n-optimal subset of E.
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Generalities

Volume

Definition

Let S ={ap,a1,...,an-1} C E.

We say that Vol(S) is minimal (in E) if,

for each T = {bo, b1,...,bp—1} C E, Vol(T) C Vol(S),
that is, [[o<;<;<n(aj — ai) divides [[o<;;<,(bj — bi).

As [BFS] (for E = D and D a Dedekind domain):

Proposition

If Vol(S) is minimal, then S is an n-optimal subset of E.

Converse?
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Generalities

Volume

Definition

Let S ={ap,a1,...,an-1} C E.

We say that Vol(S) is minimal (in E) if,

for each T = {bo, b1,...,bp—1} C E, Vol(T) C Vol(S),
that is, [[o<;<;<n(aj — ai) divides [[o<;;<,(bj — bi).

As [BFS] (for E = D and D a Dedekind domain):

Proposition

If Vol(S) is minimal, then S is an n-optimal subset of E.

Converse? At least in Dedekind domains!.
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Dedekind domains

2-Dedekind domains

We first consider the local case.

@ V is a discrete valuation domain,
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Dedekind domains

2-Dedekind domains

We first consider the local case.

@ V is a discrete valuation domain,

@ v the corresponding valuation,
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Dedekind domains

2-Dedekind domains

We first consider the local case.
@ V is a discrete valuation domain,
@ v the corresponding valuation,

@ m the maximal ideal of V/,
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Dedekind domains

2-Dedekind domains

We first consider the local case.
@ V is a discrete valuation domain,
@ v the corresponding valuation,
@ m the maximal ideal of V/,
@ t a uniformizing element (that is, m = Vt, and v(t) = 1),
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Dedekind domains

2-Dedekind domains

We first consider the local case.

V is a discrete valuation domain,

v the corresponding valuation,
m the maximal ideal of V/,
t a uniformizing element (that is, m = Vi, and v(t) = 1),

q = Card(V//m) the cardinality (finite or infinite) of the
residue field,
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Dedekind domains

2-Dedekind domains

We first consider the local case.

V is a discrete valuation domain,

v the corresponding valuation,
m the maximal ideal of V/,
t a uniformizing element (that is, m = Vi, and v(t) = 1),

q = Card(V//m) the cardinality (finite or infinite) of the
residue field,

E is a subset of V.
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Dedekind domains

Bhargava's v-orderings

A v-ordering of E of length n (possibly with n = o)
is a sequence ag, a1, ..., an in E defined inductively as follows:
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Dedekind domains

Bhargava's v-orderings

A v-ordering of E of length n (possibly with n = o)
is a sequence ag, a1, ..., an in E defined inductively as follows:

@ ag is arbitrarily chosen,
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Dedekind domains

Bhargava's v-orderings

A v-ordering of E of length n (possibly with n = o)
is a sequence ag, a1, ..., an in E defined inductively as follows:

@ ag is arbitrarily chosen,

@ aj is chosen such that v(a; — ap) is minimal, that is

Vx € E, v(a; — ag) < v(x — ag),
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Dedekind domains

Bhargava's v-orderings

A v-ordering of E of length n (possibly with n = o)
is a sequence ag, a1, ..., an in E defined inductively as follows:

@ ag is arbitrarily chosen,

@ aj is chosen such that v(a; — ap) is minimal, that is
Vx € E, v(a1 — ag) < v(x — a0),

@ and so on,

k—1 k—1
Vx € E, v <H(ak - a,-)> <v (H(x — a,-)) ()
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Dedekind domains

Bhargava's v-orderings

ag, . .., ap are distinct if and only if Card(E) > n+ 1.
(our running assumption).

Paul-Jean Cahen n-universal subsets and Newton sequences



Dedekind domains

Bhargava's v-orderings

ag, . .., ap are distinct if and only if Card(E) > n+ 1.
(our running assumption).

(1) means that (;i) = [lo<ick ;i%‘? is integer-valued:
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Dedekind domains

Bhargava's v-orderings

ag, . .., ap are distinct if and only if Card(E) > n+ 1.
(our running assumption).

(1) means that (;i) = [lo<ick ;i%‘;’ is integer-valued:

@ A v-ordering of length n of E is nothing else than a Newton
sequence of length n of E.
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Dedekind domains

Bhargava's v-orderings

ag, . .., ap are distinct if and only if Card(E) > n+ 1.
(our running assumption).

