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The sequence of integers

The sequence {n}n≥0 is remarkable for integer-valued polynomials.
One can test polynomials of degree at most n on 0, 1, . . . , n:

f (0), f (1), . . . , f (n) ∈ Z =⇒ f (Z) ⊆ Z.

Indeed, one can (uniquely) write

f = α0 + α1X + α2

(
X

2

)
+ . . .+ αn

(
X

n

)
,

where

(
X

k

)
=

∏
0≤i<k(X − i)

k!
,

and then compute the αk 's in term of f (0), f (1), . . . f (n).
One says {n}n≥0 is a Newton sequence.
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The sequence of integers

In fact this sequence is even more remarkable:
Considering f (X − k), one can test f on n+ 1 consecutive integers!

One says {n}n≥0 is a strong Newton sequence.

Unfortunately, in more general settings, there are often no strong
Newton sequences (let alone strong ones!), either for

integer-valued polynomials on the ring OK of integers of a
number �eld K , ∗
integer-valued polynomials on a subset (of Z, or a domain D.)
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De�nitions and notations

Notations

Let D be a domain with quotient �eld K .

If E is a subset of D,

Int(E ,D) = {f ∈ K [X ] | f (E ) ⊆ D}

denotes the ring of integer-valued polynomials on E
(with respect to D).

One simply writes Int(D) for the ring Int(D,D) of
integer-valued polynomials on D.
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De�nitions and notations

We can test integer-valued polynomials on subsets:

De�nition

A subset S of E is said to be an n-universal subset of E (with
respect to D) if, for each f ∈ K [X ] with deg(f ) ≤ n,

f (S) ⊆ D =⇒ f (E ) ⊆ D.

That is, f ∈ Int(S ,D)⇐⇒ f ∈ Int(E ,D).∗

If S is an n-universal subset S of E then Card(S) ≥ n + 1.

By Lagrange interpolation (of course if Card(E ) ≥ n + 1. ∗)
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De�nitions and notations

De�nition

An n-universal subset S such that Card(S) = n + 1 is called
an n-optimal subset (of E , with respect to D).

De�nition

A Newton sequence of length n of E is a sequence a0, . . . , an in E
such that, for each k ≤ n,
{a0, . . . , ak} is a k-optimal subset of E .

Its terms must be distinct (we assume, Card(E ) ≥ n + 1).

There may be no n-optimal subset, a fortiori no Newton sequence!
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What we are up to

We are inspired by [BFS]:
Simultaneous p-orderings and minimising volumes in number �elds.
J. Byszewski, M. Fra�czyk, and A. Szumowicz,
arXiv:1506.02696 [math.NT], 8 Jun. 2015.

They study n-universal subsets of a Dedekind domain D.

We wish to

generalize their results to n-universal subsets of a subset E of D
(rather than D itself),

show one can always obtain almost strong Newton sequences of Dedekind
domains.
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1- Generalities

Throughout this section,
E is a subset of a domain D (with quotient �eld K ).
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Trivial results

By de�nition an n-universal subset is k-universal for each k ≤ n.∗

Proposition (Transitivity)

Let T ⊆ S ⊆ E . Then T is an n-universal subset of E , if and only if

T is an n-universal subset of S , and S is an n-universal subset of E .

Corollary

Let S be an n-universal subset of E . Then,

1 for each k ≤ n, a k-universal (resp. k-optimal) subset of S ,
is a k-universal (resp. k-optimal) subset of E .

2 a Newton sequence of length n of S
is a Newton sequence of length n of E .
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Trivial results

Proposition

Let S be a subset of E . Each one of the following assertions implies

the next one.

(i) S contains a Newton sequence of length n of E .

(ii) S contains an n-optimal subset of E .

(iii) S is an n-universal subset of E .

The converse of each implication does not hold in general: ∗
for instance an n-optimal subset may fail to contain a k-optimal
subset for some k < n.
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Testing polynomials

As in [BFS]:

Proposition

S = {a0, a1, . . . , an−1} is an n-optimal subset of E if and only if,

for each k, the Lagrange interpolation polynomial

Qk =
∏
j 6=k

X − aj
ak − aj

is integer-valued on E .
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Testing polynomials

De�nition

The generalized binomials associated to a sequence a0, . . . , an in E
(with distinct terms) are the polynomials(

X

a0

)
= 1, and, for 1 ≤ k ≤ n,

(
X

ak

)
=
∏

0≤i<k

X − ai
ak − ai

,

Proposition

a0, a1, . . . , an−1 is a Newton sequence of length n of E
if and only, if, for each k ≤ n,

(X
ak

)
is integer-valued on E .
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Localization

Lemma

If S is an n-universal subset of E (resp. of D) with respect to D,
and if either S is �nite or D is Noetherian,

then S is an n-universal subset of E (resp. of T−1D) with respect

to T−1D.

