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Introduction

Tate cohomology originated from the study of
representations of finite groups.
It was created in 1950s, based on Tate’s
observation that the ZG-module Z with the
trivial action admits a complete projective res-
olution.
For a finite group G, one has

Ĥn(G,−) = Êxt
n
ZG(Z,−).
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n
ZG(Z,−).



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Introduction

Buchweitz in 1986 extended the technique to
define a two-variable theory over Gorenstein
rings.
The functors Êxt

n
R(−,−) were introduced by

Vogel in the mid-1980s.
The first published account appears only in a
paper by F. Goichot in 1992, where it is called
-TateõVogel cohomology..
Different approaches were independently pro-
posed by Avramov and Martsinkovsky, Veliche,
Benson and Carlson, Mislin, ......
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Introduction

Cotorsion pairs and their relation to model
structures have been the topic of much re-
cent research.
Given a cotorsion pair (A,B) in an abelian
categoryD with enoughA-objects and enough
B-objects, Gillespie defined two cotorsion pairs
(Ã, dgB̃) and (dgÃ, B̃) in the category C(D) of
chain complexes on D. See “J. Gillespie, The
flat model structure on Ch(R), Trans. Amer.
Math. Soc. 356 (2004) 3369-3390”.
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Introduction

Let (A,B) be a complete hereditary cotorsion
pair in a bicomplete abelian category D, we
show that the cotorsion pairs of chain com-
plexes (Ã, dgB̃) and (dgÃ, B̃) are complete,
compatible and hereditary. This immediately
puts a model structure on C(D). See “Yang
and Ding, Forum Math. 27 (2015), 3205-3231”.
As an application of this result, we establish
A dimension and B dimension of unbounded
complexes in a Grothendieck category.
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compatible and hereditary. This immediately
puts a model structure on C(D). See “Yang
and Ding, Forum Math. 27 (2015), 3205-3231”.
As an application of this result, we establish
A dimension and B dimension of unbounded
complexes in a Grothendieck category.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Introduction

Let (A,B) be a complete hereditary cotorsion
pair in a bicomplete abelian category D, we
show that the cotorsion pairs of chain com-
plexes (Ã, dgB̃) and (dgÃ, B̃) are complete,
compatible and hereditary. This immediately
puts a model structure on C(D). See “Yang
and Ding, Forum Math. 27 (2015), 3205-3231”.
As an application of this result, we establish
A dimension and B dimension of unbounded
complexes in a Grothendieck category.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Introduction

Let (A,B) be a complete hereditary cotorsion
pair in a bicomplete abelian category D, we
show that the cotorsion pairs of chain com-
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Introduction

In this talk, we study Tate-Vogel cohomology
of complexes by applying the model structure
induced by a complete hereditary cotorsion
pair (A,B) of modules.
Vanishing of Tate-Vogel cohomology charac-
terizes the finiteness of A dimension and B
dimension of complexes.
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Introduction

Applications go in three directions.
The first is to characterize when a left and
right Noetherian ring is Gorenstein.
The second is to obtain some criteria for the
validity of the Finitistic Dimension Conjecture.
The third is to investigate the relationships
between flat dimension and Gorenstein flat
dimension for complexes.
This talk is a report on joint work with J. S.
Hu.
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Cotorsion pairs

Let D be an abelian category and H a sub-
category of D.
For an object M ∈ D, write

M ∈ ⊥H (resp. M ∈ ⊥1H)
if Ext>1

D (M,X) = 0 (resp. Ext1D(M,X) = 0)
for each X ∈ H.
Dually, we can define M ∈ H⊥ and M ∈ H⊥1.
A cotorsion pair (cotorsion theory) is a pair
(A,B) of classes of objects in D such that
A = ⊥1B and B = A⊥1.
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A cotorsion pair (A, B) is called complete if it
has enough projectives and injectives, i.e., for
any object X ∈ D, there are exact sequences

0→ B→ A→ X → 0

and
0→ X → B′ → A′ → 0

respectively with B,B′ ∈ B and A,A′ ∈ A.
A cotorsion pair (A, B) is said to be hereditary
if ExtiD(A,B) = 0 ∀ A ∈ A,B ∈ B and i ≥ 1.
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Model categories

A model structure on a category C is three
classes of maps called weak equivalences,
fibrations, and cofibrations subject to the fol-
lowing axioms.

