Star reductions of ideals and Prüfer ν-multiplication domains

Evan Houston
Salah Kabbaj
Abdeslam Mimouni
Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of I if $JI^n = I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $(a^2, b^2)(a, b) = (a, b)^3$.
- Hence $(a^2, b^2)(a, b)^2 = ((a, b)^2)^2$,
- so (a^2, b^2) is a reduction of $(a, b)^2$.

Theorem. But in a Prüfer domain, we do have $(a^2, b^2) = (a, b)^2$ for all a, b.
Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of I if $JI^n = I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $(a^2, b^2)(a, b) = (a, b)^3$.
- Hence $(a^2, b^2)(a, b)^2 = ((a, b)^2)^2$,
- so (a^2, b^2) is a reduction of $(a, b)^2$.

Theorem. But in a Prüfer domain, we do have $(a^2, b^2) = (a, b)^2$ for all a, b.
Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of I if $JI^n = I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:
- For $a, b \in R$, we have $(a^2, b^2)(a, b) = (a, b)^3$.
- Hence $(a^2, b^2)(a, b)^2 = ((a, b)^2)^2$,
- so (a^2, b^2) is a reduction of $(a, b)^2$.

Theorem. But in a Prüfer domain, we do have $(a^2, b^2) = (a, b)^2$ for all a, b.

Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of I if $JI^n = I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $(a^2, b^2)(a, b) = (a, b)^3$.
- Hence $(a^2, b^2)(a, b)^2 = ((a, b)^2)^2$,
- so (a^2, b^2) is a reduction of $(a, b)^2$.

Theorem. But in a Prüfer domain, we do have $(a^2, b^2) = (a, b)^2$ for all a, b.
Definitions. Let \(R \) be a domain and \(I \) a nonzero ideal of \(R \).

- (Northcott/Rees, 1954) An ideal \(J \subseteq I \) is said to be a reduction of \(I \) if \(JI^n = I^{n+1} \) for some positive integer \(n \).
- (Northcott/Rees) \(I \) is basic if it has no proper reductions.
- \(R \) has the basic ideal property if each ideal of \(R \) is basic.

It is difficult for a domain \(R \) to be basic:

- For \(a, b \in R \), we have \((a^2, b^2)(a, b) = (a, b)^3\).
- Hence \((a^2, b^2)(a, b)^2 = ((a, b)^2)^2\),
- so \((a^2, b^2)\) is a reduction of \((a, b)^2\).

Theorem. But in a Prüfer domain, we do have \((a^2, b^2) = (a, b)^2\) for all \(a, b \).
Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a *reduction* of I if $JI^n = I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is *basic* if it has no proper reductions.
- R has the *basic ideal property* if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $(a^2, b^2)(a, b) = (a, b)^3$.
- Hence $(a^2, b^2)(a, b)^2 = ((a, b)^2)^2$,
- so (a^2, b^2) is a reduction of $(a, b)^2$.

Theorem. But in a Prüfer domain, we do have $(a^2, b^2) = (a, b)^2$ for all a, b.
Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of I if $JI^n = I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $(a^2, b^2)(a, b) = (a, b)^3$.
- Hence $(a^2, b^2)(a, b)^2 = ((a, b)^2)^2$,
- so (a^2, b^2) is a reduction of $(a, b)^2$.

Theorem. But in a Prüfer domain, we do have $(a^2, b^2) = (a, b)^2$ for all a, b.
Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a *reduction* of I if $JI^n = I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is *basic* if it has no proper reductions.
- R has the *basic ideal property* if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $(a^2, b^2)(a, b) = (a, b)^3$.
- Hence $(a^2, b^2)(a, b)^2 = ((a, b)^2)^2$,
- so (a^2, b^2) is a reduction of $(a, b)^2$.

Theorem. But in a Prüfer domain, we do have $(a^2, b^2) = (a, b)^2$ for all a, b.
Definitions. Let \(R \) be a domain and \(I \) a nonzero ideal of \(R \).

- (Northcott/Rees, 1954) An ideal \(J \subseteq I \) is said to be a *reduction* of \(I \) if \(JI^n = I^{n+1} \) for some positive integer \(n \).
- (Northcott/Rees) \(I \) is *basic* if it has no proper reductions.
- \(R \) has the *basic ideal property* if each ideal of \(R \) is basic.

