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§1. Notation and Basic Definitions

Hilbert’s Nullstellensatz (*) establishes a fundamental relationship between
geometry and algebra, relating algebraic sets in affine spaces to radical
ideals in polynomial rings over algebraically closed fields.

On the other hand, for any ring R, the set of radical ideals of R can be
thought as a set of representatives of the closed sets of X := Spec(R), in
the sense that the map J, sending a closed set C of X to the radical ideal
J(C ) :=

⋂
{P | P ∈ C}, is a natural order-reversing bijection, having as

inverse the map V defined by sending a radical ideal H of R to the Zariski
closed subspace V(H) := {P ∈ Spec(R) | H ⊆ P} of X .

One of the goals of the present talk is to put into a topological perspective
the relationship between the geometry of Spec(R) and the ideal theory of
R, shedding new light onto the Nullstellensatz-type correspondence
established by the maps J and V.

(*) Hilbert, D. (1893). Über die vollen Invariantensysteme. Math. Ann. 42, pp. 313–373.
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Let me start with some preliminaries.

• Given a spectral space X , M. Hochster in 1969 introduced a new
topology on X , that we call here the inverse topology, by defining a
Kuratowski closure operator, for each subset Y of X , as follows:

Clinv(Y ) :=
⋂
{U | U quasi-compact open in X , U ⊇ Y } .

• If we denote by X inv the set X equipped with the inverse topology,
Hochster proved that X inv is still a spectral space and the partial order on
X induced by the inverse topology is the opposite order of that induced by
the given topology on X .

In particular, the closure under generizations {x}gen := {x ′ ∈ X | x ′ ≤ x} of a singleton
{x} is closed in the inverse topology of X , since

{x}gen =
⋂
{U | U ⊆ X quasi-compact open, x ∈ U}.

On the other hand, it is trivial, by the definition, that the closure under specializations

of a singleton {x}sp is closed in the given topology of X , since {x}sp = Cl({x}).
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• The space of nonempty inverse-closed subsets of a spectral space
Given a spectral space X , let

X (X ) := {Y ⊆ X | Y 6= ∅, Y = Clinv(Y )},

If X = Spec(R) for some ring R, we write for short X (R) instead of
X (Spec(R)).

We introduce now a topology on X (X ).
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• We define a Zariski topology on the space X (X ) by taking, as subbasis
of open sets, the sets of the form

U(Ω) := {Y ∈ X (X ) | Y ⊆ Ω},

where Ω varies among the quasi-compact open subspaces of X .

• Note that the previous subbasis is in fact a basis, since

U(Ω) ∩ U(Ω′) = U(Ω ∩ Ω′)

and Ω ∩ Ω′ is a quasi-compact open subspace of X , for any pair Ω,Ω′ of
quasi-compact open subspaces of X .

• Moreover, ∅ 6= U(Ω) because Ω ∈ U(Ω), since a quasi-compact open
subset Ω of X is a closed in the inverse topology of X .

• Note also that, when X = Spec(R), for some ring R, a generic basic
open set of the Zariski topology on X (R) is of the form

U(J) := U(D(J)) = {Y ∈ X (R) | Y ⊆ D(J)},

where J is any finitely generated ideal of R.
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Theorem 1

Let X be a spectral space.

(1) The space X (X )zar, i.e. the set of all nonempty inverse-closed
subspaces of X , X (X ), endowed with the Zariski topology, is a
spectral space.

(2) The canonical map ϕ : X → X (X )zar, defined by ϕ(x) := {x}gen, for
each x ∈ X , is a spectral embedding (and, in particular, an
order-preserving embedding between ordered sets, with the ordering
induced by the Zariski topologies).

Note that, for each quasi-compact open subset Ω of X , it is easy to see
that

ϕ−1(U(Ω)) = Ω .
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In order to prove that a nonempty topological space X is a spectral space,
we use the characterization given by C. A. Finocchiaro in 2014.