(1) means that (;i) = [lo<ick ;i%‘;’ is integer-valued:

@ A v-ordering of length n of E is nothing else than a Newton
sequence of length n of E.

e E always admits a Newton sequence of length n.
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Dedekind domains

Bhargava's v-orderings

ag, . .., ap are distinct if and only if Card(E) > n+ 1.
(our running assumption).

(1) means that (fk) = [lo<ick fk%‘;’ is integer-valued:

@ A v-ordering of length n of E is nothing else than a Newton
sequence of length n of E.

e E always admits a Newton sequence of length n.
@ v-orderings are not unique, but in (1)

v (H,’-Zol(ak - a,-)) does not depend on the v-ordering.
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Dedekind domains

Bhargava's v-orderings

ag, . .., ap are distinct if and only if Card(E) > n+ 1.
(our running assumption).

(1) means that (fk) = [lo<ick fk%‘;’ is integer-valued:

@ A v-ordering of length n of E is nothing else than a Newton
sequence of length n of E.

e E always admits a Newton sequence of length n.
@ v-orderings are not unique, but in (1)

v (H,’-Zol(ak - a,-)) does not depend on the v-ordering.

Indeed
nlf = H (an — a) V.

0<i<n
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Dedekind domains

Characterization of n-universal subsets (local case)

Let S be a subset of E. The following assertions are equivalent.
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Dedekind domains

Characterization of n-universal subsets (local case)

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.
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Dedekind domains

Characterization of n-universal subsets (local case)

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(i) S contains a Newton sequence of length n of E.

Paul-Jean Cahen n-universal subsets and Newton sequences



Dedekind domains

Characterization of n-universal subsets (local case)

Proposition

Let S be a subset of E. The following assertions are equivalent.
(i) S is an n-universal subset of E.

(i) S contains a Newton sequence of length n of E.

(iii) S contains an n-optimal subset of E.
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Dedekind domains

Characterization of n-universal subsets (local case)

Proposition

Let S be a subset of E. The following assertions are equivalent.
(i) S is an n-universal subset of E.

(i) S contains a Newton sequence of length n of E.

(iii) S contains an n-optimal subset of E.

Proof. For (i) = (ii), consider a Newton sequence of S and use
transitivity.
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Dedekind domains

Characterization of n-universal subsets (local case)

Proposition

Let S be a subset of E. The following assertions are equivalent.
(i) S is an n-universal subset of E.

(i) S contains a Newton sequence of length n of E.

(iii) S contains an n-optimal subset of E.

Proof. For (i) = (ii), consider a Newton sequence of S and use
transitivity. All other implications hold in any domain D. [
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Dedekind domains

Characterization of n-universal subsets (global case)

We now turn to a Dedekind domain D and a subset E of D,
always with Card(E) > n+ 1.
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Dedekind domains

Characterization of n-universal subsets (global case)

We now turn to a Dedekind domain D and a subset E of D,
always with Card(E) > n+ 1.
Each maximal ideal m is associated to a discrete valuation v,.
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Dedekind domains

Characterization of n-universal subsets (global case)

We now turn to a Dedekind domain D and a subset E of D,
always with Card(E) > n+ 1.
Each maximal ideal m is associated to a discrete valuation v,.

Definition

An m-ordering of length n of E is a vy,-ordering ag, . .., an,
that is, a Newton sequence of E with respect to Dy,.
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Dedekind domains

Characterization of n-universal subsets (global case)

We now turn to a Dedekind domain D and a subset E of D,
always with Card(E) > n+ 1.
Each maximal ideal m is associated to a discrete valuation v,.

Definition

An m-ordering of length n of E is a vy,-ordering ag, . .., an,
that is, a Newton sequence of E with respect to Dy,.

Corollary

Let S be a subset of E. The following assertions are equivalent.
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Dedekind domains

Characterization of n-universal subsets (global case)

We now turn to a Dedekind domain D and a subset E of D,
always with Card(E) > n+ 1.
Each maximal ideal m is associated to a discrete valuation v,.

Definition

An m-ordering of length n of E is a vy,-ordering ag, . .., an,
that is, a Newton sequence of E with respect to Dy,.

Corollary

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.
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Dedekind domains

Characterization of n-universal subsets (global case)

We now turn to a Dedekind domain D and a subset E of D,
always with Card(E) > n+ 1.
Each maximal ideal m is associated to a discrete valuation v,.

