Finitely generated powers of prime ideals

François Couchot

University of Caen Basse-Normandie, France

Conference on Rings and Polynomials in Graz 2016

*ロ * * @ * * 注 * * 注 *

æ

æ

- 2 Powers of maximal ideals
- Overs of prime ideals

- 4 同 6 4 日 6 4 日 6

э

- 2 Powers of maximal ideals
- Overs of prime ideals

伺 ト イヨト イヨト

э

- 2 Powers of maximal ideals
- Overs of prime ideals

5 Rings of locally constant functions

< ∃ >

э

Preliminaries

For a long time Gilmer was interested by this question:

Let *P* be a prime ideal of a commutative ring *R* such that P^n is finitely generated for some integer > 1. Is *P* finitely generated too?

In 1999, with Heinzer and Roitman, they got some positive answers to this question, but also some counter-examples.

Preliminaries

In particular they proved the following theorem:

Theorem

Let R a reduced ring. Assume that each prime ideal has a finitely generated power. Then R is Noetherian.

In 2001, Roitman obtained some other results. In particular he show the following:

Theorem

Let R be a coherent integral domain. Then, each prime ideal P for which P^n is finitely generated for some integer n > 1 is finitely generated too.

In 2015, Mahdou and Zennayi investigated this question when P is a maximal ideal of rings which are built by different ways: trivial ring extension, pullback diagram and amalgamation along an ideal. Some new examples and counter-examples are given.

Powers of maximal ideals

Recall that a ring R is **coherent** if each finitely generated ideal is finitely presented. It is well known that R is coherent if and only if (0:r) and $A \cap B$ are finitely generated for each $r \in R$ and any two finitely generated ideals A and B.

Theorem

Let R be a coherent ring. If P is a maximal ideal such that P^n is finitely generated for some integer n > 0 then P is finitely generated too.

Proof.

If $P^n = 0$ and $P^{n-1} \neq 0$ then P = (0 : r) for any $r \in P^{n-1}$. If $P^n \neq 0$ then R/P^n is coherent.

(日) (同) (三) (三)

Powers of maximal ideals

Theorem

Let R be a ring. Suppose that R_P is coherent for each maximal ideal P. If P is a maximal ideal such that P^n is finitely generated for some integer n > 0 then P is finitely generated too.

A ring R is a **chain ring** if its lattice of ideals is totally ordered by inclusion, and R is **arithmetical** if R_P is a chain ring for each maximal ideal P.

Theorem

Let R be an arithmetical ring. If P is a maximal ideal such that P^n is finitely generated for some integer n > 0 then P is finitely generated too.

Powers of maximal ideals

Let *R* be a ring. For a polynomial $f \in R[X]$, denote by c(f) (the content of *f*) the ideal of *R* generated by the coefficients of *f*. We say that *R* is **Gaussian** if c(fg) = c(f)c(g) for any two polynomials *f* and *g* in R[X]. A ring *R* is said to be a **fqp-ring** if each finitely generated ideal *I* is projective over R/(0:I). Each arithmetical ring is a fqp-ring and each fqp-ring is Gaussian, but the converses do not hold (Abuhlail, Jarrar and Kabbaj (2011)). The following examples show that the previous theorem cannot be extended to the class of fqp-rings and the one of Gaussian rings.

Powers of maximal ideals

Example

Let *R* be a local ring and *P* its maximal ideal. Assume that $P^2 = 0$. Then it is easy to see that *R* is a fqp-ring. But *P* is possibly not finitely generated.

Example

Let A be a valuation domain (a chain domain), M its maximal ideal generated by m and E a vector space over A/M. Let $R = \{ \begin{pmatrix} a & e \\ 0 & a \end{pmatrix} \mid a \in A, e \in E \}$ be the trivial ring extension of A by E. We easily check that R is a local fqp-ring. Let P be its maximal ideal. Then P^2 is generated by $\begin{pmatrix} m^2 & 0 \\ 0 & m^2 \end{pmatrix}$. But, if E is of infinite dimension over A/M then P is not finitely generated over R.

Powers of prime ideals

If R is a coherent integral domain then each prime ideal with a finitely generated power is finitely generated too (Roitman (2001)). The following example shows that this result does not extend to any coherent ring.

Example

Let *D* be a valuation domain. Suppose there exists a non-zero prime ideal *L'* which is not maximal. Moreover assume that $L' \neq L'^2$ and let $d \in L' \setminus L'^2$. If R = D/Dd and L = L'/Dd, then *R* is a coherent ring, *L* is not finitely generated and $L^2 = 0$.

Powers of prime ideals

Remark

Let R be an arithmetical ring. In the previous example we use the fact that each non-zero prime ideal L which is not maximal is not finitely generated. We shall prove that L^n is not finitely generated for each integer n > 0 if L is not minimal.