• We recall that if B is a nonempty family of subsets of X, for a given
subset Y of X and an ultrafilter U on Y, we set

YB(U) := {x ∈ X | for each B ∈ B, it happens that x ∈ B ⇔ B ∩ Y ∈ U}.

• The subset Y of X is called B-ultrafilter closed if YB(U) ⊆ Y, for each

ultrafilter U on Y.

• The B-ultrafilter closed subsets of X are the closed subspaces of a
topology on X called the B-ultrafilter topology on X.

Finocchiaro’s Lemma

For a topological space X being a spectral space is equivalent to X being
a T0-space having a subbasis for the open sets S such that XS(U) 6= ∅, for
each ultrafilter U on X.
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• The space of closed subsets of a spectral space
Let X be a spectral space and let Cl (Y ) denote the closure of a subspace
Y in the given (spectral) topology of X .
Let X ′(X ) be the space of nonempty closed sets of X (in the given
spectral topology of X ), i.e.,

X ′(X ) := {Y ⊆ X | Y 6= ∅, Y = Cl(Y )}.

• Endow it with a topology, called the Zariski topology on the space
X ′(X ) whose subbasic open sets are the family of sets

U ′(Ω) := {Y ∈ X ′(X ) | Y ∩ Ω = ∅},

as Ω ranges among the quasi-compact open subspaces of X .
• Note that the family of sets of the type U ′(Ω) forms a basis, since
U ′(Ω1) ∩ U ′(Ω2) = U ′(Ω1 ∪ Ω2).
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The notation used above for the space X ′(X ) is chosen in analogy and for
coherence with the construction of the space X (X ), which is sketched in
Section 1. More precisely,

Theorem 2

Let X be a spectral space.

(1) The space X ′(X )zar is a spectral space.

(2) The canonical injective map ϕ′ : X inv → X ′(X )zar, defined by
ϕ′(x) := {x}sp, for each x ∈ X , is a spectral embedding (and, in
particular, an order-preserving embedding between ordered sets, with
the ordering induced by the Zariski topologies).

(3) X ′(X ) coincides as a set with X (X inv), thus the spectral embedding
ϕ′ coincides with ϕinv : X inv → X (X inv)zar.
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Remarks and sketch of the proof of the previous theorem

• Keeping in mind the Hochster’s duality (i.e., sketchy, (X inv)inv = X ), the
set X (X inv) consists of all the nonempty closed sets of X , with respect to
the given spectral topology, i.e., X (X inv) = X ′(X ).

• Keeping in mind that the quasi-compact open subspaces 0 of X inv are
precisely the complements of the quasi-compact open subspaces of X , i.e.,
0 = X \ Ω for some quasi-compact open subspace Ω of X , it follows
immediately, by definition, that the Zariski topology of X ′(X ) has as a
basis of open sets the collection of the sets of the type:

U ′(Ω) = {C ∈ X ′(X ) | C ∩ Ω = ∅} = {C ∈ X ′(X ) | C ∩ (X \0) = ∅}
= {C ∈ X ′(X ) | C ⊆ 0} = {C ∈ X (X inv) | C ⊆ 0}
= U(0) ,

for Ω varying among the quasi-compact open subspaces of X .

• Note that for the canonical injective map ϕ′ : X inv → X ′(X )zar, we have

ϕ′−1(U ′(Ω)) = {x ∈ X sp | {x}sp ∩ Ω = ∅} = X \ Ω = 0 .
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§2. Spectral spaces of ideals and modules

Next goal is to introduce a natural well behaved topology on the set of all
ideals of a ring R, which induces the Zariski topology on the subset of
prime ideals, and makes it a spectral space.

We follow a general approach in terms of R-modules.

• Let R be a ring and M be an R-module. On the set SMod(M|R) of
R-submodules of M we can define an hull-kernel topology (or, Jacobson
topology (*)) having, as a subbasis for the closed sets, the subsets of the
form

V (x1, x2, . . . , xm) := {N ∈ SMod(M|R) | x1, x2, . . . , xm ∈ N} ,
where x1, x2, . . . , xm varies among all finite subsets of M.