A trivial cofibration (resp. trivial fibration)
is both a cofibration (resp. fibration) which is
a weak equivalence.
1. (2-out-of-3) Given X

f→ Y
g→ Z so that any

two of f , g, or gf are weak equivalences, then
so is the third.
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Model categories

2. (Retracts) A map f in C is a retract of a map g
in C if there is a commutative diagram of the form

A
f ��

// C
g ��

// A
f ��

B //D // B

with the horizontal composites identities.
The three classes of maps are closed under

retracts.
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3. (Lifting) Every commutative diagram

A
i
��

f // X
p
��

B

h
??

g
// Y

where i is a cofibration and p is a fibration has a
solution h so that hi = f and ph = g if i or p is a
weak equivalence.
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Model categories

4. (Factorization) Any map f : X → Y can be
factored in two ways:

1 X
i ''

f // Y,
Z q

77 where i is a cofibration and q

is a trivial fibration.
2 X

j ''

f // Y,
Z p

77 where j is a trivial cofibration

and p is a fibration.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Model categories

4. (Factorization) Any map f : X → Y can be
factored in two ways:

1 X
i ''

f // Y,
Z q

77 where i is a cofibration and q

is a trivial fibration.
2 X

j ''

f // Y,
Z p

77 where j is a trivial cofibration

and p is a fibration.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Model categories

4. (Factorization) Any map f : X → Y can be
factored in two ways:

1 X
i ''

f // Y,
Z q

77 where i is a cofibration and q

is a trivial fibration.
2 X

j ''

f // Y,
Z p

77 where j is a trivial cofibration

and p is a fibration.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Model categories

4. (Factorization) Any map f : X → Y can be
factored in two ways:

1 X
i ''

f // Y,
Z q

77 where i is a cofibration and q

is a trivial fibration.
2 X

j ''

f // Y,
Z p

77 where j is a trivial cofibration

and p is a fibration.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Model categories

A model category is a category C with all
small limits and colimits together with a model
structure on C.
An model category has an initial object 0 and
a terminal object 1.
An object A of a model category C is said to
be cofibrant if 0 → A is a cofibration and
fibrant if A→ 1 is a fibration.
An object X of a model category C is called
trivial if the map 0 → X is a weak equiva-
lence.
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An abelian model category is a bicomplete
abelian category C equipped with a model struc-
ture such that

1 A map is a cofibration if and only if it is a monomorphism
with cofibrant cokernel;

2 A map is a fibration if and only if it is an epimorphism with
fibrant kernel.

A nice introduction to the basic idea of a model
category can be found in “M. Hovey, Model
Categories, American Mathematical Society,
Providence, RI, 1999”.
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Envelopes and covers

Given a class F of objects in G and an object X ∈ G. An
F-envelope of X is a morphism ψ : X → F with F ∈ F such that:

X

(a) Any diagram
��

ψ // F

with F
′ ∈ F can be completed.

��
F′

X

(b) The diagram ψ
��

ψ // F

can be completed only by auto-
��

F
morphisms of F.
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If ψ satisfies (a) and perhaps not (b), it is
called an F-preenvelope.
An F-preenvelope ψ : X → F is called special
if ψ is a monomorphism and Cokerψ ∈ ⊥1F .
(Special) F-precovers and F-covers are de-
fined dually.
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F-preenvelope = left F-approximation
F-envelope = minimal leftF-approximation

F-precover = right F-approximation
F-cover = minimal right F-approximation

preenveloping = covariantly finite
precovering = contravariantly finite.
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Complexes

The category of chain complexes of left R-
modules is denoted by C(R).
A chain complex

· · ·
∂X

n+2−→ Xn+1
∂X

n+1−→ Xn
∂X

n−→ Xn−1
∂X

n−1−→ · · ·
will be denoted by (X, ∂) or simply X.
Zn(X)=Ker(∂X

n ), the nth cycle module.
Bn(X)=Im∂(X

n+1), the nth boundary module.
Hn(X)=Zn(X)/Bn(X), the nth homology mod-
ule.
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Let X be a complex.
Cn(X) = coker(∂X

n+1).
supX = sup{s ∈ Z|Hs(X) 6= 0}.
infX = inf{i ∈ Z|Hi(X) 6= 0}.
X is called homologically bounded above (resp.,
homologically bounded below) if supX < ∞
(resp., infX > −∞).
By convention, supX = −∞ and infX =∞ if X
is exact.
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Given two objects X,Y ∈ C(D), then Hom(X,Y)
denotes the complex with