Powers of prime ideals

In the sequel let $\Phi = \operatorname{Max} R \cup (\operatorname{Spec} R \setminus \operatorname{Min} R)$ for any ring R. By adapting the proof of the result of Roitman (2001) we show the following:

Theorem

Let R be a coherent ring. Then, for any $P \in \Phi$, P is finitely generated if P^n is finitely generated for some integer n > 0.

Powers of prime ideals

Corollary

Let R be a reduced coherent ring. Then, for any prime ideal P, P is finitely generated if P^n is finitely generated for some integer n > 0.

Proof.

If P is a minimal prime then $(0:P) = (0:P^n)$ and $(0:P) \setminus P \neq \emptyset$. So, P = (0:(0:P)).

- **→** → **→**

Powers of prime ideals

An exact sequence of *R*-modules $0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0$ is **pure** if it remains exact when tensoring it with any *R*-module. Then, we say that *F* is a **pure** submodule of *E*. The following proposition is well known.

Powers of prime ideals

Proposition

Let A be an ideal of a ring R. The following conditions are equivalent:

- If or each finite family (a_i)_{1≤i≤n} of elements of A there exists t ∈ A such that a_i = a_it, ∀i, 1 ≤ i ≤ n;
- **③** for all $a \in A$ there exists $b \in A$ such that a = ab (so, $A = A^2$);
- R/A is a flat R-module.

Moreover:

- if A is finitely generated, then A is pure if and only if it is generated by an idempotent;
- if A is pure, then $R/A = S^{-1}R$ where S = 1 + A.

Powers of prime ideals

If *R* is a ring, we consider on Spec *R* the equivalence relation \mathcal{R} defined by $L\mathcal{R}L'$ if there exists a finite sequence of prime ideals $(L_k)_{1 \le k \le n}$ such that $L = L_1$, $L' = L_n$ and $\forall k, 1 \le k \le (n-1)$, either $L_k \subseteq L_{k+1}$ or $L_k \supseteq L_{k+1}$. We denote by pSpec *R* the quotient space of Spec *R* modulo \mathcal{R} and by $\lambda : \operatorname{Spec} R \to \operatorname{pSpec} R$ the natural map. The quasi-compactness of Spec *R* implies the one of pSpec *R*.

Powers of prime ideals

Lemma

Let R be a ring and let C a closed subset of Spec R. Then C is the inverse image of a closed subset of pSpec R by λ if and only if C = V(A) where A is a pure ideal. Moreover, in this case, $A = \bigcap_{P \in C} 0_P$, where $0_P = \ker(R \to R_P)$.

In the sequel, for each $x \in pSpec R$ we denote by A(x) the unique pure ideal which verifies $\overline{\{x\}} = \lambda(V(A(x)))$, where $\overline{\{x\}}$ is the closure of $\{x\}$ in pSpec R.

・ 同 ト ・ 三 ト ・

Powers of prime ideals

Theorem

Let R be a ring. Assume that R/A(x) is coherent for each $x \in pSpec R$. Then, for any $P \in \Phi$, P is finitely generated if P^n is finitely generated for some integer n > 0.

Corollary

Let R be a reduced ring. Assume that R/A(x) is coherent for each $x \in pSpec R$. Then, for any prime ideal P, P is finitely generated if P^n is finitely generated for some integer n > 0.

Image: A image: A

pf-rings

Now, we consider the rings R for which each prime ideal contains a unique minimal prime ideal. So, the restriction λ' of λ to Min R is bijective. In this case, for each minimal prime ideal L we put $A(L) = A(\lambda(L))$. (Couchot (2007)) pSpec R is Hausdorff and λ' is a homeomorphism if and only if Min R is compact.

Proposition

Let R be a ring. Assume that each prime ideal contains a unique minimal prime ideal. Then, for each minimal prime ideal L, V(L) = V(A(L)). Moreover, if R is reduced then A(L) = L.

・ (日本)

We say that a ring R is a **pf-ring** if one of the following equivalent conditions holds:

- **1** R_P is an integral domain for each maximal ideal P;
- 2 each principal ideal of R is flat;
- **③** each cyclic submodule of a flat *R*-module is flat.

Moreover, if R is a pf-ring then each prime ideal P contains a unique minimal prime ideal P' and A(P') = P'.

pf-rings

Corollary

Let R be a coherent pf-ring. Then each prime ideal with a finitely generated power is finitely generated too.

Corollary

Let R be a pf-ring. Assume that R/L is coherent for each minimal prime ideal L. Then each prime ideal with a finitely generated power is finitely generated too.

Corollary

Let R be a reduced arithmetical ring. Then each prime ideal with a finitely generated power is finitely generated too.

(日)

-

pf-rings

Let *n* be an integer ≥ 0 and *G* a module over a ring *R*. We say that pd $G \leq n$ if $\operatorname{Ext}_{R}^{n+1}(G, H) = 0$ for each *R*-module *H*.

