Rings of Integer-Valued Polynomials in a Valued Field which are Prüfer Domains

Jean-Luc Chabert Université de Picardie France

Graz, July 3-8, 2016

Jean-Luc Chabert Université de Picardie

Graz, July 3-8, 2016 1 / 17

1- INTRODUCTION

Prüfer domains and Integer-Valued Polynomials

- 2

<ロ> (日) (日) (日) (日) (日)

1- INTRODUCTION

Prüfer domains and Integer-Valued Polynomials (Chabert 1972)

- 2

<ロ> (日) (日) (日) (日) (日)

Prüfer domains and Integer-Valued Polynomials (Chabert 1972) K a number field, \mathcal{O}_{K} the ring of integers

 $\operatorname{Int}(\mathcal{O}_{\mathcal{K}}) = \{ f \in \mathcal{K}[X] \mid f(\mathcal{O}_{\mathcal{K}}) \subseteq \mathcal{O}_{\mathcal{K}} \}$ is Prüfer

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Prüfer domains and Integer-Valued Polynomials (Chabert 1972) K a number field, \mathcal{O}_{K} the ring of integers

$$\operatorname{Int}(\mathcal{O}_{\mathcal{K}}) = \{ f \in \mathcal{K}[X] \mid f(\mathcal{O}_{\mathcal{K}}) \subseteq \mathcal{O}_{\mathcal{K}} \} \quad \text{ is Prüfer}$$

D a domain with quotient field K:

When is $Int(D) = \{f(X) \in K[X] \mid f(D) \subseteq D\}$ a Prüfer domain?

E SQA

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Prüfer domains and Integer-Valued Polynomials (Chabert 1972) K a number field, \mathcal{O}_K the ring of integers

$$\operatorname{Int}(\mathcal{O}_{\mathcal{K}}) = \{ f \in \mathcal{K}[X] \mid f(\mathcal{O}_{\mathcal{K}}) \subseteq \mathcal{O}_{\mathcal{K}} \} \quad \text{ is Prüfer}$$

D a domain with quotient field K:

When is $Int(D) = \{f(X) \in K[X] \mid f(D) \subseteq D\}$ a Prüfer domain?

Prop. Assume D is Noetherian. Then, Int(D) is Prüfer if and only if D is a Dedekind domain with finite residue fields.

Local case:

If V a valuation domain, then Int(V) is Prüfer if and only if the maximal ideal is principal and the residue field is finite.

Local case:

If V a valuation domain, then Int(V) is Prüfer if and only if the maximal ideal is principal and the residue field is finite.

Global case:

THEOREM (LOPER 1998, CHAR(D) = 0) The ring Int(D) is Prüfer if and only if **1** D is an almost Dedekind domain with finite residue fields, **2** $\forall p \in \mathbb{P} \begin{cases} E_p = \{v_m(p) \mid m \in Max(D), p \in m\} \\ F_p = \{[D/m : \mathbb{Z}/p\mathbb{Z}] \mid m \in Max(D), p \in m\} \end{cases}$ are finite.

Local case:

If V a valuation domain, then Int(V) is Prüfer if and only if the maximal ideal is principal and the residue field is finite.

Global case:

THEOREM (LOPER 1998, CHAR(D) = 0) The ring Int(D) is Prüfer if and only if **O** is an almost Dedekind domain with finite residue fields, **O** $\forall p \in \mathbb{P}$ $\begin{cases} E_p = \{v_m(p) \mid m \in Max(D), p \in m\} \\ F_p = \{[D/m : \mathbb{Z}/p\mathbb{Z}] \mid m \in Max(D), p \in m\} \end{cases}$ are finite.

Cornerstone:

If $Int(D) \subseteq R[X]$ where $D \subseteq R \subsetneq K$, then Int(D) is not Prüfer.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

D Prüfer is necessary

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

D Prüfer is necessary \longrightarrow we assume *D* is Prüfer

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

D Prüfer is necessary \longrightarrow we assume D is Prüfer S finite is then sufficient [McQuillan 1985]

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

D Prüfer is necessary \longrightarrow we assume D is Prüfer

S finite is then sufficient [McQuillan 1985] \longrightarrow we assume S is infinite

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

D Prüfer is necessary \longrightarrow we assume *D* is Prüfer *S* finite is then sufficient [McQuillan 1985] \longrightarrow we assume *S* is infinite If *S* is not a *D*-fractional subset, then Int(S, D) = D

[S is a D-fractional subset:= $\exists d \in D$ such that $dS \subseteq D$]

2- INTEGER-VALUED POLYNOMIALS ON SUBSETS

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

D Prüfer is necessary \longrightarrow we assume D is Prüfer

S finite is then sufficient [McQuillan 1985] \longrightarrow we assume S is infinite

If S is not a D-fractional subset, then Int(S, D) = D[S is a D-fractional subset:= $\exists d \in D$ such that $dS \subseteq D$] \longrightarrow we assume S is a D-fractional subset

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

D Prüfer is necessary \longrightarrow we assume D is Prüfer

S finite is then sufficient [McQuillan 1985] \longrightarrow we assume S is infinite