Hom(X,Y)n =
∏
t∈Z

G(Xt,Yn+t),

where (∂nf )m = ∂Y
n+mfm − (−1)nfm−1∂

X
m for f ∈

Hom(X,Y)n.
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A morphism α : X → Y of complexes induces
homomorphisms Hn(α) : Hn(X) → Hn(Y) for
all n ∈ Z, and α is a quasi-isomorphism
when each Hn(α) is an isomorphism.
The complexes X and Y are equivalent, de-
noted by X ' Y, if they can be linked by a se-
quence of quasi-isomorphisms with arrows in
the alternating directions.
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Let (A,B) be a cotorsion pair in Mod(R) and
X an R-complex.

1 X is called an A complex if it is exact and
Zn(X) ∈ A for all n.

2 X is called a B complex if it is exact and
Zn(X) ∈ B for all n.

3 X is called a dgA complex if Xn ∈ A for all
n, and Hom(X,B) is exact whenever B is a B
complex.

4 X is called a dgB complex if Xn ∈ B for all n,
and Hom(A,X) is exact whenever A is an A
complex.
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complex.
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dgÃ = the class of dgA complexes,
dgB̃ = the class of dgB complexes.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

In what follows,
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If (A,B) = (P ,Mod(R)), then a complex X ∈
dgP̃ is called dg-projective.
If (A,B) = (Mod(R), I), then a complex X ∈
dgĨ is called dg-injective.
If (A,B) = (F , C), then a complex X ∈ dgF̃ is
called dg-flat, and a complex Y ∈ dgC̃ is called
dg-cotorsion.
Clearly, any dg-projective complex is in dgÃ
and any dg-injective complex is in dgB̃.
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Let (A, B) be a complete hereditary cotorsion
pair in Mod(R). Then the induced cotorsion
pairs (Ã, dgB̃) and (dgÃ, B̃) in C(R) are both
complete and hereditary.
Furthermore, dgÃ ∩ E = Ã and dgB̃ ∩ E = B̃,
where E is the class of exact complexes.
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There exists a model structure on C(R),
denoted by C(R)MBA, satisfying:

1 the weak equivalences are the quasi-
isomorphisms;

2 the cofibrations (resp. trivial cofibrations) are
the monomorphisms whose cokernels are in
dgÃ (resp. Ã);

3 the fibrations (resp. trivial fibrations) are the
epimorphisms whose kernels are in dgB̃ (resp.
B̃).

In particular, dgÃ is the class of cofibrant objects
and dgB̃ is the class of fibrant objects.
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Let M be a complex.
M has a cofibrant replacement

pM : QM → M

in C(R)MBA, where QM is cofibrant and pM is a
trivial fibration.
M has a fibrant replacement

iM : M → RM

in C(R)MBA, where RM is fibrant and iM is a
trivial cofibration.
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Tate-Vogel cohomology for complexes
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Definition 3.1

Let (A, B) be a complete hereditary cotorsion pair in
Mod(R) and M a complex.

1 A cofibrant-fibrant resolution of M is a diagram

QRM
pRM //RM M

iMoo

of morphisms of complexes with pRM a cofibrant re-
placement in C(R)MB

A
and iM a fibrant replacement in

C(R)MB
A

.
2 A fibrant-cofibrant resolution of M is a diagram

RQM QM
iQMoo pM // M

of morphisms of complexes with iQM a fibrant replace-
ment in C(R)MB

A
and pM a cofibrant replacement in

C(R)MB
A

.
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Remark 3.2
1 We note that both QRM and RQM in the

above definition are in dgÃ ∩ dgB̃.
2 A cofibrant replacement pM is exactly a spe-

cial dgÃ-precover of M.
3 A fibrant replacement iM is exactly a special

dgB̃-preenvelope of M.
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Definition 3.3
Let A = (A, B) be a complete hereditary cotorsion pair

in Mod(R), and let M and N be complexes.
There are two cofibrant-fibrant resolutions
QRM → RM ← M and
QRN → RN ← N of M and N, respectively.