An m-ordering of length n of E is a vy,-ordering ag, . .., an,
that is, a Newton sequence of E with respect to Dy,.

Corollary

Let S be a subset of E. The following assertions are equivalent.

(i) S is an n-universal subset of E.

(ii) for each m, S contains an m-ordering of length n of E.
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Dedekind domains

Characterization of n-universal subsets (global case)

We now turn to a Dedekind domain D and a subset E of D,
always with Card(E) > n+ 1.
Each maximal ideal m is associated to a discrete valuation v,.

Definition

An m-ordering of length n of E is a vy,-ordering ag, . .., an,
that is, a Newton sequence of E with respect to Dy,.

Corollary

Let S be a subset of E. The following assertions are equivalent.
(i) S is an n-universal subset of E.
(ii) for each m, S contains an m-ordering of length n of E.

(iii) for each m, S contains an n-optimal subset of E with respect
to Dy,.
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Dedekind domains

Characterization of n-optimal subsets

Let S be a subset of E with Card(S) = n+ 1. The following
assertions are equivalent.
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Dedekind domains

Characterization of n-optimal subsets

Let S be a subset of E with Card(S) = n+ 1. The following
assertions are equivalent.

(i) S is an n-optimal subset of E,
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Dedekind domains

Characterization of n-optimal subsets

Let S be a subset of E with Card(S) = n+ 1. The following
assertions are equivalent.

(i) S is an n-optimal subset of E,

(i) S is an n-locally Newton orderable subset of E,
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Dedekind domains

Characterization of n-optimal subsets

Theorem

Let S be a subset of E with Card(S) = n+ 1. The following
assertions are equivalent.

(i) S is an n-optimal subset of E,
(i) S is an n-locally Newton orderable subset of E,

(iii) Vol(S) =112...n2,
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Dedekind domains

Characterization of n-optimal subsets

Theorem
Let S be a subset of E with Card(S) = n+ 1. The following
assertions are equivalent.

(i) S is an n-optimal subset of E,

(i) S is an n-locally Newton orderable subset of E,
(iii) Vol(S) =112...n2,
(iv) Vol(S) is minimal in E.
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Dedekind domains

Characterization of n-optimal subsets

Theorem

Let S be a subset of E with Card(S) = n+ 1. The following
assertions are equivalent.

(i) S is an n-optimal subset of E,

(i) S is an n-locally Newton orderable subset of E,
(iii) Vol(S) =112...n2,
(iv) Vol(S) is minimal in E.

Only (iii) implies (iv) needs a proof x:
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Dedekind domains

Characterization of n-optimal subsets

Let T ={by,..., by} be a subset of E. Then

Vol(T) Cc112... &,

This is a result of Bhargava (in another wording).
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Dedekind domains

Characterization of n-optimal subsets

Let T ={by,..., by} be a subset of E. Then

Vol(T) Cc112... &,

This is a result of Bhargava (in another wording).
Proof. T is obviously an n-optimal subset of itself.
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Dedekind domains

Characterization of n-optimal subsets

Let T ={by,..., by} be a subset of E. Then

Vol(T) Cc112... &,

This is a result of Bhargava (in another wording).
Proof. T is obviously an n-optimal subset of itself.
Thus T can locally be ordered as a Newton sequence of
itself.
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Dedekind domains

Characterization of n-optimal subsets

Let T ={by,..., by} be a subset of E. Then

Vol(T) Cc112... &,

This is a result of Bhargava (in another wording).
Proof. T is obviously an n-optimal subset of itself.
Thus T can locally be ordered as a Newton sequence of
itself. Therefore

Vol(T)=112...m2.
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Dedekind domains

Characterization of n-optimal subsets

Let T ={by,..., by} be a subset of E. Then

Vol(T) Cc112... &,

This is a result of Bhargava (in another wording).
Proof. T is obviously an n-optimal subset of itself.
Thus T can locally be ordered as a Newton sequence of
itself. Therefore

Vol(T)=112...m2.

As T C E, k2 C kI2| for each k. O
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Dedekind domains

DEMES

First, consider the ring of integers of a quadratic number field.
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Dedekind domains

DEMES

First, consider the ring of integers of a quadratic number field.
From a previous study of maximal lengths of Newton sequences:

Adam, P.-J. Cahen, Newtonian and Schinzel quadratic fields, J. Pure and Appl.
Algebra 215 (2011) 1902-1918.
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Dedekind domains

DEMES

First, consider the ring of integers of a quadratic number field.
From a previous study of maximal lengths of Newton sequences:

Adam, P.-J. Cahen, Newtonian and Schinzel quadratic fields, J. Pure and Appl.
Algebra 215 (2011) 1902-1918.