If S is not a D-fractional subset, then Int(S, D) = D[S is a D-fractional subset:= $\exists d \in D$ such that $dS \subseteq D$] \rightarrow we assume S is a D-fractional subset

 $f(X) \in \operatorname{Int}(S, D) \mapsto f\left(\frac{1}{d}X\right) \in \operatorname{Int}(dS, D)$

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

D Prüfer is necessary \rightarrow we assume D is Prüfer

S finite is then sufficient [McQuillan 1985] \longrightarrow we assume S is infinite

If S is not a D-fractional subset, then Int(S, D) = D[S is a D-fractional subset:= $\exists d \in D$ such that $dS \subseteq D$] \longrightarrow we assume S is a D-fractional subset

 $f(X) \in \operatorname{Int}(S,D) \mapsto f\left(\frac{1}{d}X\right) \in \operatorname{Int}(dS,D) \longrightarrow$ we assume $S \subseteq D$

D a domain with quotient field K and S a subset of K

 $\operatorname{Int}(S,D) = \{f(X) \in K[X] \mid f(S) \subseteq D\}$

Under which hypotheses is Int(S, D) Prüfer?

D Prüfer is necessary \longrightarrow we assume D is Prüfer

S finite is then sufficient [McQuillan 1985] \longrightarrow we assume S is infinite

If S is not a D-fractional subset, then Int(S, D) = D[S is a D-fractional subset:= $\exists d \in D$ such that $dS \subseteq D$] \longrightarrow we assume S is a D-fractional subset

 $f(X) \in \operatorname{Int}(S,D) \mapsto f\left(\frac{1}{d}X\right) \in \operatorname{Int}(dS,D) \longrightarrow$ we assume $S \subseteq D$

 $\operatorname{Int}(\mathcal{S}, \mathcal{D})$ Prüfer $\Rightarrow \forall \mathfrak{p} \in \operatorname{Spec}(\mathcal{D})$ $\operatorname{Int}(\mathcal{S}, \mathcal{D}_{\mathfrak{p}})$ Prüfer

 \rightarrow we assume *D* is a valuation domain

V is a valuation domain and S is an infinite subset of V Under which hypotheses is Int(S, V) Prüfer?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

V is a valuation domain and S is an infinite subset of V Under which hypotheses is Int(S, V) Prüfer?

Int(V) is Prüfer \Leftrightarrow the valuation is discrete and the residue field finite

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

V is a valuation domain and S is an infinite subset of V Under which hypotheses is Int(S, V) Prüfer?

 $\operatorname{Int}(V)$ is Prüfer \Leftrightarrow the valuation is discrete and the residue field finite $\Leftrightarrow \widehat{V}$ is compact

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

V is a valuation domain and S is an infinite subset of V Under which hypotheses is Int(S, V) Prüfer?

 $\operatorname{Int}(V)$ is Prüfer \Leftrightarrow the valuation is discrete and the residue field finite $\Leftrightarrow \widehat{V}$ is compact

 $S \text{ precompact} \Rightarrow \text{Int}(S, V) \text{ Prüfer [Cahen, C., Loper 2001]} \\ [S \text{ precompact} := \widehat{S} \text{ compact}]$

V is a valuation domain and S is an infinite subset of V Under which hypotheses is Int(S, V) Prüfer?

Int(V) is Prüfer \Leftrightarrow the valuation is discrete and the residue field finite $\Leftrightarrow \widehat{V}$ is compact

$S \text{ precompact} \Rightarrow \text{Int}(S, V) \text{ Prüfer [Cahen, C., Loper 2001]} \\ [S \text{ precompact} := \widehat{S} \text{ compact}]$

To what extend is the precompactness of S necessary for Int(S, V) to be Prüfer?

V is a valuation domain and S is an infinite subset of V Under which hypotheses is Int(S, V) Prüfer?

Int(V) is Prüfer \Leftrightarrow the valuation is discrete and the residue field finite $\Leftrightarrow \widehat{V}$ is compact

$S \text{ precompact} \Rightarrow \operatorname{Int}(S, V) \text{ Prüfer [Cahen, C., Loper 2001]} \\ [S \text{ precompact} := \widehat{S} \text{ compact}]$

To what extend is the precompactness of S necessary for Int(S, V) to be Prüfer?

PROPOSITION (PARTIAL ANSWERS)

The precompactness is a necessary (and sufficient) condition for the Prüfer property under one of the following hypotheses:

- the valuation is discrete [C. C. L. 2001]
- **2** S is a subgroup of (V, +) [Park 2015]

Remark (Park, 2015)

If S is not precompact and Int(S, V) is Prüfer, then there exists a height-one prime ideal p of V, and then:

S is not precompact, $Int(S, V_p)$ is Prüfer and $dim(V_p) = 1$.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Remark (Park, 2015)

If S is not precompact and Int(S, V) is Prüfer, then there exists a height-one prime ideal p of V, and then:

S is not precompact, $Int(S, V_p)$ is Prüfer and $dim(V_p) = 1$.