It is difficult for a domain \(R \) to be basic:

- For \(a, b \in R \), we have \((a^2, b^2)(a, b) = (a, b)^3\).
- Hence \((a^2, b^2)(a, b)^2 = ((a, b)^2)^2\),
- so \((a^2, b^2)\) is a reduction of \((a, b)^2\).

Theorem. But in a Prüfer domain, we do have \((a^2, b^2) = (a, b)^2\) for all \(a, b \).
Definitions. Let R be a domain and I a nonzero ideal of R.

- (Northcott/Rees, 1954) An ideal $J \subseteq I$ is said to be a reduction of I if $JI^n = I^{n+1}$ for some positive integer n.
- (Northcott/Rees) I is basic if it has no proper reductions.
- R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

- For $a, b \in R$, we have $(a^2, b^2)(a, b) = (a, b)^3$.
- Hence $(a^2, b^2)(a, b)^2 = ((a, b)^2)^2$,
- so (a^2, b^2) is a reduction of $(a, b)^2$.

Theorem. But in a Prüfer domain, we do have $(a^2, b^2) = (a, b)^2$ for all a, b.
Motivation:

Theorem (Hays). Let R be a domain.

- (Hays, TAMS, 1973) R is a Prüfer domain $\iff R$ has the finite basic ideal property.
- (Hays, PAMS, 1975) R is a one-dimensional Prüfer domain $\iff R$ has the (full) basic ideal property.
Motivation:

Theorem (Hays). Let R be a domain.

- (Hays, TAMS, 1973) R is a Prüfer domain $\iff R$ has the finite basic ideal property.
- (Hays, PAMS, 1975) R is a one-dimensional Prüfer domain $\iff R$ has the (full) basic ideal property.
Motivation:

Theorem (Hays). Let R be a domain.

- (Hays, TAMS, 1973) R is a Prüfer domain $\iff R$ has the finite basic ideal property.

- (Hays, PAMS, 1975) R is a one-dimensional Prüfer domain $\iff R$ has the (full) basic ideal property.
Motivation:

Theorem (Hays). Let R be a domain.

- (Hays, TAMS, 1973) R is a Prüfer domain $\iff R$ has the finite basic ideal property.
- (Hays, PAMS, 1975) R is a one-dimensional Prüfer domain $\iff R$ has the (full) basic ideal property.
More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $(JI^n)^\star = (I^{n+1})^\star$ for some n.
- I is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^\star = I^\star$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) “Theorem”. Let R be a domain.

- R is a Prüfer v-multiplication domain $\iff R$ has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension 1 $\iff R$ has the (full) t-basic ideal property.
More definitions. Let \(\star \) be a star operation on \(R \).

- An ideal \(J \subseteq I \) is a \(\star \)-reduction of \(I \) if \((Jl^n)^\star = (ln^{n+1})^\star \) for some \(n \).
- \(I \) is \(\star \)-basic if it has no proper \(\star \)-reductions, i.e., if an equation above implies \(J^\star = I^\star \).
- \(R \) has the \(\star \)-basic ideal property if each nonzero ideal of \(R \) is \(\star \)-basic.
- \(R \) has the finite \(\star \)-basic ideal property if every finitely generated ideal of \(R \) is \(\star \)-basic.

What we thought we could prove:

(Very Wrong) “Theorem”. Let \(R \) be a domain.

- \(R \) is a Prüfer \(v \)-multiplication domain \(\iff \) \(R \) has the finite \(t \)-basic ideal property.
- \(R \) is a Prüfer \(v \)-multiplication domain of \(t \)-dimension 1 \(\iff \) \(R \) has the (full) \(t \)-basic ideal property.
More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $(JI^n)^\star = (I^{n+1})^\star$ for some n.
- I is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^\star = I^\star$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) “Theorem”. Let R be a domain.

- R is a Prüfer v-multiplication domain \iff R has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension 1 \iff R has the (full) t-basic ideal property.
More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $(JI^n)^\star = (I^{n+1})^\star$ for some n.
- I is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^\star = I^\star$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) “Theorem”. Let R be a domain.

- R is a Prüfer v-multiplication domain $\iff R$ has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension 1 $\iff R$ has the (full) t-basic ideal property.
More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $(JI^n)^\star = (I^{n+1})^\star$ for some n.
- I is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^\star = I^\star$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) “Theorem”. Let R be a domain.

- R is a Prüfer v-multiplication domain $\iff R$ has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension 1 $\iff R$ has the (full) t-basic ideal property.
More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $(Jl^n)^\star = (l^{n+1})^\star$ for some n.
- I is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^\star = I^\star$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) “Theorem”. Let R be a domain.