Let HomR(QRM,QRN) 6 Hom(QRM,QRN) with com-
ponents HomR(QRM,QRN)n

= {(ϕi) ∈ Hom(QRM,QRN)n | ϕi = 0 for all i� 0},
and H̃omR(QRM,QRN)

= Hom(QRM,QRN)/HomR(QRM,QRN).
We define the nth Tate-Vogel cohomology group, de-

noted by Ẽxt
n
A(M,N), as

Ẽxt
n
A(M,N) = H−n(H̃omR(QRM,QRN)).
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RQM ← QM → M and
RQN ← QN → N of M and N, respectively.

Let HomR(RQM,RQN) 6 Hom(RQM,RQN) with com-
ponents HomR(RQM,RQN)n

= {(ϕi) ∈ Hom(RQM,RQN)n | ϕi = 0 for all i� 0},
and ĤomR(RQM,RQN) =

= Hom(RQM,RQN)/HomR(RQM,RQN).
We define the nth Tate-Vogel cohomology group, de-

noted by ẽxt
n
A(M,N), as
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n
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A(M,N) = H−n(ĤomR(RQM,RQN)).



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Remark 3.5

One can see that Ẽxt
n
A(−,−) and ẽxt

n
A(−,−) are

cohomological functors for each integer n, inde-
pendent of the choice of cofibrant replacements
and fibrant replacements.
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n
A(−,−) are

cohomological functors for each integer n, inde-
pendent of the choice of cofibrant replacements
and fibrant replacements.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Remark 3.5

One can see that Ẽxt
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Remark 3.6
Let (A, B) = (P, Mod(R)) (resp., (Mod(R), I))

in the definition above, then one easily checks
that the Tate-Vogel cohomology group for
complexes by cofibrant-fibrant (resp., fibrant-
cofibrant) resolutions defined here is exactly the
cohomology group for complexes defined by
Asadollahi and Salarian in “Cohomology theories
for complexes, J. Pure Appl. Algebra 210 (2007)
771-787”.
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Definition 3.7
Assume that (A, B) is a complete hereditary cotorsion

pair in Mod(R). Let M and N be complexes.
1 The A dimension of M, denoted by A-dimM, is defined

as
A-dimM = inf{sup{i | A−i 6= 0} | M ' A with A ∈ dgÃ};

2 The B dimension of N, denoted by B-dimN, is defined
as
B-dimN = inf{sup{i | B−i 6= 0} | N ' B with B ∈ dgB̃},

where the symbol ' stands for quasi-isomorphism.

Cf. X. Y. Yang and N. Q. Ding, On a question of Gillespie,
Forum Mathematicum 27 (6) (2015), 3205-3231.
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Theorem 3.8
Let A = (A, B) be a complete hereditary cotor-
sion pair in Mod(R).

1 Let M be a homologically bounded above
complex. TFAE:

1 A-dimM <∞;
2 Ẽxt

i
A(M,Y) = 0 for all integers i and any complex Y;

3 Ẽxt
0
A(M,M) = 0.

2 Let N be a homologically bounded below
complex. TFAE:

1 B-dimN <∞;
2 ẽxt

i
A(X,N) = 0 for all integers i and any complex X;

3 ẽxt
0
A(N,N) = 0.
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3 ẽxt
0
A(N,N) = 0.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Theorem 3.8
Let A = (A, B) be a complete hereditary cotor-
sion pair in Mod(R).

1 Let M be a homologically bounded above
complex. TFAE:

1 A-dimM <∞;
2 Ẽxt
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2 ẽxt

i
A(X,N) = 0 for all integers i and any complex X;

3 ẽxt
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2 Ẽxt

i
A(M,Y) = 0 for all integers i and any complex Y;

3 Ẽxt
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Specializing Theorem 3.8 to the case (A, B) =
(F , C), we have

Corollary 3.9
Let F = (F , C) be the flat cotorsion pair in Mod(R)
and M a homologically bounded above complex.
TFAE:

1 fdR(M) <∞;
2 Ẽxt

i
F(M,N) = 0 for all integers i and any com-

plex N;
3 Ẽxt

0
F(M,M) = 0.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Specializing Theorem 3.8 to the case (A, B) =
(F , C), we have