From now on,

V is a rank-one valuation domain, S is a non-precompact subset of V. We are looking for necessary conditions on S for Int(S, V) to be Prüfer.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark (Park, 2015)

If S is not precompact and Int(S, V) is Prüfer, then there exists a height-one prime ideal p of V, and then:

S is not precompact, $Int(S, V_p)$ is Prüfer and $dim(V_p) = 1$.

From now on,

V is a rank-one valuation domain, S is a non-precompact subset of V. We are looking for necessary conditions on S for Int(S, V) to be Prüfer.

PROPOSITION (LOPER AND WERNER, 2016)

There exist non precompact subsets S of V such that Int(S, V) is Prüfer: for instance, the set formed by the elements of a pseudo-convergent sequence of transcendental type.

Polynomial closure of $S : \overline{S} = \{a \in V \mid \forall f \in \text{Int}(S, V) \ f(a) \in V\}$ $\text{Int}(S, V) = \text{Int}(\overline{S}, V)$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Polynomial closure of $S : \overline{S} = \{a \in V \mid \forall f \in \text{Int}(S, V) \ f(a) \in V\}$ $\text{Int}(S, V) = \text{Int}(\overline{S}, V)$

Notation:

$$B(a,\gamma) = \{y \in V \mid v(a-y) \ge \gamma\} \quad (a \in V, \gamma \in \mathbb{R}) \ ext{ ball} \left\{ egin{array}{c} ext{center } a \ ext{radius } e^{-\gamma} \end{array}
ight.$$

= 900

.

(日) (周) (三) (三)

Polynomial closure of $S : \overline{S} = \{a \in V \mid \forall f \in \text{Int}(S, V) \ f(a) \in V\}$ $\text{Int}(S, V) = \text{Int}(\overline{S}, V)$

Notation:

$$B(a,\gamma) = \{y \in V \mid v(a-y) \ge \gamma\} \quad (a \in V, \gamma \in \mathbb{R}) \text{ ball} \left\{ egin{array}{c} ext{center } a \ ext{radius } e^{-\gamma} \end{array}
ight.$$

LEMMA (CORNERSTONE)

If \overline{S} contains a ball $B(a, \gamma)$, then Int(S, V) is not Prüfer.

Proof.

$$\operatorname{Int}(S, V) = \operatorname{Int}(\overline{S}, V) \subseteq \operatorname{Int}(B(a, \gamma), V)$$

Jean-Luc Chabert Université de Picardie

Polynomial closure of $S : \overline{S} = \{a \in V \mid \forall f \in \text{Int}(S, V) \ f(a) \in V\}$ $\text{Int}(S, V) = \text{Int}(\overline{S}, V)$

Notation:

$$\mathcal{B}(a,\gamma) = \{y \in V \mid v(a-y) \geq \gamma\} \quad (a \in V, \gamma \in \mathbb{R}) \ ext{ ball} \left\{ egin{array}{c} ext{center } a \ ext{radius } e^{-\gamma} \end{array}
ight.$$

LEMMA (CORNERSTONE)

If \overline{S} contains a ball $B(a, \gamma)$, then Int(S, V) is not Prüfer.

Proof.

$$\begin{array}{l} \operatorname{Int}(S,V) = \operatorname{Int}(\overline{S},V) \subseteq \operatorname{Int}(B(a,\gamma),V) \\ f(X) \in \operatorname{Int}(S,V) \\ v(t) = \gamma \end{array} \right\} \Rightarrow g(Y) = f(a+tY) \in \operatorname{Int}(V) \\ \end{array}$$

Polynomial closure of $S : \overline{S} = \{a \in V \mid \forall f \in \text{Int}(S, V) \ f(a) \in V\}$ $\text{Int}(S, V) = \text{Int}(\overline{S}, V)$

Notation:

$$\mathcal{B}(a,\gamma) = \{y \in V \mid v(a-y) \geq \gamma\} \quad (a \in V, \gamma \in \mathbb{R}) \ ext{ ball} \left\{ egin{array}{c} ext{center } a \ ext{radius } e^{-\gamma} \end{array}
ight.$$

LEMMA (CORNERSTONE)

If \overline{S} contains a ball $B(a, \gamma)$, then Int(S, V) is not Prüfer.

Proof.

$$\begin{split} \operatorname{Int}(S,V) &= \operatorname{Int}(\overline{S},V) \subseteq \operatorname{Int}(B(a,\gamma),V) \\ f(X) \in \operatorname{Int}(S,V) \\ v(t) &= \gamma \end{split} \right\} \Rightarrow g(Y) = f(a+tY) \in \operatorname{Int}(V) = V[Y] \\ \operatorname{Int}(S,V) \subseteq V[\frac{X-a}{t}] \end{split}$$

PROPOSITION (\overline{S} is obtained by adjunction to S of)

the limits, the pseudo-limits and the corresponding closed balls (C. 2010)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2

PROPOSITION (\overline{S} is obtained by adjunction to S of)

the limits, the pseudo-limits and the corresponding closed balls (C. 2010)