[BFS] gives it as trivial (without hypothesis).
But there are counterexamples in the general case.

Theorem

S is an n-optimal subset of E (resp. of D) with respect to D
if and only if, for each maximal ideal m of D,

S is an n-optimal subset of E (resp. of Dm) with respect to Dm.
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Localization

De�nition

We say S is an n-locally Newton orderable subset of E if,
for each maximal ideal m of D, S can be ordered as a Newton
sequence of length n of E with respect to Dm.

Corollary

An n-locally Newton orderable subset is an n-optimal subset.

The converse holds if D is a Dedekind domain ∗.
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Generalized factorial ideals

De�nition

The nth generalized factorial ideal of E (with respect to D) is

n!DE = {a ∈ D | ∀f ∈ Int(E ,D), deg(f ) ≤ n, af ∈ D[X ]}.

In case E = D, one simply writes n!D for n!DD .
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Generalized factorial ideals

Proposition

1 The ideals n!DE form a decreasing sequence, with 0!DE = D.

2 n!DE 6= (0), if and only if Card(E ) ≥ n + 1.

3 If S ⊆ E , then n!DS ⊆ n!DE .

4 If S is an n-universal subset of E , then n!DS = n!DE .

If moreover D is Noetherian, then

6 For each maximal ideal m of D,

n!Dm
E =

(
n!DE

)
m
.
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Generalized factorial ideals

Proposition

If E admits a Newton sequence a0, . . . , an then

n!DE =
∏

0≤i<n

(an − ai )D.

Not di�cult to prove using the associated generalized binomials:

a ∈ n!DE ⇐⇒ ∀k ≤ n, a

(
X

ak

)
∈ D[X ].

Corollary

If E admits a Newton sequence of length n, then, for each k ≤ n,
k!DE is a principal ideal (k!DE =

∏
0≤i<k(ak − ai )D).
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Volume

De�nition

The volume of S = {a0, a1, . . . , an−1} is the principal ideal

Vol(S) =
∏

0≤i<j≤n
(aj − ai )D.∗

Corollary

If S can be ordered as a Newton sequence, then

Vol(S) = 1!DE . . . n!
D
E .

Proof. Write
∏

0≤i<j≤n(aj − ai ) =
∏

1≤k≤n

(∏
0≤i<k(ak − ai )

)
. �
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Volume

If D is Noetherian, we can use the good localization properties:

Corollary

Assume D is a Noetherian domain. If S is an n-locally Newton

orderable subset of E then

Vol(S) = 1!DE . . . n!
D
E .
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Volume

De�nition

Let S = {a0, a1, . . . , an−1} ⊆ E .
We say that Vol(S) is minimal (in E ) if,
for each T = {b0, b1, . . . , bn−1} ⊆ E , Vol(T ) ⊆ Vol(S),
that is,

∏
0≤i<j≤n(aj − ai ) divides

∏
0≤i<j≤n(bj − bi ).

As [BFS] (for E = D and D a Dedekind domain):

Proposition

If Vol(S) is minimal, then S is an n-optimal subset of E .

Converse? At least in Dedekind domains!.
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2-Dedekind domains

We �rst consider the local case.

Notations

V is a discrete valuation domain,

v the corresponding valuation,

m the maximal ideal of V ,

t a uniformizing element (that is, m = Vt, and v(t) = 1),

q = Card(V /m) the cardinality (�nite or in�nite) of the
residue �eld,

E is a subset of V .
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Bhargava's v -orderings

De�nition

A v -ordering of E of length n (possibly with n =∞)
is a sequence a0, a1, . . . , an in E de�ned inductively as follows:

a0 is arbitrarily chosen,

a1 is chosen such that v(a1 − a0) is minimal, that is

∀x ∈ E , v(a1 − a0) ≤ v(x − a0),

and so on,

∀x ∈ E , v

(
k−1∏
i=0

(ak − ai )

)
≤ v

(
k−1∏
i=0

(x − ai )

)
. (1)
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Bhargava's v -orderings

a0, . . . , an are distinct if and only if Card(E ) ≥ n + 1.
(our running assumption).

