Star reductions of ideals and Prüfer v-multiplication domains

Evan Houston Salah Kabbaj
Abdeslam Mimouni

Definitions. Let R be a domain and $/$ a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subset I$ is said to be a reduction of l if $\mathrm{J}^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $\left(a^{2}, b^{2}\right)(a, b)=(a, b)^{3}$.
- Hence $\left(a^{2}, b^{2}\right)(a, b)^{2}=\left((a, b)^{2}\right)^{2}$,
- so $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$.

Theorem. But in a Prüfer domain, we do have $\left(a^{2}, b^{2}\right)=(a, b)^{2}$ for all a, b.

Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of I if $J I^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) / is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $\left(a^{2}, b^{2}\right)(a, b)=(a, b)^{3}$.
- Hence $\left(a^{2}, b^{2}\right)(a, b)^{2}=\left((a, b)^{2}\right)^{2}$,
- so $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$.

Theorem. But in a Prüfer domain, we do have $\left(a^{2}, b^{2}\right)=(a, b)^{2}$ for all a, b.

Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of l if $J I^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) / is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:
 - For $a, b \in R$, we have $\left(a^{2}, b^{2}\right)(a, b)=(a, b)^{3}$.
 - Hence $\left(a^{2}, b^{2}\right)(a, b)^{2}=\left((a, b)^{2}\right)^{2}$,
 - so $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$.

Theorem. But in a Prüfer domain, we do have $\left(a^{2}, b^{2}\right)=(a, b)^{2}$ for all a, b.

Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of l if $J I^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:
 - For $a, b \in R$, we have $\left(a^{2}, b^{2}\right)(a, b)=(a, b)^{3}$
 - Hence $\left(a^{2}, b^{2}\right)(a, b)^{2}=\left((a, b)^{2}\right)^{2}$,
 - so $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$.

Theorem. But in a Prüfer domain, we do have $\left(a^{2}, b^{2}\right)=(a, b)^{2}$ for all a, b.

Definitions. Let R be a domain and $/$ a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of I if $J I^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

Theorem. But in a Prüfer domain, we do have $\left(a^{2}, b^{2}\right)=(a, b)^{2}$ for all
a, b.

Definitions. Let R be a domain and $/$ a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of l if $J I^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

Definitions. Let R be a domain and $/$ a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of l if $J I^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $\left(a^{2}, b^{2}\right)(a, b)=(a, b)^{3}$.

Definitions. Let R be a domain and $/$ a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of l if $J I^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $\left(a^{2}, b^{2}\right)(a, b)=(a, b)^{3}$.
- Hence $\left(a^{2}, b^{2}\right)(a, b)^{2}=\left((a, b)^{2}\right)^{2}$,

Definitions. Let R be a domain and $/$ a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of l if $J I^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $\left(a^{2}, b^{2}\right)(a, b)=(a, b)^{3}$.
- Hence $\left(a^{2}, b^{2}\right)(a, b)^{2}=\left((a, b)^{2}\right)^{2}$,
- so $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$.

Definitions. Let R be a domain and $/$ a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of l if $J I^{n}=I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $\left(a^{2}, b^{2}\right)(a, b)=(a, b)^{3}$.
- Hence $\left(a^{2}, b^{2}\right)(a, b)^{2}=\left((a, b)^{2}\right)^{2}$,
- so $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$.

Theorem. But in a Prüfer domain, we do have $\left(a^{2}, b^{2}\right)=(a, b)^{2}$ for all a, b.

Motivation:

Theorem (Hays). Let R be a domain.

- (Hays, TAMS, 1973) R is a Prüfer domain $\Leftrightarrow R$ has the finite basic ideal property.
- (Hays, PAMS, 1975) R is a one-dimensional Prüfer domain $\Leftrightarrow R$ has the (full) basic ideal property.

Motivation:
Theorem (Hays). Let R be a domain.

- (Hays, TAMS, 1973) R is a Prüfer domain $\Leftrightarrow R$ has the finite basic ideal property.
- (Hays, PAMS, 1975) R is a one-dimensional Prüfer domain $\Leftrightarrow R$ has the (full) basic ideal property.

Motivation:
Theorem (Hays). Let R be a domain.

- (Hays, TAMS, 1973) R is a Prüfer domain $\Leftrightarrow R$ has the finite basic ideal property.
- (Hays, PAMS, 1975) R is a one-dimensional Prüfer domain $\Leftrightarrow R$ has the (full) basic ideal property.