Let Ok be the ring of integers of K = Q(+/d).
There is no 2-optimal subset of Ok but for

d=-3,-1,2,3,5, ord=1 (mod 8).
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Dedekind domains

DEMES

Second example, a (rank-one) non-discrete valuation domain V.
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Dedekind domains

DEMES

Second example, a (rank-one) non-discrete valuation domain V.
It is well known that

Int(V) = V[X], and for all n, m is an n-universal subset of V .x |
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Dedekind domains

DEMES

Second example, a (rank-one) non-discrete valuation domain V.
It is well known that

Int(V) = V[X], and for all n, m is an n-universal subset of V .x )

For n > 1, there is no finite n-universal subset of m,
a fortiori no n-optimal subset.
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Dedekind domains

DEMES

Second example, a (rank-one) non-discrete valuation domain V.
It is well known that

Int(V) = V[X], and for all n, m is an n-universal subset of V .x )

For n > 1, there is no finite n-universal subset of m,
a fortiori no n-optimal subset. (n = 0x)
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Dedekind domains

DEMES

Second example, a (rank-one) non-discrete valuation domain V.
It is well known that

Int(V) = V[X], and for all n, m is an n-universal subset of V .x )

For n > 1, there is no finite n-universal subset of m,
a fortiori no n-optimal subset. (n = 0x)

Proof. Let xp € S be such that Vx € S, v(xp) < v(x),
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Dedekind domains

DEMES

Second example, a (rank-one) non-discrete valuation domain V.
It is well known that

Int(V) = V[X], and for all n, m is an n-universal subset of V .x )

For n > 1, there is no finite n-universal subset of m,
a fortiori no n-optimal subset. (n = 0x)

Proof. Let xg € S be such that Vx € S, v(xg) < v(x),
then consider the degree one polynomial X /xg. O
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Dedekind domains

DEMES

Second example, a (rank-one) non-discrete valuation domain V.
It is well known that

Int(V) = V[X], and for all n, m is an n-universal subset of V .x )

For n > 1, there is no finite n-universal subset of m,
a fortiori no n-optimal subset. (n = 0x)

Proof. Let xg € S be such that Vx € S, v(xg) < v(x),
then consider the degree one polynomial X /xg. O

Remark

For n > g = Card(V//m), there is no finite (let alone optimal)
n-universal subset of V.
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Dedekind domains

DEMES

Second example, a (rank-one) non-discrete valuation domain V.
It is well known that

Int(V) = V[X], and for all n, m is an n-universal subset of V .x )

For n > 1, there is no finite n-universal subset of m,
a fortiori no n-optimal subset. (n = 0x)

Proof. Let xg € S be such that Vx € S, v(xg) < v(x),
then consider the degree one polynomial X /xg. O

For n > g = Card(V//m), there is no finite (let alone optimal)
n-universal subset of V. (But for n < g there exists a Newton
sequence of length n of V).
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Dedekind domains

DEMES

Last, D = Fa[[x2, x%]] (I the field with 2 elements).
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Dedekind domains

DEMES

Last, D = Fa[[x2, x%]] (I the field with 2 elements).

D is a pseudo-valuation domain (contained in V = F»[[x]]).

It is a one-dimensional Noetherian local domain,

with maximal ideal m = (x2, x3).
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Dedekind domains

DEMES

Last, D = Fa[[x2, x%]] (I the field with 2 elements).

D is a pseudo-valuation domain (contained in V = F»[[x]]).
It is a one-dimensional Noetherian local domain,
with maximal ideal m = (x2, x3).

Set E = {0,1,x%,x3).
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Dedekind domains

DEMES

Last, D = Fa[[x2, x%]] (I the field with 2 elements).

D is a pseudo-valuation domain (contained in V = F»[[x]]).
It is a one-dimensional Noetherian local domain,
with maximal ideal m = (x2, x3).

Set E = {0,1,x%,x3).

o E /s a 3-universal subset of D.
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Dedekind domains

DEMES

Last, D = Fa[[x2, x%]] (I the field with 2 elements).