Corollary 3.9
Let F = (F , C) be the flat cotorsion pair in Mod(R)
and M a homologically bounded above complex.
TFAE:

1 fdR(M) <∞;
2 Ẽxt
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2 Ẽxt

i
F(M,N) = 0 for all integers i and any com-

plex N;
3 Ẽxt
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Corollary 3.10
TFAE for any ring R:

1 wD(R) <∞;
2 fdR(M) < ∞ for any homologically bounded

above complex M;
3 Ẽxt

0
F(M,M) = 0 for any homologically

bounded above complex M;
4 Ẽxt

0
F(M,M) = 0 for any R-module M.
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Let (R,m, k) be a commutative Noetherian local
ring. Note that R is regular if and only if fdR(k) <
∞.
Corollary 3.11
Let (R,m, k) be a commutative Noetherian local
ring. TFAE:

1 R is regular;
2 Ẽxt

i
F(k,N) = 0 for all integers i and any com-

plex N;
3 Ẽxt

0
F(k, k) = 0.
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2 Ẽxt

i
F(k,N) = 0 for all integers i and any com-

plex N;
3 Ẽxt
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2 Ẽxt

i
F(k,N) = 0 for all integers i and any com-

plex N;
3 Ẽxt
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Corollary 3.12
Let R be a left and right Noetherian ring and GI =
(⊥1GI,GI) a cotorsion pair. TFAE:

1 R is Gorenstein;
2 ẽxt

i
GI(N,N) = 0 for all integers i and any homologically

bounded below complex N;
3 ẽxt

i
GI(X,R) = 0 for all integers i and any complex X;

4 ẽxt
0
GI(R,R) = 0;

5 ẽxt
0
F(M,M) = Ẽxt

0
GP(N,N) = 0 for all R-modules M and

N, where F = (F , C) is the flat cotorsion pair and GP =
(GP ,GP⊥1) is a cotorsion pair.
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5 ẽxt
0
F(M,M) = Ẽxt
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2 ẽxt

i
GI(N,N) = 0 for all integers i and any homologically

bounded below complex N;
3 ẽxt

i
GI(X,R) = 0 for all integers i and any complex X;

4 ẽxt
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Remark 3.13
Let A = (A,B)= (P ,Mod(R)) and M be

an R-module with infinite projective dimension.
Then Ẽxt

0
A(M,M) 6= 0. It is easy to check that

ẽxt
0
A(M,M) = 0. This implies that

Ẽxt
0
A(M,M) � ẽxt

0
A(M,M)

in general.
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0
A(M,M)

in general.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Remark 3.13
Let A = (A,B)= (P ,Mod(R)) and M be

an R-module with infinite projective dimension.
Then Ẽxt
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Applications to the finitistic dimension
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Recall the finitistic dimensions of a ring R.
Findim(R) = sup{pd(P) | P ∈ L},
findim(R) = sup{pd(P) | P ∈ P<∞},

where L (resp., P<∞) is the class of arbitrary
(resp., finitely generated) left R-modules with
finite projective dimension.
Finitistic dimension conjectures. Let Λ be a
finite dimensional algebra over a field k.

(I) Findim(Λ) = findim(Λ).
(II) findim(Λ) <∞.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Recall the finitistic dimensions of a ring R.
Findim(R) = sup{pd(P) | P ∈ L},
findim(R) = sup{pd(P) | P ∈ P<∞},

where L (resp., P<∞) is the class of arbitrary
(resp., finitely generated) left R-modules with
finite projective dimension.
Finitistic dimension conjectures. Let Λ be a
finite dimensional algebra over a field k.

(I) Findim(Λ) = findim(Λ).
(II) findim(Λ) <∞.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Recall the finitistic dimensions of a ring R.
Findim(R) = sup{pd(P) | P ∈ L},
findim(R) = sup{pd(P) | P ∈ P<∞},

where L (resp., P<∞) is the class of arbitrary
(resp., finitely generated) left R-modules with
finite projective dimension.
Finitistic dimension conjectures. Let Λ be a
finite dimensional algebra over a field k.