Motivation:
Theorem (Hays). Let R be a domain.

- (Hays, TAMS, 1973) R is a Prüfer domain $\Leftrightarrow R$ has the finite basic ideal property.
- (Hays, PAMS, 1975) R is a one-dimensional Prüfer domain $\Leftrightarrow R$ has the (full) basic ideal property.

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of l if $\left(J I^{n}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- I is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$.
- R has the *-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite *-basic ideal property if every finitely generated ideal of R is $*$-basic.

What we thought we could prove:

(Very Wrong) "Theorem". Let R be a domain.

- R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension $1 \Leftrightarrow R$ has the (full) t-basic ideal property.

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $\left(J I^{\eta}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- I is *-basic if it has no proper *-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$
- R has the \star-basic ideal property if each nonzero ideal of R is *-basic.
- R has the finite *-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) "Theorem". Let R be a domain.
 - R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite t-basic ideal property.
 - R is a Prüfer v-multiplication domain of t-dimension $1 \Leftrightarrow R$ has the (full) t-basic ideal property.

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $\left(J I^{\eta}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- l is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$.
- R has the \star-basic ideal property if each nonzero ideal of R is *-basic.
- R has the finite *-basic ideal property if every finitely generated ideal of R is $*$-basic.

What we thought we could prove:

(Very Wrong) "Theorem". Let R be a domain.
 - R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite t-basic ideal property.
 - R is a Prüfer v-multiplication domain of t-dimension $1 \Leftrightarrow R$ has the (full) t-basic ideal property.

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $\left(J I^{\eta}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- l is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite *-basic ideal property if every finitely generated ideal of R is $*$-basic.

What we thought we could prove:

(Very Wrong) "Theorem". Let R be a domain.
 - R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite t-basic ideal property.
 - R is a Prüfer v-multiplication domain of t-dimension $1 \Leftrightarrow R$ has the (full) t-basic ideal property.

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $\left(J I^{\eta}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- l is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $\left(J I^{\eta}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- l is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $\left(J I^{n}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- l is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:
(Very Wrong) "Theorem". Let R be a domain.

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $\left(J I^{\eta}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- l is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:
(Very Wrong) "Theorem". Let R be a domain.

- R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension $1 \Leftrightarrow R$ has

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $\left(J I^{\eta}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- l is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:
(Very Wrong) "Theorem". Let R be a domain.

- R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension $1 \Leftrightarrow R$ has the (full) t-basic ideal property.

More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $\left(J I^{\eta}\right)^{\star}=\left(I^{n+1}\right)^{\star}$ for some n.
- l is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^{\star}=l^{\star}$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:
(Very Wrong) "Theorem". Let R be a domain.

- R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension $1 \Leftrightarrow R$ has the (full) t-basic ideal property.

Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(a l)^{*}=a l^{*}$ and $R^{*}=R$ for all a, l.
2. $I \subset I^{*}$ and $I \subset J \Rightarrow I^{*} \subset J^{*}$ for all I, J.
3. $l^{* *}=l^{*}$ for all l.

Lemma (Hays). Let R have the finite \star-basic ideal property. Then R is integrally closed.

Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(a l)^{*}=a l^{*}$ and $R^{*}=R$ for all a, l.
2. $I \subseteq I^{*}$ and $I \subseteq J \Rightarrow I^{*} \subseteq J^{*}$ for all I, J.

Lemma (Hays). Let R have the finite \star-basic ideal property. Then R is integrally closed.

Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(a l)^{*}=a l^{*}$ and $R^{*}=R$ for all a, l.
2. $I \subseteq I^{*}$ and $I \subseteq J \Rightarrow I^{*} \subseteq J^{*}$ for all I, J.
3. $I^{* *}=I^{*}$ for all I.

Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(a l)^{*}=a l^{*}$ and $R^{*}=R$ for all a, l.
2. $I \subseteq I^{*}$ and $I \subseteq J \Rightarrow I^{*} \subseteq J^{*}$ for all I, J.
3. $I^{* *}=I^{*}$ for all l.

Lemma (Hays). Let R have the finite \star-basic ideal property. Then R is integrally closed.

Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(a l)^{*}=a l^{*}$ and $R^{*}=R$ for all a, l.
2. $I \subseteq I^{*}$ and $I \subseteq J \Rightarrow I^{*} \subseteq J^{*}$ for all I, J.
3. $I^{* *}=I^{*}$ for all l.