(1) means that
(X
ak

)
=
∏

0≤i<k
X−ai
ak−ai is integer-valued:

A v -ordering of length n of E is nothing else than a Newton

sequence of length n of E .

E always admits a Newton sequence of length n.

v -orderings are not unique, but in (1)

v
(∏k−1

i=0
(ak − ai )

)
does not depend on the v -ordering.

Indeed
n!VE =

∏
0≤i<n

(an − ai )V .
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Characterization of n-universal subsets (local case)

Proposition

Let S be a subset of E . The following assertions are equivalent.

(i) S is an n-universal subset of E .

(ii) S contains a Newton sequence of length n of E .

(iii) S contains an n-optimal subset of E .

Proof. For (i) =⇒ (ii), consider a Newton sequence of S and use
transitivity. All other implications hold in any domain D. �
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Characterization of n-universal subsets (global case)

We now turn to a Dedekind domain D and a subset E of D,
always with Card(E ) ≥ n + 1.
Each maximal ideal m is associated to a discrete valuation vm.

De�nition

An m-ordering of length n of E is a vm-ordering a0, . . . , an,
that is, a Newton sequence of E with respect to Dm.

Corollary

Let S be a subset of E . The following assertions are equivalent.

(i) S is an n-universal subset of E .

(ii) for each m, S contains an m-ordering of length n of E .

(iii) for each m, S contains an n-optimal subset of E with respect

to Dm.
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Characterization of n-optimal subsets

Theorem

Let S be a subset of E with Card(S) = n + 1. The following

assertions are equivalent.

(i) S is an n-optimal subset of E ,

(ii) S is an n-locally Newton orderable subset of E ,

(iii) Vol(S) = 1!DE . . . n!
D
E ,

(iv) Vol(S) is minimal in E .

Only (iii) implies (iv) needs a proof ∗:
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Characterization of n-optimal subsets

Lemma

Let T = {b0, . . . , bn} be a subset of E . Then

Vol(T ) ⊆ 1!DE . . . n!
D
E .

This is a result of Bhargava (in another wording).
Proof. T is obviously an n-optimal subset of itself.
Thus T can locally be ordered as a Newton sequence of
itself.Therefore

Vol(T ) = 1!DT . . . n!
D
T .

As T ⊆ E , k!DT ⊆ k!DE , for each k . �
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Examples

First, consider the ring of integers of a quadratic number �eld.
From a previous study of maximal lengths of Newton sequences:

Adam, P.-J. Cahen, Newtonian and Schinzel quadratic �elds, J. Pure and Appl.

Algebra 215 (2011) 1902�1918.

Theorem

Let OK be the ring of integers of K = Q(
√
d).

There is no 2-optimal subset of OK but for

d = −3, −1, 2, 3, 5, or d ≡ 1 (mod 8).
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Examples

Second example, a (rank-one) non-discrete valuation domain V .
It is well known that

Int(V ) = V [X ], and for all n, m is an n-universal subset of V .∗

For n ≥ 1, there is no �nite n-universal subset of m,
a fortiori no n-optimal subset. (n = 0∗)

Proof. Let x0 ∈ S be such that ∀x ∈ S , v(x0) ≤ v(x),
then consider the degree one polynomial X/x0. �

Remark

For n ≥ q = Card(V /m), there is no �nite (let alone optimal)
n-universal subset of V . (But for n < q there exists a Newton
sequence of length n of V ∗).
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Examples

Last, D = F2[[x2, x3]] (F2 the �eld with 2 elements).

D is a pseudo-valuation domain (contained in V = F2[[x ]]).
It is a one-dimensional Noetherian local domain,

with maximal ideal m = (x2, x3).

Set E = {0, 1, x2, x3).

E is a 3-universal subset of D.

There is no 2-optimal subset of E , nor of D.

1!DE 2!DE 3!DE ( Vol(E ) = (x7 + x8)D.
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3 - Almost strong Newton sequences

In all generality

De�nition

A sequence {an} (�nite or in�nite) in a subset E of the domain D,
is said to be a strong Newton sequence of E if,for each k,
every set of k + 1 consecutive terms is a k-optimal subset of E .

Equivalently:

For each r ,
the truncated sequence {an}n≥r is a Newton sequence of E .
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V.W.D.W.O. sequences

Back to Dedekind domains, we �rst look at the local case.
Just as a Newton sequence is but a v -ordering,

A strong Newton sequence is but a strong v -ordering:
for each r , the truncated sequence {an}n≥r is a v -ordering of E .