DEFINITION

• [Ostrowski, 1935] A sequence $\{x_n\}_{n \in \mathbb{N}}$ is *pseudo-convergent* if $\forall n \quad v(x_n - x_{n-1}) < v(x_{n+1} - x_n)$

イロト 不得下 イヨト イヨト

PROPOSITION (\overline{S} is obtained by adjunction to S of)

the limits, the pseudo-limits and the corresponding closed balls (C. 2010)

DEFINITION

- [Ostrowski, 1935] A sequence $\{x_n\}_{n \in \mathbb{N}}$ is *pseudo-convergent* if $\forall n \quad v(x_n x_{n-1}) < v(x_{n+1} x_n)$
- ② [Kaplansky, 1942] x is a pseudo-limit of a sequence $\{x_n\}_{n \in \mathbb{N}}$ if $\forall n \quad v(x - x_n) < v(x - x_{n+1})$

PROPOSITION (\overline{S} is obtained by adjunction to S of)

the limits, the pseudo-limits and the corresponding closed balls (C. 2010)

DEFINITION

- [Ostrowski, 1935] A sequence $\{x_n\}_{n \in \mathbb{N}}$ is *pseudo-convergent* if $\forall n \quad v(x_n x_{n-1}) < v(x_{n+1} x_n)$
- ② [Kaplansky, 1942] x is a pseudo-limit of a sequence $\{x_n\}_{n \in \mathbb{N}}$ if $\forall n \quad v(x - x_n) < v(x - x_{n+1})$

A pseudo-convergent sequence $\{x_n\}_{n\geq 0}$ does not always admit a pseudolimit, but if it admits a pseudo-limit x, the *accuracy* of the sequence is:

$$\delta = \lim_{n \to +\infty} v(x - x_n).$$

PROPOSITION (\overline{S} is obtained by adjunction to S of)

the limits, the pseudo-limits and the corresponding closed balls (C. 2010)

DEFINITION

- [Ostrowski, 1935] A sequence $\{x_n\}_{n \in \mathbb{N}}$ is *pseudo-convergent* if $\forall n \quad v(x_n x_{n-1}) < v(x_{n+1} x_n)$
- ② [Kaplansky, 1942] x is a pseudo-limit of a sequence $\{x_n\}_{n \in \mathbb{N}}$ if $\forall n \quad v(x - x_n) < v(x - x_{n+1})$

A pseudo-convergent sequence $\{x_n\}_{n\geq 0}$ does not always admit a pseudolimit, but if it admits a pseudo-limit x, the *accuracy* of the sequence is:

$$\delta = \lim_{n \to +\infty} v(x - x_n).$$

• $\delta = +\infty \iff x = \lim_{n \to +\infty} x_n$

• $\delta < +\infty \Rightarrow \forall y \in B(x, \delta) \ y \text{ is a pseudo-limit of } \{x_n\}.$

- 3

イロト 不得下 イヨト イヨト

x is said to be a generalized pseudo-limit of $\{x_n\}_{n\in\mathbb{N}}$ if there exists n_0 such that, for $n \ge n_0$, the sequence $\{v(x - x_n)\}$ is:

- either strictly increasing,
- or strictly decreasing,
- or stationary

E Sac

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

x is said to be a generalized pseudo-limit of $\{x_n\}_{n\in\mathbb{N}}$ if there exists n_0 such that, for $n \ge n_0$, the sequence $\{v(x - x_n)\}$ is:

- either strictly increasing,
- or strictly decreasing,
- or stationary with value δ, and the sequence {x_n}_{n∈ℕ} satisfies the following condition: n₀ ≤ n < m ⇒ v(x_n x_m) = δ.

- 3

イロト イポト イヨト イヨト

x is said to be a generalized pseudo-limit of $\{x_n\}_{n\in\mathbb{N}}$ if there exists n_0 such that, for $n \ge n_0$, the sequence $\{v(x - x_n)\}$ is:

- either strictly increasing,
- or strictly decreasing,
- or stationary with value δ, and the sequence {x_n}_{n∈ℕ} satisfies the following condition: n₀ ≤ n < m ⇒ v(x_n x_m) = δ.

 $\{x_n\}$ is pseudo-convergent, pseudo-divergent, or pseudo-stationary

イロト イ理ト イヨト イヨト

x is said to be a generalized pseudo-limit of $\{x_n\}_{n\in\mathbb{N}}$ if there exists n_0 such that, for $n \ge n_0$, the sequence $\{v(x - x_n)\}$ is:

- either strictly increasing,
- Or strictly decreasing,
- or stationary with value δ, and the sequence {x_n}_{n∈ℕ} satisfies the following condition: n₀ ≤ n < m ⇒ v(x_n x_m) = δ.