Lemma (Hays). Let R have the finite \star-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b,\left\{r_{i}\right\} \in R$ with $(a / b)^{n}+r_{n-1}(a / b)^{n-1}+\cdots+r_{0}=0$.

Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(a l)^{*}=a l^{*}$ and $R^{*}=R$ for all a, l.
2. $I \subseteq I^{*}$ and $I \subseteq J \Rightarrow I^{*} \subseteq J^{*}$ for all I, J.
3. $I^{* *}=I^{*}$ for all l.

Lemma (Hays). Let R have the finite \star-basic ideal property. Then R is integrally closed.

Proof. Suppose a, $b,\left\{r_{i}\right\} \in R$ with $(a / b)^{n}+r_{n-1}(a / b)^{n-1}+\cdots+r_{0}=0$.
Then $a^{n}=-\left(r_{n-1} a^{n-1} b+\cdots+r_{0} b^{n}\right) \in\left(a^{n-1}, \ldots, b^{n-1}\right)(b)$

Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(a l)^{*}=a l^{*}$ and $R^{*}=R$ for all a, l.
2. $I \subseteq I^{*}$ and $I \subseteq J \Rightarrow I^{*} \subseteq J^{*}$ for all I, J.
3. $I^{* *}=I^{*}$ for all I.

Lemma (Hays). Let R have the finite \star-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b,\left\{r_{i}\right\} \in R$ with $(a / b)^{n}+r_{n-1}(a / b)^{n-1}+\cdots+r_{0}=0$.
Then $a^{n}=-\left(r_{n-1} a^{n-1} b+\cdots+r_{0} b^{n}\right) \in\left(a^{n-1}, \ldots, b^{n-1}\right)(b)$
$\Rightarrow(a, b)^{n}=(a, b)^{n-1}(b)$

Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(a l)^{*}=a l^{*}$ and $R^{*}=R$ for all a, l.
2. $I \subseteq I^{*}$ and $I \subseteq J \Rightarrow I^{*} \subseteq J^{*}$ for all I, J.
3. $I^{* *}=I^{*}$ for all l.

Lemma (Hays). Let R have the finite \star-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b,\left\{r_{i}\right\} \in R$ with $(a / b)^{n}+r_{n-1}(a / b)^{n-1}+\cdots+r_{0}=0$.
Then $a^{n}=-\left(r_{n-1} a^{n-1} b+\cdots+r_{0} b^{n}\right) \in\left(a^{n-1}, \ldots, b^{n-1}\right)(b)$
$\Rightarrow(a, b)^{n}=(a, b)^{n-1}(b)$
$\Rightarrow(a, b)=(b)$

Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(a l)^{*}=a l^{*}$ and $R^{*}=R$ for all a, l.
2. $I \subseteq I^{*}$ and $I \subseteq J \Rightarrow I^{*} \subseteq J^{*}$ for all I, J.
3. $I^{* *}=I^{*}$ for all l.

Lemma (Hays). Let R have the finite \star-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b,\left\{r_{i}\right\} \in R$ with $(a / b)^{n}+r_{n-1}(a / b)^{n-1}+\cdots+r_{0}=0$.
Then $a^{n}=-\left(r_{n-1} a^{n-1} b+\cdots+r_{0} b^{n}\right) \in\left(a^{n-1}, \ldots, b^{n-1}\right)(b)$
$\Rightarrow(a, b)^{n}=(a, b)^{n-1}(b)$
$\Rightarrow(a, b)=(b)$
$\Rightarrow a / b \in R$.

More definitions. Let $/$ be a fractional ideal of F.

- $I^{-1}=(R: I)=\{x \in K \mid x I \subseteq R\}$.
- $I_{V}=\left(I^{-1}\right)^{-1}$
- $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I, J\right.$ finitely generated $\}$
$I_{w}=\bigcup\left\{(I: J) \mid J\right.$ finitely generated,$\left.J_{V}=R\right\}$
$=\left\{x \in K \mid x J \subseteq I\right.$ for some finitely generated ideal J with $\left.J_{v}=R\right\}$
$=\bigcap\left\{I_{M} \mid M \in \operatorname{Max}_{t}(R)\right\}$
- A domain R is a Prüfer v-multiplication domain (Pv MD) if it satisfies any of the following equivalent conditions:
- Each nonzero finitely generated ideal of R is t-invertible.
- R_{M} is a valuation domain for each maximal t-ideal M of R.
- (Kang) R is integrally closed and $t=w$.