There exist in�nite strong v -orderings of V :
The Very well distributed and well ordered sequences
Hersmoortel (1969).

We can assume the residue �eld is �nite. ∗

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we �rst look at the local case.
Just as a Newton sequence is but a v -ordering,

A strong Newton sequence is but a strong v -ordering:
for each r , the truncated sequence {an}n≥r is a v -ordering of E .

There exist in�nite strong v -orderings of V :
The Very well distributed and well ordered sequences
Hersmoortel (1969).

We can assume the residue �eld is �nite. ∗

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we �rst look at the local case.
Just as a Newton sequence is but a v -ordering,

A strong Newton sequence is but a strong v -ordering:
for each r , the truncated sequence {an}n≥r is a v -ordering of E .

There exist in�nite strong v -orderings of V :
The Very well distributed and well ordered sequences
Hersmoortel (1969).

We can assume the residue �eld is �nite. ∗

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we �rst look at the local case.
Just as a Newton sequence is but a v -ordering,

A strong Newton sequence is but a strong v -ordering:
for each r , the truncated sequence {an}n≥r is a v -ordering of E .

There exist in�nite strong v -orderings of V :
The Very well distributed and well ordered sequences
Hersmoortel (1969).

We can assume the residue �eld is �nite. ∗

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we �rst look at the local case.
Just as a Newton sequence is but a v -ordering,

A strong Newton sequence is but a strong v -ordering:
for each r , the truncated sequence {an}n≥r is a v -ordering of E .

There exist in�nite strong v -orderings of V :
The Very well distributed and well ordered sequences
Hersmoortel (1969).

We can assume the residue �eld is �nite. ∗

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we �rst look at the local case.
Just as a Newton sequence is but a v -ordering,

A strong Newton sequence is but a strong v -ordering:
for each r , the truncated sequence {an}n≥r is a v -ordering of E .

There exist in�nite strong v -orderings of V :
The Very well distributed and well ordered sequences
Hersmoortel (1969).

We can assume the residue �eld is �nite. ∗

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

V.W.D.W.O. sequences

Back to Dedekind domains, we �rst look at the local case.
Just as a Newton sequence is but a v -ordering,

A strong Newton sequence is but a strong v -ordering:
for each r , the truncated sequence {an}n≥r is a v -ordering of E .

There exist in�nite strong v -orderings of V :
The Very well distributed and well ordered sequences
Hersmoortel (1969).

We can assume the residue �eld is �nite. ∗

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

V.W.D.W.O. sequences

Notations

As before. In particular, Card(V /m) = q,
t a uniformizing element: v(t) = 1. Moreover, for each m ∈ N,
vq(m) denotes the largest k such that qk divides m.

Proposition

The following assertions are equivalent:

(i) ∀n 6= m, v(an − am) = vq(n −m). ?

(ii) ∀k , each qk consecutive terms form a full set of

representatives (mod mk).

(iii) {an}n≥0 is a strong v -ordering of V .
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Julie Yeramian proposed an inductive construction in
Anneaux de Bhargava, Comm. in Algebra 32 (2004) 3043-3069.

Lemma

Recipe to obtain a strong v -ordering {an}n≥0 of V :

• take a0 = 0,
• for 0 < n < q, take an � an−1 (mod m), ∗
• for qk ≤ n < qk+1, take

an ≡ ai t
k + ar (mod mk+1),

where n = iqk + r , with r < qk(euclidian division) and i < q∗.

Note this recipe �ts for V /m in�nite. ∗.
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Almost strong Newton sequence

Theorem

Let D be a Dedekind domain. There is a sequence {an}n≥0 in D
such that,

1 for each maximal ideal m of D, remove at most one term

you get a strong m-ordering!

2 Any n + 2 consecutive terms form an n-universal subset of D.

Postpone 1, 2 follows:

Proof. Consider n + 2 consecutive terms of {an}n≥0.
For each m, remove at most one term,
you are left with n + 1 consecutive terms of a strong Newton
sequence of Dm, thus with an n-optimal subset of Dm. �
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Almost strong Newton sequence

Proof of 1. We build {an}n≥0 inductively, so that, for each m, it
(almost) meets the congruence conditions of Julie Yeramian's
construction. We use the Chinese remainder theorem.
• First take a0 = 0.

As we use the Chinese remainder theorem, choose (arbitrarily) a

�nite set M1 of maximal ideals.

• Take a1 to satisfy Julie's conditions with respect to each m ∈ M1.

Miracle!