D is a pseudo-valuation domain (contained in V = F»[[x]]).
It is a one-dimensional Noetherian local domain,
with maximal ideal m = (x2, x3).

Set E = {0,1,x%,x3).

o E /s a 3-universal subset of D.

@ There is no 2-optimal subset of E,
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Dedekind domains

DEMES

Last, D = Fa[[x2, x%]] (I the field with 2 elements).

D is a pseudo-valuation domain (contained in V = F»[[x]]).
It is a one-dimensional Noetherian local domain,
with maximal ideal m = (x2, x3).

Set E = {0,1,x%,x3).

o E /s a 3-universal subset of D.

@ There is no 2-optimal subset of E, nor of D.
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Dedekind domains

DEMES

Last, D = Fa[[x2, x%]] (I the field with 2 elements).

D is a pseudo-valuation domain (contained in V = F»[[x]]).
It is a one-dimensional Noetherian local domain,
with maximal ideal m = (x2, x3).

Set E = {0,1,x%,x3).

o E is a 3-universal subset of D.
@ There is no 2-optimal subset of E, nor of D.
o 112212312 C vol(E) = (x” + x®)D.
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Almost strong Newton sequences

3 - Almost strong Newton sequences

In all generality

A sequence {a,} (finite or infinite) in a subset E of the domain D,
is said to be a strong Newton sequence of E if,
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Almost strong Newton sequences

3 - Almost strong Newton sequences

In all generality

Definition

A sequence {a,} (finite or infinite) in a subset E of the domain D,
is said to be a strong Newton sequence of E if for each k,
every set of k + 1 consecutive terms is a k-optimal subset of E.
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Almost strong Newton sequences

3 - Almost strong Newton sequences

In all generality

Definition

A sequence {a,} (finite or infinite) in a subset E of the domain D,
is said to be a strong Newton sequence of E if for each k,
every set of k + 1 consecutive terms is a k-optimal subset of E.

Equivalently:

For each r,
the truncated sequence {ap}n>, is a Newton sequence of E.
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Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains,
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Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case.
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Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case.
Just as a Newton sequence is but a v-ordering,
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Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case.
Just as a Newton sequence is but a v-ordering,

A strong Newton sequence is but a strong v-ordering:
for each r, the truncated sequence {ap}n>, is a v-ordering of E.
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Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case.
Just as a Newton sequence is but a v-ordering,

A strong Newton sequence is but a strong v-ordering:
for each r, the truncated sequence {ap}n>, is a v-ordering of E.

There exist infinite strong v-orderings of V:
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Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case.
Just as a Newton sequence is but a v-ordering,

A strong Newton sequence is but a strong v-ordering:
for each r, the truncated sequence {ap}n>, is a v-ordering of E.

There exist infinite strong v-orderings of V:
The Very well distributed and well ordered sequences
Hersmoortel (1969).
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Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we first look at the local case.
Just as a Newton sequence is but a v-ordering,

A strong Newton sequence is but a strong v-ordering:
for each r, the truncated sequence {ap}n>, is a v-ordering of E.

There exist infinite strong v-orderings of V:
The Very well distributed and well ordered sequences
Hersmoortel (1969).

We can assume the residue field is finite. *
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Almost strong Newton sequences

V.W.D.W.O. sequences

As before.
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Almost strong Newton sequences

V.W.D.W.O. sequences

As before. In particular, Card(V/m) = q,
t a uniformizing element: v(t) = 1.
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Almost strong Newton sequences

V.W.D.W.O. sequences

As before. In particular, Card(V/m) = q,
t a uniformizing element: v(t) = 1. Moreover, for each m € N,
vq(m) denotes the largest k such that g divides m.
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Almost strong Newton sequences

V.W.D.W.O. sequences

Notations
As before. In particular, Card(V/m) = q,

t a uniformizing element: v(t) = 1. Moreover, for each m € N,
vq(m) denotes the largest k such that g divides m.

Proposition

The following assertions are equivalent:

(i) Vn# m, v(an — am) = vg(n — m). %
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Almost strong Newton sequences

V.W.D.W.O. sequences

Notations
As before. In particular, Card(V/m) = q,

t a uniformizing element: v(t) = 1. Moreover, for each m € N,
vq(m) denotes the largest k such that g divides m.