(I) Findim(Λ) = findim(Λ).
(II) findim(Λ) <∞.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Recall the finitistic dimensions of a ring R.
Findim(R) = sup{pd(P) | P ∈ L},
findim(R) = sup{pd(P) | P ∈ P<∞},

where L (resp., P<∞) is the class of arbitrary
(resp., finitely generated) left R-modules with
finite projective dimension.
Finitistic dimension conjectures. Let Λ be a
finite dimensional algebra over a field k.

(I) Findim(Λ) = findim(Λ).
(II) findim(Λ) <∞.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Recall the finitistic dimensions of a ring R.
Findim(R) = sup{pd(P) | P ∈ L},
findim(R) = sup{pd(P) | P ∈ P<∞},

where L (resp., P<∞) is the class of arbitrary
(resp., finitely generated) left R-modules with
finite projective dimension.
Finitistic dimension conjectures. Let Λ be a
finite dimensional algebra over a field k.

(I) Findim(Λ) = findim(Λ).
(II) findim(Λ) <∞.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Recall the finitistic dimensions of a ring R.
Findim(R) = sup{pd(P) | P ∈ L},
findim(R) = sup{pd(P) | P ∈ P<∞},

where L (resp., P<∞) is the class of arbitrary
(resp., finitely generated) left R-modules with
finite projective dimension.
Finitistic dimension conjectures. Let Λ be a
finite dimensional algebra over a field k.

(I) Findim(Λ) = findim(Λ).
(II) findim(Λ) <∞.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Recall the finitistic dimensions of a ring R.
Findim(R) = sup{pd(P) | P ∈ L},
findim(R) = sup{pd(P) | P ∈ P<∞},

where L (resp., P<∞) is the class of arbitrary
(resp., finitely generated) left R-modules with
finite projective dimension.
Finitistic dimension conjectures. Let Λ be a
finite dimensional algebra over a field k.

(I) Findim(Λ) = findim(Λ).
(II) findim(Λ) <∞.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Recall the finitistic dimensions of a ring R.
Findim(R) = sup{pd(P) | P ∈ L},
findim(R) = sup{pd(P) | P ∈ P<∞},

where L (resp., P<∞) is the class of arbitrary
(resp., finitely generated) left R-modules with
finite projective dimension.
Finitistic dimension conjectures. Let Λ be a
finite dimensional algebra over a field k.

(I) Findim(Λ) = findim(Λ).
(II) findim(Λ) <∞.



Contents Introduction Preliminaries Tate-Vogel cohomology Applications Complexes with finite dimemsion References

Both conjectures were promptly answered in
the negative for Noetherian rings, even in the
commutative Noetherian situation.
In 1992, Conjecture (I) was disproved by
Zimmermann Huisgen using the monomial
relation finite dimensional algebras.
In 2000, Examples with arbitrarily big
differences between the two dimensions were
constructed by Smalø.
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Conjecture (II) has been proved for monomial
relation algebras Λ (e.g. if pdJ3

Λ <∞), and in
a couple of other cases, but it remains open
in general.
In 1991, Auslander and Reiten proved that
Conjecture (II) holds true in case Λ is a finite
dimensional algebra such that P<∞ is precov-
ering (contravariantly finite) in mod-Λ.
Nevertheless, the condition “P<∞ is precov-
ering” is not necessary for Conjecture (II) to
hold.
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Our goal in this section is to characterize when
the little finitistic dimension is finite.
To this end, we will let (X ,Y) be the cotorsion
pair cogenerated by P<∞, that is,

Y = (P<∞)⊥1 and X = ⊥1Y,
where P<∞ is the class of finitely generated
modules with finite projective dimension.
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Theorem 4.1
Let R be a ring and X = (X ,Y) the cotorsion pair cogener-
ated by P<∞. TFAE:

1 findim(R) is finite;
2 ẽxt

i
X(M,N) = 0 for all integers i, any complex M and

any homologically bounded below complex N;
3 ẽxt

i
X(N,N) = 0 for all integers i and any homologically

bounded below complex N;
4 ẽxt

0
X(R(R),R(R)) = 0.

Moreover if R is a left coherent ring, then the above
conditions are also equivalent to:

5 ẽxt
0
X(R,R) = 0.
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Theorem 4.2
Let F = (F , C) be the flat cotorsion pair in Mod(R).
Consider the following conditions:

1 findim(R) is finite.
2 Ẽxt

0
F(M,M) = 0 for any complex M with finite

X dimension.
3 Ẽxt

0
F(X,X) = 0 for any X ∈ X .

Then (1)⇒ (2)⇒ (3). If every flat R-module has
finite projective dimension, then (3)⇒ (1).
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Complexes with finite Gorenstein flat dimemsion
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It is known that if R is a right coherent ring,
then

fdR(M) = GfdR(M)

whenever M is a complex with fdR(M) <∞.