- R is a Prüfer ν-multiplication domain \iff R has the finite t-basic ideal property.
- R is a Prüfer ν-multiplication domain of t-dimension 1 \iff R has the (full) t-basic ideal property.
More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $(JI^n)^\star = (I^{n+1})^\star$ for some n.
- I is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^\star = I^\star$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) “Theorem”. Let R be a domain.

- R is a Prüfer ν-multiplication domain $\iff R$ has the finite t-basic ideal property.
- R is a Prüfer ν-multiplication domain of t-dimension 1 $\iff R$ has the (full) t-basic ideal property.
More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $(JI^n)^\star = (I^{n+1})^\star$ for some n.
- I is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^\star = I^\star$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) “Theorem”. Let R be a domain.

- R is a Prüfer v-multiplication domain $\iff R$ has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension 1 $\iff R$ has the (full) t-basic ideal property.
More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \star-reduction of I if $(JI^n)^\star = (I^{n+1})^\star$ for some n.
- I is \star-basic if it has no proper \star-reductions, i.e., if an equation above implies $J^\star = I^\star$.
- R has the \star-basic ideal property if each nonzero ideal of R is \star-basic.
- R has the finite \star-basic ideal property if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) “Theorem”. Let R be a domain.

- R is a Prüfer v-multiplication domain \iff R has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension 1 \iff R has the (full) t-basic ideal property.
More definitions. Let \star be a star operation on R.

- An ideal $J \subseteq I$ is a \textit{\star-reduction of I} if $(JI^n)^\star = (I^{n+1})^\star$ for some n.
- I is \textit{\star-basic} if it has no proper \star-reductions, i.e., if an equation above implies $J^\star = I^\star$.
- R has the \textit{\star-basic ideal property} if each nonzero ideal of R is \star-basic.
- R has the \textit{finite \star-basic ideal property} if every finitely generated ideal of R is \star-basic.

What we thought we could prove:

(Very Wrong) \textit{“Theorem”}. Let R be a domain.

- R is a Prüfer v-multiplication domain \iff R has the finite t-basic ideal property.
- R is a Prüfer v-multiplication domain of t-dimension 1 \iff R has the (full) t-basic ideal property.
Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(aI)^* = aI^*$ and $R^* = R$ for all a, I.
2. $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$ for all I, J.
3. $I^{**} = I^*$ for all I.

Lemma (Hays). Let R have the finite $*$-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b, \{r_i\} \in R$ with

$$(a/b)^n + r_{n-1}(a/b)^{n-1} + \cdots + r_0 = 0.$$

Then $a^n = -(r_{n-1}a^{n-1}b + \cdots + r_0b^n) \in (a^{n-1}, \ldots, b^{n-1})(b)$

$\Rightarrow (a, b)^n = (a, b)^{n-1}(b)$

$\Rightarrow (a, b) = (b)$

$\Rightarrow a/b \in R$.
Definition. A star operation on R is a map \ast from the set of nonzero fractional ideals of R to itself such that:

1. $(aI)^* = aI^*$ and $R^* = R$ for all a, I.
2. $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$ for all I, J.
3. $I^{**} = I^*$ for all I.

Lemma (Hays). Let R have the finite \ast-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b, \{r_i\} \in R$ with $(a/b)^n + r_{n-1}(a/b)^{n-1} + \cdots + r_0 = 0$.

Then $a^n = -(r_{n-1}a^{n-1}b + \cdots + r_0b^n) \in (a^{n-1}, \ldots, b^{n-1})(b)$

$\Rightarrow (a, b)^n = (a, b)^{n-1}(b)$

$\Rightarrow (a, b) = (b)$

$\Rightarrow a/b \in R$.
Definition. A star operation on R is a map \ast from the set of nonzero fractional ideals of R to itself such that:

1. $(al)^\ast = al^\ast$ and $R^\ast = R$ for all a, l.
2. $I \subseteq I^\ast$ and $I \subseteq J \Rightarrow I^\ast \subseteq J^\ast$ for all I, J.
3. $I^{**} = I^\ast$ for all I.