Proposition

The following assertions are equivalent:

(i) Vn# m, v(an — am) = vg(n — m). %

(i) Vk, each g* consecutive terms form a full set of
representatives (mod mk).
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Almost strong Newton sequences

V.W.D.W.O. sequences

Notations

As before. In particular, Card(V/m) = q,
t a uniformizing element: v(t) = 1. Moreover, for each m € N,
vq(m) denotes the largest k such that g divides m.

Proposition

The following assertions are equivalent:

(i) Vn# m, v(an — am) = vg(n — m). %

(i) Vk, each g* consecutive terms form a full set of
representatives (mod mk).

(i) {an}n>0 is a strong v-ordering of V.
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Almost strong Newton sequences

V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in
Anneaux de Bhargava, Comm. in Algebra 32 (2004) 3043-3069.
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Almost strong Newton sequences

V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in
Anneaux de Bhargava, Comm. in Algebra 32 (2004) 3043-3069.

Lemma

Recipe to obtain a strong v-ordering {ap}n>0 of V:
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Almost strong Newton sequences

V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in
Anneaux de Bhargava, Comm. in Algebra 32 (2004) 3043-3069.

Lemma

Recipe to obtain a strong v-ordering {ap}n>0 of V:
e take ag = 0,
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Almost strong Newton sequences

V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in
Anneaux de Bhargava, Comm. in Algebra 32 (2004) 3043-3069.

Lemma

Recipe to obtain a strong v-ordering {ap}n>0 of V:
e take ag = 0,
e for0 < n < q, take a, % a,—1 (mod m), x*
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Almost strong Newton sequences

V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in
Anneaux de Bhargava, Comm. in Algebra 32 (2004) 3043-3069.

Lemma

Recipe to obtain a strong v-ordering {ap}n>0 of V:
e take ag = 0,

e for0 < n < q, take a, % a,—1 (mod m), x*

o for g¥ < n < gkt take

an = ait" +a, (mod mkt1),

where n = igk + r, with r < g(euclidian division) and i < gx.

Paul-Jean Cahen n-universal subsets and Newton sequences



Almost strong Newton sequences

V.W.D.W.O. sequences

Julie Yeramian proposed an inductive construction in
Anneaux de Bhargava, Comm. in Algebra 32 (2004) 3043-3069.

Lemma

Recipe to obtain a strong v-ordering {ap}n>0 of V:
e take ag = 0,

e for0 < n < q, take a, % a,—1 (mod m), x*

o for g¥ < n < gkt take

an = ait" +a, (mod mkt1),

where n = igk + r, with r < g(euclidian division) and i < gx.

Note this recipe fits for V /m infinite. x.
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Almost strong Newton sequence

Let D be a Dedekind domain. There is a sequence {an}n>0 in D
such that,

@ for each maximal ideal m of D, remove at most one term
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Almost strong Newton sequence

Let D be a Dedekind domain. There is a sequence {an}n>0 in D
such that,

© for each maximal ideal m of D, remove at most one term
you get a strong m-ordering!
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Almost strong Newton sequence

Let D be a Dedekind domain. There is a sequence {an}n>0 in D
such that,

© for each maximal ideal m of D, remove at most one term
you get a strong m-ordering!

@ Any n+ 2 consecutive terms form an n-universal subset of D.

o’
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Almost strong Newton sequence

Let D be a Dedekind domain. There is a sequence {an}n>0 in D
such that,

© for each maximal ideal m of D, remove at most one term
you get a strong m-ordering!

@ Any n+ 2 consecutive terms form an n-universal subset of D.

o’

Postpone 1, 2 follows:
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Almost strong Newton sequences

Almost strong Newton sequence

Let D be a Dedekind domain. There is a sequence {an}n>0 in D
such that,

© for each maximal ideal m of D, remove at most one term
you get a strong m-ordering!

@ Any n+ 2 consecutive terms form an n-universal subset of D.

o’

Postpone 1, 2 follows:

Proof. Consider n+ 2 consecutive terms of {a,}n>o0.
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Almost strong Newton sequence

Theorem

Let D be a Dedekind domain. There is a sequence {an}n>0 in D
such that,

© for each maximal ideal m of D, remove at most one term
you get a strong m-ordering!

@ Any n+ 2 consecutive terms form an n-universal subset of D.

o’

Postpone 1, 2 follows:

Proof. Consider n+ 2 consecutive terms of {a,}n>o0.
For each m, remove at most one term,
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Almost strong Newton sequence

Theorem

Let D be a Dedekind domain. There is a sequence {an}n>0 in D
such that,

© for each maximal ideal m of D, remove at most one term
you get a strong m-ordering!