 $\{x_n\}$ is *pseudo-convergent*, *pseudo-divergent*, or *pseudo-stationary* the *accuracy* of the sequence is defined by:

$$\delta = \lim_{n \to +\infty} v(x - x_n).$$

イロト 不得下 イヨト イヨト

x is said to be a generalized pseudo-limit of $\{x_n\}_{n\in\mathbb{N}}$ if there exists n_0 such that, for $n \ge n_0$, the sequence $\{v(x - x_n)\}$ is:

- either strictly increasing,
- or strictly decreasing,
- or stationary with value δ, and the sequence {x_n}_{n∈ℕ} satisfies the following condition: n₀ ≤ n < m ⇒ v(x_n x_m) = δ.

 $\{x_n\}$ is *pseudo-convergent*, *pseudo-divergent*, or *pseudo-stationary* the *accuracy* of the sequence is defined by:

$$\delta = \lim_{n \to +\infty} v(x - x_n).$$

Proposition (C. 2010)

If x is a generalized pseudo-limit of a sequence of elements of S with accuracy δ , then the closed ball $B(x, \delta)$ is contained in \overline{S} .

If there exists $x \in V$ which is a generalized pseudo-limit (but not a limit) of a sequence of elements of S, then Int(S, V) is not Prüfer.

イロト イポト イヨト イヨト 二日

If there exists $x \in V$ which is a generalized pseudo-limit (but not a limit) of a sequence of elements of S, then Int(S, V) is not Prüfer.

Proof. Let δ be the accuracy of the sequence. Then $B(x, \delta) \subseteq \overline{S}$ $\Rightarrow \operatorname{Int}(S, V) = \operatorname{Int}(\overline{S}, V) \subseteq \operatorname{Int}(B(x, \delta), V) \subseteq V\left[\frac{X-x}{t}\right]$

If there exists $x \in V$ which is a generalized pseudo-limit (but not a limit) of a sequence of elements of S, then Int(S, V) is not Prüfer.

Proof. Let δ be the accuracy of the sequence. Then $B(x, \delta) \subseteq \overline{S}$ $\Rightarrow \operatorname{Int}(S, V) = \operatorname{Int}(\overline{S}, V) \subseteq \operatorname{Int}(B(x, \delta), V) \subseteq V\left[\frac{X-x}{t}\right]$

COROLLARY

If Int(S, V) is Prüfer, then \overline{S} is equal to the topological closure of S.

Because S does not contain any generalized pseudo-limit.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

If there exists $x \in V$ which is a generalized pseudo-limit (but not a limit) of a sequence of elements of S, then Int(S, V) is not Prüfer.

Proof. Let δ be the accuracy of the sequence. Then $B(x, \delta) \subseteq \overline{S}$ $\Rightarrow \operatorname{Int}(S, V) = \operatorname{Int}(\overline{S}, V) \subseteq \operatorname{Int}(B(x, \delta), V) \subseteq V\left[\frac{X-x}{t}\right]$

COROLLARY

If Int(S, V) is Prüfer, then \overline{S} is equal to the topological closure of S.

Because S does not contain any generalized pseudo-limit.

COROLLARY

If Int(S, V) is Prüfer, then S admits v-orderings.

Otherwise, S would contain a pseudo-limit of a pseudo-divergent sequence.

Notation. For $\gamma \in \mathbb{R}$ $x \equiv y \pmod{\gamma} := v(x - y) \geq \gamma$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Notation. For $\gamma \in \mathbb{R}$ $x \equiv y \pmod{\gamma} := v(x - y) \ge \gamma$ $x \mod \gamma = \{y \in S \mid v(x - y) \ge \gamma\} = S \cap B(x, \gamma) := S(x, \gamma) \text{ (S-ball)}$

Notation. For $\gamma \in \mathbb{R}$ $x \equiv y \pmod{\gamma} := v(x - y) \ge \gamma$ $x \mod \gamma = \{y \in S \mid v(x - y) \ge \gamma\} = S \cap B(x, \gamma) := S(x, \gamma) \text{ (S-ball)}$

 $q_{\gamma} = \operatorname{Card}(S \mod \gamma)$

Notation. For $\gamma \in \mathbb{R}$ $x \equiv y \pmod{\gamma} := v(x - y) \ge \gamma$ $x \mod \gamma = \{y \in S \mid v(x - y) \ge \gamma\} = S \cap B(x, \gamma) := S(x, \gamma) \text{ (S-ball)}$ $q_{\gamma} = \text{Card}(S \mod \gamma) \text{ and } \gamma_{\infty} = \sup\{\gamma \mid q_{\gamma} \text{ finite }\}$

Jean-Luc Chabert Université de Picardie

Graz, July 3-8, 2016 11 / 17

Notation. For $\gamma \in \mathbb{R}$ $x \equiv y \pmod{\gamma} := v(x - y) \ge \gamma$ $x \mod \gamma = \{y \in S \mid v(x - y) \ge \gamma\} = S \cap B(x, \gamma) := S(x, \gamma) \text{ (S-ball)}$ $q_{\gamma} = \operatorname{Card}(S \mod \gamma) \text{ and } \gamma_{\infty} = \sup\{\gamma \mid q_{\gamma} \text{ finite }\}$ ***

S precompact $= \widehat{S}$ compact \Leftrightarrow all the q_{γ} 's are finite $\Leftrightarrow \gamma_{\infty} = +\infty$