Lemma (Hays). Let R have the finite \ast-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b, \{r_i\} \in R$ with

$$(a/b)^n + r_{n-1}(a/b)^{n-1} + \cdots + r_0 = 0.$$

Then $a^n = -(r_{n-1}a^{n-1}b + \cdots + r_0b^n) \in (a^{n-1}, \ldots, b^{n-1})(b)$

$\Rightarrow (a, b)^n = (a, b)^{n-1}(b)$

$\Rightarrow (a, b) = (b)$

$\Rightarrow a/b \in R.$
Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(aI)^* = aI^*$ and $R^* = R$ for all a, I.
2. $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$ for all I, J.
3. $I^{**} = I^*$ for all I.

Lemma (Hays). Let R have the finite $*$-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b, \{r_i\} \in R$ with

$$(a/b)^n + r_{n-1}(a/b)^{n-1} + \cdots + r_0 = 0.$$

Then $a^n = -(r_{n-1}a^{n-1}b + \cdots + r_0b^n) \in (a^{n-1}, \ldots, b^{n-1})(b)$

$\Rightarrow (a, b)^n = (a, b)^{n-1}(b)$

$\Rightarrow (a, b) = (b)$

$\Rightarrow a/b \in R.$
Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(aI)^* = aI^*$ and $R^* = R$ for all a, I.
2. $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$ for all I, J.
3. $I^{**} = I^*$ for all I.

Lemma (Hays). Let R have the finite $*$-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b, \{r_i\} \in R$ with

$$(a/b)^n + r_{n-1}(a/b)^{n-1} + \cdots + r_0 = 0.$$

Then $a^n = -(r_{n-1}a^{n-1}b + \cdots + r_0b^n) \in (a^{n-1}, \ldots, b^{n-1})(b)$

$\Rightarrow (a, b)^n = (a, b)^{n-1}(b)$

$\Rightarrow (a, b) = (b)$

$\Rightarrow a/b \in R.$
Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(aI)^* = aI^*$ and $R^* = R$ for all a, I.
2. $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$ for all I, J.
3. $I^{**} = I^*$ for all I.

Lemma (Hays). Let R have the finite $*$-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b, \{r_i\} \in R$ with $(a/b)^n + r_{n-1}(a/b)^{n-1} + \cdots + r_0 = 0$.

Then $a^n = -(r_{n-1}a^{n-1}b + \cdots + r_0b^n) \in (a^{n-1}, \ldots, b^{n-1})(b)$

$\Rightarrow (a, b)^n = (a, b)^{n-1}(b)$

$\Rightarrow (a, b) = (b)$

$\Rightarrow a/b \in R$.
Definition. A star operation on R is a map \ast from the set of nonzero fractional ideals of R to itself such that:

1. $(aI)^\ast = aI^\ast$ and $R^\ast = R$ for all a, I.
2. $I \subseteq I^\ast$ and $I \subseteq J \Rightarrow I^\ast \subseteq J^\ast$ for all I, J.
3. $I^{**} = I^\ast$ for all I.

Lemma (Hays). Let R have the finite \ast-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b, \{r_i\} \in R$ with $(a/b)^n + r_{n-1}(a/b)^{n-1} + \cdots + r_0 = 0$. Then $a^n = -(r_{n-1}a^{n-1}b + \cdots + r_0b^n) \in (a^{n-1}, \ldots, b^{n-1})(b)$

$\Rightarrow (a, b)^n = (a, b)^{n-1}(b)$

$\Rightarrow (a, b) = (b)$

$\Rightarrow a/b \in R.$
Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(aI)^* = aI^*$ and $R^* = R$ for all a, I.
2. $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$ for all I, J.
3. $I^{**} = I^*$ for all I.

Lemma (Hays). Let R have the finite \star-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b, \{r_i\} \in R$ with

$$(a/b)^n + r_{n-1}(a/b)^{n-1} + \cdots + r_0 = 0.$$

Then $a^n = -(r_{n-1}a^{n-1}b + \cdots + r_0b^n) \in (a^{n-1}, \ldots, b^{n-1})(b)$

$\Rightarrow (a/b)^n = (a, b)^{n-1}(b)$

$\Rightarrow (a, b) = (b)$

$\Rightarrow a/b \in R.$
Definition. A star operation on R is a map $*$ from the set of nonzero fractional ideals of R to itself such that:

1. $(aI)^* = aI^*$ and $R^* = R$ for all a, I.
2. $I \subseteq I^*$ and $I \subseteq J \Rightarrow I^* \subseteq J^*$ for all I, J.
3. $I^{**} = I^*$ for all I.

Lemma (Hays). Let R have the finite $*$-basic ideal property. Then R is integrally closed.