@ Any n+ 2 consecutive terms form an n-universal subset of D.

Postpone 1, 2 follows:

Proof. Consider n+ 2 consecutive terms of {a,}n>o0.

For each m, remove at most one term,

you are left with n + 1 consecutive terms of a strong Newton
sequence of Dy,
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Almost strong Newton sequences

Almost strong Newton sequence

Theorem

Let D be a Dedekind domain. There is a sequence {an}n>0 in D
such that,

© for each maximal ideal m of D, remove at most one term
you get a strong m-ordering!

@ Any n+ 2 consecutive terms form an n-universal subset of D.

Postpone 1, 2 follows:

Proof. Consider n+ 2 consecutive terms of {a,}n>o0.

For each m, remove at most one term,

you are left with n + 1 consecutive terms of a strong Newton
sequence of Dy, thus with an n-optimal subset of D,,. O
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Almost strong Newton sequence

Proof of 1. We build {a,},>0 inductively, so that, for each m, it
(almost) meets the congruence conditions of Julie Yeramian's
construction.
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Proof of 1. We build {a,},>0 inductively, so that, for each m, it
(almost) meets the congruence conditions of Julie Yeramian's
construction. We use the Chinese remainder theorem.
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Proof of 1. We build {a,},>0 inductively, so that, for each m, it
(almost) meets the congruence conditions of Julie Yeramian's
construction. We use the Chinese remainder theorem.

o First take ag = 0.
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Almost strong Newton sequence

Proof of 1. We build {a,},>0 inductively, so that, for each m, it
(almost) meets the congruence conditions of Julie Yeramian's
construction. We use the Chinese remainder theorem.

o First take ag = 0.

As we use the Chinese remainder theorem, choose (arbitrarily) a
finite set My of maximal ideals.
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Almost strong Newton sequence

Proof of 1. We build {a,},>0 inductively, so that, for each m, it
(almost) meets the congruence conditions of Julie Yeramian's
construction. We use the Chinese remainder theorem.

o First take ag = 0.

As we use the Chinese remainder theorem, choose (arbitrarily) a
finite set My of maximal ideals.

e Take a; to satisfy Julie's conditions with respect to each m € My.
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Almost strong Newton sequence

Proof of 1. We build {a,},>0 inductively, so that, for each m, it
(almost) meets the congruence conditions of Julie Yeramian's
construction. We use the Chinese remainder theorem.

o First take ag = 0.

As we use the Chinese remainder theorem, choose (arbitrarily) a
finite set My of maximal ideals.

e Take a; to satisfy Julie's conditions with respect to each m € My.

In fact, ay is suitable for all but finitely many maximal ideals. x
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Almost strong Newton sequence

Let M, be the finite set of offending maximal ideals.
Observe that M> does not meet M.
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Observe that M> does not meet M.
Discard a; for each m € Ms.
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Observe that M> does not meet M.
Discard a; for each m € Ms.

e Take a» so that it satisfies Julie’s conditions,

Paul-Jean Cahen n-universal subsets and Newton sequences



Almost strong Newton sequences

Almost strong Newton sequence

Let M, be the finite set of offending maximal ideals.
Observe that M> does not meet M.
Discard a; for each m € Ms.

e Take a» so that it satisfies Julie’s conditions,

@ with respect to ag, a; for each m € My,
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Let M, be the finite set of offending maximal ideals.
Observe that M> does not meet M.
Discard a; for each m € Ms.

e Take ay so that it satisfies Julie’s conditions,
@ with respect to ag, a; for each m € My,

@ with respect to ag only for each m € Mj.
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Let M, be the finite set of offending maximal ideals.
Observe that M> does not meet M.
Discard a; for each m € Ms.

e Take ay so that it satisfies Julie’s conditions,
@ with respect to ag, a; for each m € My,

@ with respect to ag only for each m € Mj.

Again, ap suits all maximal ideals but those in a finite set Mj.
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Let M, be the finite set of offending maximal ideals.
Observe that M> does not meet M.
Discard a; for each m € Ms.

e Take ay so that it satisfies Julie’s conditions,
@ with respect to ag, a; for each m € My,

@ with respect to ag only for each m € Mj.