More definitions. Let $/$ be a fractional ideal of F.

- $I^{-1}=(R: I)=\{x \in K \mid x I \subseteq R\}$.
- $I_{V}=\left(I^{-1}\right)^{-1}$.
- $I_{t}=\bigcup\left\{J_{V} \mid J \subseteq I, J\right.$ finitely generated $\}$

$=\left\{x \in K \mid x J \subseteq I\right.$ for some finitely generated ideal J with $\left.J_{v}=R\right\}$
$=\bigcap\left\{I_{M} \mid M \in \operatorname{Max}_{+}(R)\right\}$
- A domain R is a Prüfer v-multiplication domain (PvMD) if it satisfies any of the following equivalent conditions:
- Each nonzero finitely generated ideal of R is t-invertible.
- R_{M} is a valuation domain for each maximal t-ideal M of R.
- (Kang) R is integrally closed and $t=w$.

More definitions. Let $/$ be a fractional ideal of F.

- $I^{-1}=(R: I)=\{x \in K \mid x I \subseteq R\}$.
- $I_{V}=\left(I^{-1}\right)^{-1}$.
- $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I, J\right.$ finitely generated $\}$.

$$
\begin{aligned}
I_{w} & =\bigcup_{\left\{(I: J) \mid J \text { finitely generated }, J_{V}=R\right\}} \\
& =\left\{x \in K \mid x J \subseteq I \text { for some finitely generated ideal } J \text { with } J_{V}=R\right\} \\
& =\bigcap\left\{I R_{M} \mid M \in \operatorname{Max}_{t}(R)\right\}
\end{aligned}
$$

- A domain R is a Prüfer v-multiplication domain (PvMD) if it satisfies any of the following equivalent conditions:
- Each nonzero finitely generated ideal of R is t-invertible.
- R_{M} is a valuation domain for each maximal t-ideal M of R.
- (Kang) R is integrally closed and $t=w$.

More definitions. Let $/$ be a fractional ideal of F.

- $I^{-1}=(R: I)=\{x \in K \mid x I \subseteq R\}$.
- $I_{V}=\left(I^{-1}\right)^{-1}$.
- $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I, J\right.$ finitely generated $\}$.
$I_{w}=\bigcup\left\{(I: J) \mid J\right.$ finitely generated,$\left.J_{v}=R\right\}$
$=\left\{x \in K \mid x J \subseteq I\right.$ for some finitely generated ideal J with $\left.J_{v}=R\right\}$
$=\bigcap\left\{I R_{M} \mid M \in \operatorname{Max}_{t}(R)\right\}$
- A domain R is a Prüfer v-multiplication domain (PvMD) if it
satisfies any of the following equivalent conditions:
- Each nonzero finitely generated ideal of R is t-invertible.
- R_{M} is a valuation domain for each maximal t-ideal M of R.
- (Kang) R is integrally closed and $t=w$.

More definitions. Let $/$ be a fractional ideal of F.

- $I^{-1}=(R: I)=\{x \in K \mid x I \subseteq R\}$.
- $I_{V}=\left(I^{-1}\right)^{-1}$.
- $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I, J\right.$ finitely generated $\}$.

$$
\begin{aligned}
I_{w} & =\bigcup\left\{(I: J) \mid J \text { finitely generated }, J_{v}=R\right\} \\
& =\left\{x \in K \mid x J \subseteq I \text { for some finitely generated ideal } J \text { with } J_{v}=R\right\} \\
& =\bigcap\left\{I R_{M} \mid M \in \operatorname{Max}_{t}(R)\right\}
\end{aligned}
$$

- A domain R is a Prüfer v-multiplication domain (Pv MD) if it satisfies any of the following equivalent conditions:
- Each nonzero finitely generated ideal of R is t-invertible
- R_{M} is a valuation domain for each maximal t-ideal M of R.
- (Kang) R is integrally closed and $t=w$.

More definitions. Let $/$ be a fractional ideal of F.

- $I^{-1}=(R: I)=\{x \in K \mid x I \subseteq R\}$.
- $I_{V}=\left(I^{-1}\right)^{-1}$.
- $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I, J\right.$ finitely generated $\}$.

$$
\begin{aligned}
I_{w} & =\bigcup\left\{(I: J) \mid J \text { finitely generated }, J_{v}=R\right\} \\
& =\left\{x \in K \mid x J \subseteq I \text { for some finitely generated ideal } J \text { with } J_{v}=R\right\} \\
& =\bigcap\left\{I R_{M} \mid M \in \operatorname{Max}_{t}(R)\right\}
\end{aligned}
$$

- A domain R is a Prüfer v-multiplication domain (Pv MD) if it satisfies any of the following equivalent conditions:
- Each nonzero finitely generated ideal of R is t-invertible.
- R_{M} is a valuation domain for each maximal t-ideal M of R. - (Kang) R is integrally closed and $t=w$.