Note that the hull-kernel topology is clearly T0 and, by definition, the order induced by

this topology on SMod(M|R) coincides with the order provided by the set-theoretic

inclusion ⊆.
(*) N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring. Proc. Nat. Acad. Sci. U.S.A. 31 (1945) 333–338;

Marshall H. Stone, The Theory of Representations of Boolean Algebras. Trans. AMS 40 (1936), 37–111.
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Let R be a ring, M an R-module, and x1, x2, . . . , xm ∈ M.
Set

D(x1, x2, . . . , xm) := SMod(M|R) \ V (x1, x2, . . . , xm).

Proposition 3

• For any ring R and for any R-module M, SMod(M|R) endowed with the
hull-kernel topology is a spectral space.

Moreover,

• the collection of sets S := {D(x1, x2, . . . , xm) | x1, x2, . . . , xm ∈ M} is a
subbasis of quasi-compact open subspaces of SMod(M|R).
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• Given a ring R and a R-module M, a closure operation on SMod(M|R) is
a map (−)c : SMod(M|R)→ SMod(M|R) that is
– extensive (i.e., N ⊆ Nc),
– order-preserving (i.e., N1 ⊆ N2 implies Nc

1 ⊆ Nc
2 ) and

– idempotent (i.e., (Nc)c = Nc).

• We also say that a closure operation c is of finite type if, for any
N ∈ SMod(M|R),
Nc =

⋃
{Lc | L ⊆ N, L ∈ SMod(M|R), L is finitely generated}.

For a deeper insight on this topic see, for example, N. Epstein (2012, 2015), J. Elliott

(2010), and J. Vassilev (2009).

Proposition 4

Let M be an R-module and c a closure operation of finite type on
SMod(M|R).

• The set SModc(M|R) := {N ∈ SMod(M|R) | N = Nc} is a spectral
space. Moreover,

• SModc(M|R) is closed in SMod(M|R), endowed with the constructible
topology.
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space. Moreover,

• SModc(M|R) is closed in SMod(M|R), endowed with the constructible
topology.

Marco Fontana (“Roma Tre”) Hilbert Nullstellensatz: A topological version 13 / 18



I §1 J I §2 J I §3 J

As particular cases of the spectral space of the submodules of a given
module, we can consider the following distinguished cases.

• Given any ring R, let

Id(R) := SMod(R|R) ,
Id•(R) := Id(R) \ {R},

where Id(R) (respectively, Id•(R)) is the set of all ideals (respectively, the
set of all proper ideals) of R.

• As usual, let rad(I ) denote the radical of an ideal I of R.

• Note that rad is a closure operation on Id(R) (and on Id•(R)) and, in
fact, rad is a closure operation of finite type since, for x ∈ rad(I ),
x ∈ rad(xn) for some xn ∈ I , with n ≥ 1.
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• Set Rd(R) := Idc•(R) = {I ∈ Id•(R) | I = rad(I )}, where c = rad is a
closure operation of finite type.

Corollary 5

Let R be a ring.
• The set Id(R) (respectively, Id•(R)), endowed with the hull-kernel
topology, is a spectral space, inducing on the subset Spec(R) the Zariski
topology.
• The set Rd(R), endowed with the hull-kernel topology induced by Id(R),
is a spectral space, giving rise to the following chain of embeddings of
spectral spaces:

Spec(R)zar ⊆ Rd(R)hk ⊆ Id•(R)hk ⊆ Id(R)hk .
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§3. A topological version of Hilbert Nullstellensatz

Given a ring R, we have shown that the set of radical ideals of R endowed
with the hull-kernel topology, Rd(R)hk, is a spectral space, so we can
introduce on this space the inverse topology that give rise on the same
underlying set to another spectral space.

We simply set
Rd(R)inv := (Rd(R)hk)inv ,

and, inside X ′(R), we denote by X ′irr(R) the subset consisting of all
nonempty irreducible closed subspaces of Spec(R)zar.