Proof. Suppose $a, b, \{r_i\} \in R$ with $(a/b)^n + r_{n-1}(a/b)^{n-1} + \cdots + r_0 = 0$. Then $a^n = -(r_{n-1}a^{n-1}b + \cdots + r_0b^n) \in (a^{n-1}, \ldots, b^{n-1})(b)
\Rightarrow (a/b)^n = (a/b)^{n-1}(b)
\Rightarrow (a/b) = (b)
\Rightarrow a/b \in R.$
More definitions. Let I be a fractional ideal of F.

- $I^{-1} = (R : I) = \{x \in K \mid xI \subseteq R\}$.
- $I_v = (I^{-1})^{-1}$.
- $I_t = \bigcup \{J_v \mid J \subseteq I, J \text{ finitely generated}\}$.
- $I_w = \bigcup \{(I : J) \mid J \text{ finitely generated}, J_v = R\}$

 $= \{x \in K \mid xJ \subseteq I \text{ for some finitely generated ideal } J \text{ with } J_v = R\}$

 $= \bigcap \{I R_M \mid M \in \text{Max}_t(R)\}$

A domain R is a Prüfer ν-multiplication domain (Prüfer ν-MD) if it satisfies any of the following equivalent conditions:

- Each nonzero finitely generated ideal of R is t-invertible.
- R_M is a valuation domain for each maximal t-ideal M of R.
- (Kang) R is integrally closed and $t = w$.
More definitions. Let I be a fractional ideal of F.

- $I^{-1} = (R : I) = \{ x \in K \mid xl \subseteq R \}$.
- $I_v = (I^{-1})^{-1}$.
- $I_t = \bigcup \{ J_v \mid J \subseteq I, J \text{ finitely generated} \}$.

- $I_w = \bigcup \{ (I : J) \mid J \text{ finitely generated}, J_v = R \}$
 \[= \{ x \in K \mid xJ \subseteq I \text{ for some finitely generated ideal } J \text{ with } J_v = R \} \]
 \[= \bigcap \{ IR_M \mid M \in \text{Max}_t(R) \} \]

- A domain R is a Prüfer v-multiplication domain (PvMD) if it satisfies any of the following equivalent conditions:
 - Each nonzero finitely generated ideal of R is t-invertible.
 - R_M is a valuation domain for each maximal t-ideal M of R.
 - (Kang) R is integrally closed and $t = w$.
More definitions. Let I be a fractional ideal of F.

- $I^{-1} = (R : I) = \{ x \in K \mid xI \subseteq R \}$.
- $I_v = (I^{-1})^{-1}$.
- $I_t = \bigcup \{ J_v \mid J \subseteq I, J \text{ finitely generated} \}$.

$$I_w = \bigcup \{(I : J) \mid J \text{ finitely generated, } J_v = R \} = \{ x \in K \mid xJ \subseteq I \text{ for some finitely generated ideal } J \text{ with } J_v = R \} = \bigcap \{ IR_M \mid M \in \text{Max}_t(R) \} .$$

- A domain R is a Prüfer ν-multiplication domain (PvMD) if it satisfies any of the following equivalent conditions:
 - Each nonzero finitely generated ideal of R is t-invertible.
 - R_M is a valuation domain for each maximal t-ideal M of R.
 - (Kang) R is integrally closed and $t = w$.
More definitions. Let I be a fractional ideal of F.

- $I^{-1} = (R : I) = \{x \in K \mid xI \subseteq R\}$.
- $I_v = (I^{-1})^{-1}$.
- $I_t = \bigcup\{J_v \mid J \subseteq I, J \text{ finitely generated}\}$.
- $I_w = \bigcup\{(I : J) \mid J \text{ finitely generated}, J_v = R\}$
 $\quad = \{x \in K \mid xJ \subseteq I \text{ for some finitely generated ideal } J \text{ with } J_v = R\}$
 $\quad = \bigcap\{IR_M \mid M \in \text{Max}_t(R)\}$

A domain R is a Prüfer v-multiplication domain (P_vMD) if it satisfies any of the following equivalent conditions:

- Each nonzero finitely generated ideal of R is t-invertible.
- R_M is a valuation domain for each maximal t-ideal M of R.
- (Kang) R is integrally closed and $t = w$.

More definitions. Let I be a fractional ideal of F.