Notation. For $\gamma \in \mathbb{R}$ $x \equiv y \pmod{\gamma} := v(x - y) \ge \gamma$ $x \mod \gamma = \{y \in S \mid v(x - y) \ge \gamma\} = S \cap B(x, \gamma) := S(x, \gamma) \text{ (S-ball)}$ $q_{\gamma} = \operatorname{Card}(S \mod \gamma) \text{ and } \gamma_{\infty} = \sup \{\gamma \mid q_{\gamma} \text{ finite}\}$ *** $S \text{ precompact} = \widehat{S} \text{ compact} \Leftrightarrow \text{ all the } q_{\gamma} \text{ 's are finite } \Leftrightarrow \gamma_{\infty} = +\infty$ Thus, here

 $\gamma_{\infty} < +\infty$

Notation. For $\gamma \in \mathbb{R}$ $x \equiv y \pmod{\gamma} := v(x - y) \ge \gamma$ $x \mod \gamma = \{y \in S \mid v(x - y) \ge \gamma\} = S \cap B(x, \gamma) := S(x, \gamma) \text{ (S-ball)}$ $q_{\gamma} = \operatorname{Card}(S \mod \gamma) \text{ and } \gamma_{\infty} = \sup\{\gamma \mid q_{\gamma} \text{ finite }\}$ ***

S precompact = \widehat{S} compact \Leftrightarrow all the q_{γ} 's are finite $\Leftrightarrow \gamma_{\infty} = +\infty$ Thus, here

 $\gamma_{\infty} < +\infty$

Two cases:

- ullet either γ_∞ is a maximum and q_{γ_∞} is finite,
- or γ_∞ is not a maximum and q_{γ_∞} is infinite.

There exists $x \in S$ such that, for every $\delta > \gamma_{\infty}$, $S(x, \gamma_{\infty})$ contains infinitely many classes modulo δ .

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

There exists $x \in S$ such that, for every $\delta > \gamma_{\infty}$, $S(x, \gamma_{\infty})$ contains infinitely many classes modulo δ .

Such an x is then a generalized pseudo-limit of

- ullet either a pseudo-stationary sequence with accuracy γ_∞
- ullet or a pseudo-divergent sequence with accuracy γ_∞

in both cases, $B(x, \gamma_{\infty}) \subseteq \overline{S}$

There exists $x \in S$ such that, for every $\delta > \gamma_{\infty}$, $S(x, \gamma_{\infty})$ contains infinitely many classes modulo δ .

Such an x is then a generalized pseudo-limit of

- ullet either a pseudo-stationary sequence with accuracy γ_∞
- ullet or a pseudo-divergent sequence with accuracy γ_∞

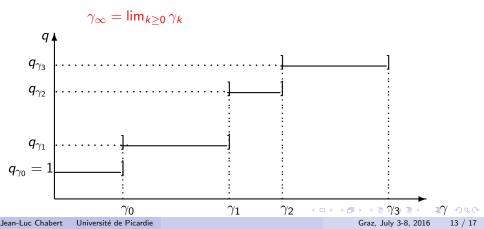
in both cases, $B(x, \gamma_{\infty}) \subseteq \overline{S}$

PROPOSITION

If Int(S, V) is Prüfer, then $q_{\gamma_{\infty}}$ is infinite.

There is a sequence $\{\gamma_k\}_{k\geq 0}$ of *critical valuations* of *S* characterized by:

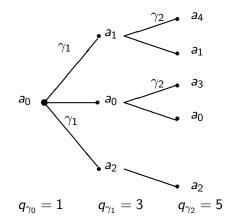
for
$$k \ge 1$$
 : $\gamma_{k-1} < \gamma \le \gamma_k \iff q_{\gamma} = q_{\gamma_k} \quad (\gamma_0 = \sup_{q_{\gamma}=1} \gamma)$



We construct inductively on k a sequence $\{a_n\}_{n\geq 0}$ of elements of S s.t. $a_0, a_1, \ldots, a_{q_{\gamma_k}-1}$, is a complete set of representatives of S mod γ_k

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

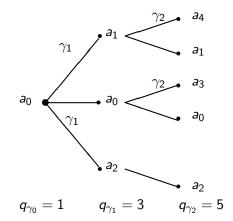
We construct inductively on k a sequence $\{a_n\}_{n\geq 0}$ of elements of S s.t. $a_0, a_1, \ldots, a_{q_{\gamma_k}-1}$, is a complete set of representatives of S mod γ_k



- 3

(日) (周) (三) (三)

We construct inductively on k a sequence $\{a_n\}_{n\geq 0}$ of elements of S s.t. $a_0, a_1, \ldots, a_{q_{\gamma_k}-1}$, is a complete set of representatives of S mod γ_k



Since $q_{\gamma_{\infty}} = +\infty$, one may find a branch $\{y_k\}_{k\geq 0}$ such that from each vertex of this branch one can reach infinitely many leaves at the level γ_{∞} .