In fact, a1 is suitable for all but �nitely many maximal ideals. ∗
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Let M2 be the �nite set of o�ending maximal ideals.

Observe that M2 does not meet M1.
Discard a1 for each m ∈ M2.

• Take a2 so that it satis�es Julie's conditions,

with respect to a0, a1 for each m ∈ M1,

with respect to a0 only for each m ∈ M2.

Again, a2 suits all maximal ideals but those in a �nite set M3.
Discard a2 for each m ∈ M3.

• And so on ... with more and more primes at each step! �
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• Take a2 so that it satis�es Julie's conditions,

with respect to a0, a1 for each m ∈ M1,

with respect to a0 only for each m ∈ M2.

Again, a2 suits all maximal ideals but those in a �nite set M3.
Discard a2 for each m ∈ M3.
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Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v -ordering if

and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964.
It is a (somewhat technical) property of repartition.
Here is the de�nition in case the residue �eld is �nite:

De�nition

A subset E of V is regular when, for each k, each class modulo mk

that meets E contains the same number of classes modulo mk+1

that meets E .

We can generalize Julie's construction to build inductively strong
v -orderings of regular subsets by congruence conditions.

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v -ordering if

and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964.
It is a (somewhat technical) property of repartition.
Here is the de�nition in case the residue �eld is �nite:

De�nition

A subset E of V is regular when, for each k, each class modulo mk

that meets E contains the same number of classes modulo mk+1

that meets E .

We can generalize Julie's construction to build inductively strong
v -orderings of regular subsets by congruence conditions.

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v -ordering if

and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964.
It is a (somewhat technical) property of repartition.
Here is the de�nition in case the residue �eld is �nite:

De�nition

A subset E of V is regular when, for each k, each class modulo mk

that meets E contains the same number of classes modulo mk+1

that meets E .

We can generalize Julie's construction to build inductively strong
v -orderings of regular subsets by congruence conditions.

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v -ordering if

and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964.
It is a (somewhat technical) property of repartition.
Here is the de�nition in case the residue �eld is �nite:

De�nition

A subset E of V is regular when, for each k, each class modulo mk

that meets E contains the same number of classes modulo mk+1

that meets E .

We can generalize Julie's construction to build inductively strong
v -orderings of regular subsets by congruence conditions.

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v -ordering if

and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964.
It is a (somewhat technical) property of repartition.
Here is the de�nition in case the residue �eld is �nite:

De�nition

A subset E of V is regular when, for each k, each class modulo mk

that meets E contains the same number of classes modulo mk+1

that meets E .

We can generalize Julie's construction to build inductively strong
v -orderings of regular subsets by congruence conditions.

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

Subsets

The situation is more intricate for subsets, even in the local case:

A subset E of a valuation domain V admits a strong v -ordering if

and only if it is regular.

The notion of regularity was introduced by Yvette Amice in 1964.
It is a (somewhat technical) property of repartition.
Here is the de�nition in case the residue �eld is �nite:

De�nition

A subset E of V is regular when, for each k, each class modulo mk

that meets E contains the same number of classes modulo mk+1

that meets E .

We can generalize Julie's construction to build inductively strong
v -orderings of regular subsets by congruence conditions.

Paul-Jean Cahen n-universal subsets and Newton sequences



Title
Introduction
Generalities

Dedekind domains
Almost strong Newton sequences

Subsets

In Dedekind domains, we thus restrict ourselves to subsets that are
locally regular. For instance:

A �nite union of classes modulo an ideal is locally regular.

Yet we were able to extend our construction to one class only:

Theorem

Let E be a class modulo an ideal. There is a sequence {an}n≥0 in

E such that,

1 for each maximal ideal m, the sequence obtained by removing

at most one term is a strong m-ordering of E .

2 Any n + 2 consecutive terms form an n-universal subset of E .
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Prime numbers

We �nally consider the set P formed by the prime numbers in Z.
P is not locally regular subset, but almost:

For each p, the p-adic closure of P in Z(p) is {p} ∪ Z(p) \ pZ(p).

As Z(p) \ pZ(p) is a union of classes modulo p, it is regular.

Notation

For each integer m, P>m = {p ∈ P | p > m}.

Proposition

There is a sequence in P>m such that,for each n < m,
any n + 2 consecutive terms form an n-universal subset of P>m.
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Prime numbers

A last one!

Proposition

For each n, P admits an n-universal subset S with

Card(S) = n + π(n + 1).

(As usual, π(n) denotes the number of primes p ≤ n.) ∗
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The end

Thank you for your attention.
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