More definitions. Let $/$ be a fractional ideal of F.

- $I^{-1}=(R: I)=\{x \in K \mid x I \subseteq R\}$.
- $I_{V}=\left(I^{-1}\right)^{-1}$.
- $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I, J\right.$ finitely generated $\}$.

$$
\begin{aligned}
I_{w} & =\bigcup\left\{(I: J) \mid J \text { finitely generated }, J_{v}=R\right\} \\
& =\left\{x \in K \mid x J \subseteq I \text { for some finitely generated ideal } J \text { with } J_{v}=R\right\} \\
& =\bigcap\left\{I R_{M} \mid M \in \operatorname{Max}_{t}(R)\right\}
\end{aligned}
$$

- A domain R is a Prüfer v-multiplication domain (Pv MD) if it satisfies any of the following equivalent conditions:
- Each nonzero finitely generated ideal of R is t-invertible.
- R_{M} is a valuation domain for each maximal t-ideal M of R.

More definitions. Let $/$ be a fractional ideal of F.

- $I^{-1}=(R: I)=\{x \in K \mid x I \subseteq R\}$.
- $I_{V}=\left(I^{-1}\right)^{-1}$.
- $I_{t}=\bigcup\left\{J_{v} \mid J \subseteq I, J\right.$ finitely generated $\}$.
$I_{w}=\bigcup\left\{(I: J) \mid J\right.$ finitely generated,$\left.J_{v}=R\right\}$
$=\left\{x \in K \mid x J \subseteq I\right.$ for some finitely generated ideal J with $\left.J_{v}=R\right\}$
$=\bigcap\left\{R_{M} \mid M \in \operatorname{Max}_{t}(R)\right\}$
- A domain R is a Prüfer v-multiplication domain (PvMD) if it satisfies any of the following equivalent conditions:
- Each nonzero finitely generated ideal of R is t-invertible.
- R_{M} is a valuation domain for each maximal t-ideal M of R.
- (Kang) R is integrally closed and $t=w$.

Recall that a domain R is completely integrally closed if every nonzero ideal of R is v-invertible.

Proposition. Let \star be a star operation on an integral domain R.
 1. If R has the \star-basic ideal nronerty then R is completely integrally closed.
 2. R has the v-basic ideal property if and only if R is completely integrally closed.

Recall that a domain R is completely integrally closed if every nonzero ideal of R is v-invertible.

Proposition. Let \star be a star operation on an integral domain R.

1. If R has the \star-basic ideal property, then R is completely integrally
closed.
2. R has the v-basic ideal property if and only if R is completely
integrally closed.

Recall that a domain R is completely integrally closed if every nonzero ideal of R is v-invertible.

Proposition. Let \star be a star operation on an integral domain R.

1. If R has the \star-basic ideal property, then R is completely integrally closed.
2. R has the v-basic ideal property if and only if R is completely integrally closed.

Recall that a domain R is completely integrally closed if every nonzero ideal of R is v-invertible.

Proposition. Let \star be a star operation on an integral domain R.

1. If R has the \star-basic ideal property, then R is completely integrally closed.
2. R has the v-basic ideal property if and only if R is completely integrally closed.

Proposition. A v-domain (nonzero finitely generated ideals are v invertible) has the finite v-basic ideal property.

Proposition. If a domain R has the finite \star-basic ideal property, then R also has the finite \star_{f}-basic ideal property. In particular, if R has the finite v-basic ideal property, then R also has the finite t-basic ideal property.

Corollary. A PvMD has the finite t-basic ideal property.

Proposition. A v-domain (nonzero finitely generated ideals are v invertible) has the finite v-basic ideal property.

Proposition. If a domain R has the finite \star-basic ideal property, then R also has the finite \star_{f}-basic ideal property. finite v-basic ideal property, then R also has the finite t-basic ideal property.

Corollary. A PvMD has the finite t-basic ideal property.

Proposition. A v-domain (nonzero finitely generated ideals are v invertible) has the finite v-basic ideal property.