Let $y \in S$ denote the constant value of the stationary sequence $\{y_k\}_{k \ge k_0}$ y is a pseudo-limit of a pseudo-convergent sequence with accuracy γ_{∞} Thus, $B(y, \gamma_{\infty}) \subseteq \overline{S}$ and $\operatorname{Int}(S, V)$ is not Prüfer

Let $y \in S$ denote the constant value of the stationary sequence $\{y_k\}_{k \ge k_0}$ y is a pseudo-limit of a pseudo-convergent sequence with accuracy γ_{∞} Thus, $B(y, \gamma_{\infty}) \subseteq \overline{S}$ and $\operatorname{Int}(S, V)$ is not Prüfer

Application.

S is said to be a *regular subset* if, at each level k, all the vertices have the same number of edges (namely $q_{\gamma_k}/q_{\gamma_{k+1}}$)

Let $y \in S$ denote the constant value of the stationary sequence $\{y_k\}_{k \ge k_0}$ y is a pseudo-limit of a pseudo-convergent sequence with accuracy γ_{∞} Thus, $B(y, \gamma_{\infty}) \subseteq \overline{S}$ and $\operatorname{Int}(S, V)$ is not Prüfer

Application.

S is said to be a *regular subset* if, at each level k, all the vertices have the same number of edges (namely $q_{\gamma_k}/q_{\gamma_{k+1}}$)

If S is regular, from every vertex one can reach infinitely many leaves at the level $\gamma_\infty.$

Let $y \in S$ denote the constant value of the stationary sequence $\{y_k\}_{k \ge k_0}$ y is a pseudo-limit of a pseudo-convergent sequence with accuracy γ_{∞} Thus, $B(y, \gamma_{\infty}) \subseteq \overline{S}$ and $\operatorname{Int}(S, V)$ is not Prüfer

Application.

S is said to be a *regular subset* if, at each level k, all the vertices have the same number of edges (namely $q_{\gamma_k}/q_{\gamma_{k+1}}$)

If S is regular, from every vertex one can reach infinitely many leaves at the level $\gamma_\infty.$ Consequently,

Theorem

If S is a regular, then Int(S, V) is Prüfer if and only if S is precompact.

Let $y \in S$ denote the constant value of the stationary sequence $\{y_k\}_{k \ge k_0}$ y is a pseudo-limit of a pseudo-convergent sequence with accuracy γ_{∞} Thus, $B(y, \gamma_{\infty}) \subseteq \overline{S}$ and $\operatorname{Int}(S, V)$ is not Prüfer

Application.

S is said to be a *regular subset* if, at each level *k*, all the vertices have the same number of edges (namely $q_{\gamma_k}/q_{\gamma_{k+1}}$)

If S is regular, from every vertex one can reach infinitely many leaves at the level $\gamma_\infty.$ Consequently,

THEOREM

If S is a regular, then Int(S, V) is Prüfer if and only if S is precompact.

In particular, if S is an additive subgroup of V, then Int(S, V) is Prüfer if and only if S is precompact [Park, 2015]

(any subgroup is a regular subset)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

One may extract a subsequence $\{y_{k_n}\}_{n\geq 0}$ such that $v(y_{k_{n+1}} - y_{k_n}) = \gamma_{k_n}$.

This sequence $\{y_{k_n}\}_{n\geq 0}$ is *pseudo-convergent* with accuracy γ_{∞} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

One may extract a subsequence $\{y_{k_n}\}_{n\geq 0}$ such that $v(y_{k_{n+1}} - y_{k_n}) = \gamma_{k_n}$.

This sequence $\{y_{k_n}\}_{n\geq 0}$ is *pseudo-convergent* with accuracy γ_{∞} .

PROPOSITION (KAPLANSKY 1942)

Every pseudo-convergent sequence admits a pseudo-limit in an immediate extension L of K

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

One may extract a subsequence $\{y_{k_n}\}_{n\geq 0}$ such that $v(y_{k_{n+1}} - y_{k_n}) = \gamma_{k_n}$.

This sequence $\{y_{k_n}\}_{n\geq 0}$ is *pseudo-convergent* with accuracy γ_{∞} .

PROPOSITION (KAPLANSKY 1942)

Every pseudo-convergent sequence admits a pseudo-limit in an immediate extension L of K

Application. Recall that a valuation domain is said to be *maximally complete* if it does not admit any proper immediate extension.

One may extract a subsequence $\{y_{k_n}\}_{n\geq 0}$ such that $v(y_{k_{n+1}} - y_{k_n}) = \gamma_{k_n}$.

This sequence $\{y_{k_n}\}_{n\geq 0}$ is *pseudo-convergent* with accuracy γ_{∞} .

PROPOSITION (KAPLANSKY 1942)

Every pseudo-convergent sequence admits a pseudo-limit in an immediate extension L of K

Application. Recall that a valuation domain is said to be *maximally complete* if it does not admit any proper immediate extension.

THEOREM

If the completion \hat{V} of V is maximally complete, then Int(S, V) is Prüfer if and only if S is precompact.

One may extract a subsequence $\{y_{k_n}\}_{n\geq 0}$ such that $v(y_{k_{n+1}} - y_{k_n}) = \gamma_{k_n}$.