Now, we are in condition to state a “topological version” of the Hilbert
Nullstellensatz.

Marco Fontana (“Roma Tre”) Hilbert Nullstellensatz: A topological version 16 / 18



I §1 J I §2 J I §3 J

§3. A topological version of Hilbert Nullstellensatz

Given a ring R, we have shown that the set of radical ideals of R endowed
with the hull-kernel topology, Rd(R)hk, is a spectral space, so we can
introduce on this space the inverse topology that give rise on the same
underlying set to another spectral space.

We simply set
Rd(R)inv := (Rd(R)hk)inv ,

and, inside X ′(R), we denote by X ′irr(R) the subset consisting of all
nonempty irreducible closed subspaces of Spec(R)zar.

Now, we are in condition to state a “topological version” of the Hilbert
Nullstellensatz.

Marco Fontana (“Roma Tre”) Hilbert Nullstellensatz: A topological version 16 / 18



I §1 J I §2 J I §3 J

§3. A topological version of Hilbert Nullstellensatz

Given a ring R, we have shown that the set of radical ideals of R endowed
with the hull-kernel topology, Rd(R)hk, is a spectral space, so we can
introduce on this space the inverse topology that give rise on the same
underlying set to another spectral space.

We simply set
Rd(R)inv := (Rd(R)hk)inv ,

and, inside X ′(R), we denote by X ′irr(R) the subset consisting of all
nonempty irreducible closed subspaces of Spec(R)zar.

Now, we are in condition to state a “topological version” of the Hilbert
Nullstellensatz.

Marco Fontana (“Roma Tre”) Hilbert Nullstellensatz: A topological version 16 / 18



I §1 J I §2 J I §3 J

§3. A topological version of Hilbert Nullstellensatz

Given a ring R, we have shown that the set of radical ideals of R endowed
with the hull-kernel topology, Rd(R)hk, is a spectral space, so we can
introduce on this space the inverse topology that give rise on the same
underlying set to another spectral space.

We simply set
Rd(R)inv := (Rd(R)hk)inv ,

and, inside X ′(R), we denote by X ′irr(R) the subset consisting of all
nonempty irreducible closed subspaces of Spec(R)zar.

Now, we are in condition to state a “topological version” of the Hilbert
Nullstellensatz.

Marco Fontana (“Roma Tre”) Hilbert Nullstellensatz: A topological version 16 / 18



I §1 J I §2 J I §3 J

§3. A topological version of Hilbert Nullstellensatz

Given a ring R, we have shown that the set of radical ideals of R endowed
with the hull-kernel topology, Rd(R)hk, is a spectral space, so we can
introduce on this space the inverse topology that give rise on the same
underlying set to another spectral space.

We simply set
Rd(R)inv := (Rd(R)hk)inv ,

and, inside X ′(R), we denote by X ′irr(R) the subset consisting of all
nonempty irreducible closed subspaces of Spec(R)zar.

Now, we are in condition to state a “topological version” of the Hilbert
Nullstellensatz.

Marco Fontana (“Roma Tre”) Hilbert Nullstellensatz: A topological version 16 / 18



I §1 J I §2 J I §3 J

Theorem 7

Let R be a ring and let X ′(R) := X ′(Spec(R)) be the topological space
of the non-empty Zariski closed subspaces of Spec(R), endowed with the
Zariski topology. Let Rd(R) be the spectral space of all proper radical
ideals of R with the inverse topology. Then, the canonical map

J : X ′(R)zar → Rd(R)inv

C 7→
⋂
{P ∈ Spec(R) | P ∈ C}

is a homeomorphism.
Moreover, changing the topologies, the same map on the same underlying
sets J defines a homeomorphism

J : X ′(R)inv → Rd(R)hk ,

inducing a canonical homeomorphism X ′irr(R)inv ∼= Spec(R)zar.
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Thanks for your attention!
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