Proposition. If a domain R has the finite \star-basic ideal property, then R also has the finite \star_{f}-basic ideal property. In particular, if R has the finite v-basic ideal property, then R also has the finite t-basic ideal property.

Corollary. A PvMD has the finite t-basic ideal property.

Proposition. A v-domain (nonzero finitely generated ideals are v invertible) has the finite v-basic ideal property.

Proposition. If a domain R has the finite \star-basic ideal property, then R also has the finite \star_{f}-basic ideal property. In particular, if R has the finite v-basic ideal property, then R also has the finite t-basic ideal property.

Corollary. A PvMD has the finite t-basic ideal property.

So here's the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension $1 \Leftrightarrow$ R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that $*$-invertible ideals are $*$-basic. Since finitely generated ideals are t-invertible, they are $t=w$-basic. $(\Leftarrow) R$ has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \operatorname{Max}_{t}(R)$, and let $a, b \in M$. Since $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$, we have $\left(a^{2}, b^{2}\right)_{w}=\left((a, b)^{2}\right)_{w}$ and hence $\left(a^{2}, b^{2}\right) R_{M}=(a, b)^{2} R_{M}$. Therefore, R is a $P \vee M D$.
2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)

So here's the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension $1 \Leftrightarrow$ R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that x-invertible ideals are x-basic. Since finitely generated ideals are t-invertible, they are $t=w$-basic. $(\Leftarrow) R$ has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \operatorname{Max}_{t}(R)$, and let $a, b \in M$. Since $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$, we have $\left(a^{2}, b^{2}\right)_{w}=\left((a, b)^{2}\right)_{w}$ and hence $\left(a^{2}, b^{2}\right) R_{M}=(a, b)^{2} R_{M}$. Therefore, R is a PvMD.
2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)

So here's the correct result:
Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension $1 \Leftrightarrow$ R has the (full) w-basic ideal property.

Sketch of proof:

> 1. (\Rightarrow) It is easy to show that x-invertible ideals are $*$-basic. Since finitely generated ideals are t-invertible, they are $t=w$-basic. $(\Leftarrow) R$ has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \operatorname{Max}_{t}(R)$, and let $a, b \in M$. Since $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$, we have $\left(a^{2}, b^{2}\right)_{w}=\left((a, b)^{2}\right)_{w}$ and hence $\left(a^{2}, b^{2}\right) R_{M}=(a, b)^{2} R_{M}$. Therefore, R is a PVMD.
> 2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)

So here's the correct result:
Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension $1 \Leftrightarrow$ R has the (full) w-basic ideal property.

Sketch of proof:

So here's the correct result:
Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension $1 \Leftrightarrow$ R has the (full) w-basic ideal property.

Sketch of proof:

So here's the correct result:
Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension $1 \Leftrightarrow$ R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t=w$-basic.
2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)

So here's the correct result:
Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension $1 \Leftrightarrow$ R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t=w$-basic. $(\Leftarrow) R$ has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \operatorname{Max}_{t}(R)$, and let $a, b \in M$. Since $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$, we have $\left(a^{2}, b^{2}\right)_{w}=\left((a, b)^{2}\right)_{w}$ and hence $\left(a^{2}, b^{2}\right) R_{M}=(a, b)^{2} R_{M}$. Therefore, R is a PvMD.

So here's the correct result:
Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension $1 \Leftrightarrow$ R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t=w$-basic. $(\Leftarrow) R$ has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \operatorname{Max}_{t}(R)$, and let $a, b \in M$. Since $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$, we have $\left(a^{2}, b^{2}\right)_{w}=\left((a, b)^{2}\right)_{w}$ and hence $\left(a^{2}, b^{2}\right) R_{M}=(a, b)^{2} R_{M}$. Therefore, R is a $P v M D$.
2. Use a lemma that has not been mentioned.

So here's the correct result:
Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\Leftrightarrow R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension $1 \Leftrightarrow$ R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t=w$-basic. $(\Leftarrow) R$ has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \operatorname{Max}_{t}(R)$, and let $a, b \in M$. Since $\left(a^{2}, b^{2}\right)$ is a reduction of $(a, b)^{2}$, we have $\left(a^{2}, b^{2}\right)_{w}=\left((a, b)^{2}\right)_{w}$ and hence $\left(a^{2}, b^{2}\right) R_{M}=(a, b)^{2} R_{M}$. Therefore, R is a PvMD.
2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)