Again, ap suits all maximal ideals but those in a finite set Mj.
Discard ap for each m € Mj.
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Let M, be the finite set of offending maximal ideals.
Observe that M> does not meet M.
Discard a; for each m € Ms.

e Take a; so that it satisfies Julie's conditions,
@ with respect to ag, a; for each m € My,
@ with respect to ag only for each m € Mj.

Again, ap suits all maximal ideals but those in a finite set Mj.
Discard ap for each m € Mj.

e And so on ... with more and more primes at each step! (]
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Subsets

The situation is more intricate for subsets, even in the local case:
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Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V' admits a strong v-ordering if
and only if it is regular. J
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The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V' admits a strong v-ordering if
and only if it is regular. J

The notion of regularity was introduced by Yvette Amice in 1964.
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The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V' admits a strong v-ordering if
and only if it is regular. J

The notion of regularity was introduced by Yvette Amice in 1964.
It is a (somewhat technical) property of repartition.
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Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V' admits a strong v-ordering if
and only if it is regular. J

The notion of regularity was introduced by Yvette Amice in 1964.
It is a (somewhat technical) property of repartition.
Here is the definition in case the residue field is finite:

Definition

A subset E of V is regular when, for each k, each class modulo m*
that meets E contains the same number of classes modulo mk+!
that meets E.
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Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V' admits a strong v-ordering if
and only if it is regular. J

The notion of regularity was introduced by Yvette Amice in 1964.
It is a (somewhat technical) property of repartition.
Here is the definition in case the residue field is finite:

Definition

A subset E of V is regular when, for each k, each class modulo m*
that meets E contains the same number of classes modulo mk+!
that meets E.

We can generalize Julie's construction to build inductively strong
v-orderings of regular subsets by congruence conditions.
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Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are
locally regular.
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In Dedekind domains, we thus restrict ourselves to subsets that are
locally regular. For instance:

A finite union of classes modulo an ideal is locally regular. J
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Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are
locally regular. For instance:

A finite union of classes modulo an ideal is locally regular. J

Yet we were able to extend our construction to one class only:
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Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are
locally regular. For instance:

A finite union of classes modulo an ideal is locally regular. J

Yet we were able to extend our construction to one class only:

Theorem

Let E be a class modulo an ideal. There is a sequence {ap}n>0 in
E such that,

@ for each maximal ideal m, the sequence obtained by removing
at most one term is a strong m-ordering of E.
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Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are
locally regular. For instance:

A finite union of classes modulo an ideal is locally regular. J

Yet we were able to extend our construction to one class only:

Theorem

Let E be a class modulo an ideal. There is a sequence {ap}n>0 in
E such that,

@ for each maximal ideal m, the sequence obtained by removing
at most one term is a strong m-ordering of E.

@ Any n+ 2 consecutive terms form an n-universal subset of E.
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Prime numbers

We finally consider the set P formed by the prime numbers in Z.
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Prime numbers

We finally consider the set P formed by the prime numbers in Z.
P is not locally regular subset, but almost:

For each p, the p-adic closure of P’ in Zp) is {p} U Zp) \ PZp)- J
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Prime numbers

We finally consider the set P formed by the prime numbers in Z.
P is not locally regular subset, but almost:

For each p, the p-adic closure of P’ in Zp) is {p} U Zp) \ PZp)- J

As Zp) \ PZp) is a union of classes modulo p, it is regular.
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Prime numbers

We finally consider the set P formed by the prime numbers in Z.
P is not locally regular subset, but almost:

For each p, the p-adic closure of P’ in Zp) is {p} U Zp) \ PZp)- J

As Zp) \ PZp) is a union of classes modulo p, it is regular.

For each integer m, P~ , = {p € P| p > m}.

Proposition

There is a sequence in P, such that,
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Prime numbers

We finally consider the set P formed by the prime numbers in Z.
P is not locally regular subset, but almost:

For each p, the p-adic closure of P’ in Zp) is {p} U Zp) \ PZp)- J

As Zp) \ PZp) is a union of classes modulo p, it is regular.

For each integer m, P~ , = {p € P| p > m}.

Proposition

There is a sequence in P~ ,, such that,for each n < m,
any n+ 2 consecutive terms form an n-universal subset of P .
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Prime numbers

A last one!l
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Prime numbers

A last one!l

Proposition

For each n, P admits an n-universal subset S with

Card(S) =n+7n(n+1).

(As usual, 7(n) denotes the number of primes p < n.) *

Paul-Jean Cahen n-universal subsets and Newton sequences



Almost strong Newton sequences

The end

Thank you for your attention.
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