This sequence $\{y_{k_n}\}_{n\geq 0}$ is *pseudo-convergent* with accuracy γ_{∞} .

PROPOSITION (KAPLANSKY 1942)

Every pseudo-convergent sequence admits a pseudo-limit in an immediate extension L of K

Application. Recall that a valuation domain is said to be *maximally complete* if it does not admit any proper immediate extension.

THEOREM

If the completion \hat{V} of V is maximally complete, then Int(S, V) is Prüfer if and only if S is precompact.

In particular, if V is a discrete valuation domain, then Int(S, V) is Prüfer if and only if S is precompact [Cahen, C., Loper, 2001].

In the previous results, all the pseudo-convergent, divergent, or stationary sequences admit pseudo-limits in V.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

In the previous results, all the pseudo-convergent, divergent, or stationary sequences admit pseudo-limits in V. But, the pseudo-limits of a pseudo-convergent sequence could belong to a proper immediate extension.

In the previous results, all the pseudo-convergent, divergent, or stationary sequences admit pseudo-limits in V. But, the pseudo-limits of a pseudo-convergent sequence could belong to a proper immediate extension.

THEOREM (LOPER AND WERNER, 2016)

Let $\{a_n\}_{n\geq 0}$ be a pseudo convergent sequence and $T = \{a_n \mid n \geq 0\}$.

- If the sequence is of algebraic type, then Int(T, V) is not Prüfer.
- **2** If the sequence is of transcendental type, then Int(T, V) is Prüfer.

In the previous results, all the pseudo-convergent, divergent, or stationary sequences admit pseudo-limits in V. But, the pseudo-limits of a pseudo-convergent sequence could belong to a proper immediate extension.

THEOREM (LOPER AND WERNER, 2016)

Let $\{a_n\}_{n\geq 0}$ be a pseudo convergent sequence and $T = \{a_n \mid n \geq 0\}$.

- If the sequence is of algebraic type, then Int(T, V) is not Prüfer.
- **2** If the sequence is of transcendental type, then Int(T, V) is Prüfer.

algebraic type: $\exists f(X) \in V[X]$ s.t. $v(f(a_n))$ is ultimately strictly increasing

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

In the previous results, all the pseudo-convergent, divergent, or stationary sequences admit pseudo-limits in V. But, the pseudo-limits of a pseudo-convergent sequence could belong to a proper immediate extension.

THEOREM (LOPER AND WERNER, 2016)

Let $\{a_n\}_{n\geq 0}$ be a pseudo convergent sequence and $T = \{a_n \mid n \geq 0\}$.

- **1** If the sequence is of algebraic type, then Int(T, V) is not Prüfer.
- **2** If the sequence is of transcendental type, then Int(T, V) is Prüfer.

algebraic type: $\exists f(X) \in V[X]$ s.t. $v(f(a_n))$ is ultimately strictly increasing

If Int(S, V) is Prüfer, then S does not contain

- any pseudo-limit of a pseudo-divergent sequence
- any pseudo-stationary sequence
- any pseudo-convergent sequence of algebraic type.

In the previous results, all the pseudo-convergent, divergent, or stationary sequences admit pseudo-limits in V. But, the pseudo-limits of a pseudo-convergent sequence could belong to a proper immediate extension.

THEOREM (LOPER AND WERNER, 2016)

Let $\{a_n\}_{n\geq 0}$ be a pseudo convergent sequence and $T = \{a_n \mid n \geq 0\}$.

- If the sequence is of algebraic type, then Int(T, V) is not Prüfer.
- **2** If the sequence is of transcendental type, then Int(T, V) is Prüfer.

algebraic type: $\exists f(X) \in V[X]$ s.t. $v(f(a_n))$ is ultimately strictly increasing

If Int(S, V) is Prüfer, then S does not contain

- any pseudo-limit of a pseudo-divergent sequence
- any pseudo-stationary sequence
- any pseudo-convergent sequence of algebraic type.

IS IT SUFFICIENT?

Jean-Luc Chabert Université de Picardie

In the previous results, all the pseudo-convergent, divergent, or stationary sequences admit pseudo-limits in V. But, the pseudo-limits of a pseudo-convergent sequence could belong to a proper immediate extension.

THEOREM (LOPER AND WERNER, 2016)

Let $\{a_n\}_{n\geq 0}$ be a pseudo convergent sequence and $T = \{a_n \mid n \geq 0\}$.

- If the sequence is of algebraic type, then Int(T, V) is not Prüfer.
- **2** If the sequence is of transcendental type, then Int(T, V) is Prüfer.

algebraic type: $\exists f(X) \in V[X]$ s.t. $v(f(a_n))$ is ultimately strictly increasing

IF Int(S, V) is Prüfer, then S does not contain

- any pseudo-limit of a pseudo-divergent sequence
- any pseudo-stationary sequence
- any pseudo-convergent sequence of algebraic type.

IS IT SUFFICIENT? Jean-Luc Chabert Université de Picardie

Graz, July 3-8, 2016 17 / 17