Corollary

Let R be a coherent ring. Assume that each finitely generated ideal I satisfies pd $I < \infty$. Then each prime ideal with a finitely generated power is finitely generated too.

Proof.

 R_P is an integral domain for any prime ideal P [Bertin (1971)].

- ∢ ≣ ▶

pf-rings

Corollary

Let A be a ring and $X = \{X_{\lambda}\}_{\lambda \in \Lambda}$ a set of indeterminates. Consider the polynomial ring R = A[X]. Assume that A is reduced and arithmetical. Then each prime ideal of R with a finitely generated power is finitely generated too.

Proof.

"*A* pf-ring" implies "*R* pf-ring". For any prime ideal L "*A*/*L* Prüfer" implies "(A/L)[X] coherent" [Greenberg and Vasconcelos (1976)]

- 4 同 6 4 日 6 4 日 6

pf-rings

Let *n* be an integer ≥ 0 . We say that a ring *R* is of global dimension $\leq n$ if pd $G \leq n$ for each *R*-module *G*.

Corollary

Let A be a ring and $X = \{X_{\lambda}\}_{\lambda \in \Lambda}$ a set of indeterminates. Consider the polynomial ring R = A[X]. Assume that A is of global dimension ≤ 2 . Then each prime ideal of R with a finitely generated power is finitely generated too.

Proof.

 A_P is a coherent domain for any maximal ideal P and A/L is coherent for each minimal prime L [Le Bihan (1971)]. We end as above by using [Greenberg and Vasconcelos (1976)].

(日) (同) (三) (三)

locally constant functions

A topological space is called **totally disconnected** if each of its connected components contains only one point. Every Hausdorff topological space X with a base of clopen (closed and open) neighbourhoods is totally disconnected and the converse holds if X is compact.

Proposition

Let R be a ring for which each prime ideal contains only one minimal prime ideal. Let P be a minimal prime ideal such that P^n is finitely generated for some integer n > 0. Then $\lambda(P)$ is an isolated point of pSpec R.

locally constant functions

Proposition (C(X, O))

Let X be a totally disconnected compact space, let O be a ring with a unique point in pSpec O. Let R be the ring of all locally constant maps from X into O. Then, pSpec R is homeomorphic to X and $R/A(z) \cong O$ for each $z \in pSpec R$.

Proposition

Let R be the ring defined in Proposition [C(X,O)]. Assume that O is a reduced coherent ring. Then, for any prime ideal P, P is finitely generated if P^n is finitely generated for some integer n > 0.

・ロト ・同ト ・ヨト ・ヨト

locally constant functions

Proposition

Let R be the ring defined in Proposition [C(X,O)]. Assume that O has a unique minimal prime ideal M. Then, every prime ideal of R contains only one minimal prime ideal and Min R is compact. If M = 0 then R is a pp-ring, i.e. each principal ideal is projective.

locally constant functions

Corollary

Let R be the ring defined in Proposition [C(X,O)]. Suppose that O has a unique minimal prime ideal M. Assume that O is either coherent or arithmetical and that one of the following conditions holds:

- *M* is either idempotent or finitely generated;
- 2 X contains no isolated point.

Then, for any prime ideal P, P is finitely generated if P^n is finitely generated for some integer n > 0.

locally constant functions

Example

Let R be the ring defined in Proposition [C(X,O)]. Assume that:

- *O* is either coherent or arithmetical, with a unique minimal prime ideal *M*;
- *M* is not finitely generated and *M^k* = 0 for some integer *k* > 1;
- X contains no isolated points (for example the Cantor set).

Then the property "for each prime ideal P, P^n is finitely generated for some integer n > 0 implies P is finitely generated" is satisfied by R, but not by R/A(L) for each minimal prime ideal L.

locally constant functions

Corollary

Let R be the ring defined in Proposition [C(X,O)]. Assume that O is local with maximal ideal M. Then each prime ideal of R is contained in a unique maximal ideal, and for each maximal ideal P, $R_P \cong O$. Moreover, if one of the following conditions holds:

- O is coherent;
- O is a chain ring;
- S contains no isolated point and M is the sole prime ideal of O.

then, for each maximal ideal P, P^n finitely generated for some integer n > 0 implies P is finitely generated.

locally constant functions

Example

Let *R* be the ring defined in Proposition [C(X,O)]. Assume that *M* is the sole prime ideal of *O*, *M* is not finitely generated, $M^k = 0$ for some integer k > 1 and *X* contains no isolated points. Then the property "for each maximal ideal *P*, *P*ⁿ is finitely generated for some integer n > 0 implies *P* is finitely generated" is satisfied by *R*, but not by *R*_L for each maximal ideal *L*.

Thank you very much!

ArKiv:1601.02842

э

- 4 同 6 4 日 6 4 日 6