Inspired by this, we consider the following:

Question. When

fdR(M) = GfdR(M)

provided that GfdR(M) <∞?
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Examples
1 A nonflat complex M with GfdR(M) < ∞ and

with fdR(M) = GfdR(M).
Let R = Z, the ring of integers, and let

M = · · · → 0→ Z/2Z→ 0→ · · ·
with Z/2Z in the 0th position and 0 in the
other positions. It is easy to see that M is not
a flat complex and fdR(M) = GfdR(M) = 1.

2 A complex M with GfdR(M) <∞
but fdR(M) 6= GfdR(M).

Let R = Z/4Z, then M = 2R is a Gorenstein
flat R-module, i.e., GfdR(M) = 0, but fdR(M) =
∞.
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In this section, we assume that (F , C) is the
flat cotorsion pair in Mod(R).
We start with the following lemma which gives
a new characterization of Gorenstein flat mod-
ules over right coherent rings.
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Recall that a left R-module M is called
Gorenstein flat if there is an exact sequence

· · · → F1 → F0 → F0 → F1 → · · ·

of flat left R-modules with M = ker(F0 → F1)
such that E ⊗ − leaves the sequence exact
whenever E is an injective right R-module.
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Lemma 5.1
Let R be a right coherent ring and M a left

R-module. TFAE:
1 M is Gorenstein flat;
2 M ∈ ⊥(F ∩ C) and ∃ a Hom(−,F ∩ C) exact

exact sequence 0 → M → A0 → A1 → · · ·
with each Ai ∈ F ∩ C.
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Definition 5.2
Let (F , C) be the flat cotorsion pair in Mod(R), and let R

be a right coherent ring and M a complex.
A complete flat resolution of M is a diagram

T τ// QRM //RM Moo

of morphisms of complexes satisfying:
1 QRM //RM Moo is a cofibrant-fibrant resolution of

M;
2 T is an exact complex with each entry in F ∩ C such

that Zi(T) is Gorenstein flat for every i ∈ Z;
3 τ : T → QRM is a morphism such that τi = idTi for all

i� 0.
A complete flat resolution is split if τi is a split epimor-
phism for all i ∈ Z.
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Proposition 5.3
Let R be right coherent and M a complex. TFAE for each
integer n:

1 GfdR(M) 6 n;
2 supM 6 n and Cn(QRM) is Gorenstein flat for any

cofibrant-fibrant resolution QRM → RM ← M of M;
3 For each cofibrant-fibrant resolution QRM → RM ←

M of M, there exists a complete flat resolution
T τ// QRM //RM Moo of M such that τi = idTi for
all i > n;

4 For each cofibrant-fibrant resolution QRM → RM ←
M of M, there exists a split complete flat resolution
T τ// QRM //RM Moo of M such that τi = idTi for
all i > n.
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Theorem 5.4
Let R be a right coherent ring and M a complex
with GfdR(M) < ∞, and let F = (F , C) be the flat
cotorsion pair in Mod(R). TFAE:

1 fdR(M) = GfdR(M);
2 Ẽxt

i
F(M,N) = 0 for all integers i and any com-

plex N;
3 Ẽxt

i
F(M,X) = 0 for all integers i and any

bounded below dg-cotorsion complex X;
4 Ẽxt

i
F(M,N) = 0 for some integer i and any

cotorsion R-module N.
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2 Ẽxt

i
F(M,N) = 0 for all integers i and any com-

plex N;
3 Ẽxt
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Corollary 5.5
Let R be a left and right Noetherian ring. TFAE:

1 R is Gorenstein;
2 Every homologically bounded above complex

M of left R-modules or right R-modules satis-
fies GfdR(M) <∞;

3 Every homologically bounded above complex
M of left R-modules or right R-modules with
finite injective dimension satisfies GfdR(M) <
∞ (or fdR(M) <∞).
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