- $I^{-1} = (R : I) = \{ x \in K \mid xI \subseteq R \}$.
- $I_v = (I^{-1})^{-1}$.
- $I_t = \bigcup \{ J_v \mid J \subseteq I, J \text{ finitely generated} \}$.
- $I_w = \bigcup \{ (I : J) \mid J \text{ finitely generated}, J_v = R \}$

 $= \{ x \in K \mid xJ \subseteq I \text{ for some finitely generated ideal } J \text{ with } J_v = R \}$

 $= \bigcap \{ IR_M \mid M \in \text{Max}_t(R) \}$

- A domain R is a Prüfer v-multiplication domain (PvMD) if it satisfies any of the following equivalent conditions:

 - Each nonzero finitely generated ideal of R is t-invertible.
 - R_M is a valuation domain for each maximal t-ideal M of R.
 - (Kang) R is integrally closed and $t = w$.
More definitions. Let I be a fractional ideal of F.

- $I^{-1} = (R : I) = \{ x \in K \mid xI \subseteq R \}$.
- $I_v = (I^{-1})^{-1}$.
- $I_t = \bigcup \{ J_v \mid J \subseteq I, \text{ } J \text{ finitely generated} \}$.

\[
I_w = \bigcup \{(I : J) \mid \text{ } J \text{ finitely generated}, J_v = R \}
\]
\[
= \{ x \in K \mid xJ \subseteq I \text{ } \text{for some finitely generated ideal } J \text{ with } J_v = R \}
\]
\[
= \bigcap \{ IR_M \mid M \in \text{Max}_t(R) \}
\]

- A domain R is a Prüfer v-multiplication domain (PvMD) if it satisfies any of the following equivalent conditions:
 - Each nonzero finitely generated ideal of R is t-invertible.
 - R_M is a valuation domain for each maximal t-ideal M of R.
 - (Kang) R is integrally closed and $t = w$.

More definitions. Let I be a fractional ideal of F.

- $I^{-1} = (R : I) = \{ x \in K \mid xI \subseteq R \}$.
- $I_v = (I^{-1})^{-1}$.
- $I_t = \bigcup \{ J_v \mid J \subseteq I, \ J \text{ finitely generated} \}$.
- $I_w = \bigcup \{ (I : J) \mid J \text{ finitely generated} , J_v = R \}
 = \{ x \in K \mid xJ \subseteq I \text{ for some finitely generated ideal } J \text{ with } J_v = R \}
 = \bigcap \{ IR_M \mid M \in \text{Max}_t(R) \}$.

A domain R is a Prüfer ν-multiplication domain (PνMD) if it satisfies any of the following equivalent conditions:

- Each nonzero finitely generated ideal of R is t-invertible.
- R_M is a valuation domain for each maximal t-ideal M of R.
- (Kang) R is integrally closed and $t = w$.
More definitions. Let I be a fractional ideal of F.

- $I^{-1} = (R : I) = \{ x \in K \mid xI \subseteq R \}$.
- $I_v = (I^{-1})^{-1}$.
- $I_t = \bigcup \{ J_v \mid J \subseteq I, \ J \text{ finitely generated} \}$.
- $I_w = \bigcup \{(I : J) \mid J \text{ finitely generated}, J_v = R \}$

 $= \{ x \in K \mid xJ \subseteq I \text{ for some finitely generated ideal } J \text{ with } J_v = R \}$
 $= \bigcap \{ IR_M \mid M \in \text{Max}_t(R) \}$

- A domain R is a Prüfer v-multiplication domain (PvMD) if it satisfies any of the following equivalent conditions:
 - Each nonzero finitely generated ideal of R is t-invertible.
 - R_M is a valuation domain for each maximal t-ideal M of R.
 - (Kang) R is integrally closed and $t = w$.
Recall that a domain R is completely integrally closed if every nonzero ideal of R is v-invertible.

Proposition. Let \star be a star operation on an integral domain R.

1. If R has the \star-basic ideal property, then R is completely integrally closed.

2. R has the v-basic ideal property if and only if R is completely integrally closed.
Recall that a domain R is \textit{completely integrally closed} if every nonzero ideal of R is ν-invertible.

\textbf{Proposition.} Let \star be a star operation on an integral domain R.

1. If R has the \star-basic ideal property, then R is completely integrally closed.
2. R has the ν-basic ideal property if and only if R is completely integrally closed.
Recall that a domain R is *completely integrally closed* if every nonzero ideal of R is ν-invertible.

Proposition. Let \star be a star operation on an integral domain R.

1. If R has the \star-basic ideal property, then R is completely integrally closed.

2. R has the ν-basic ideal property if and only if R is completely integrally closed.
Recall that a domain R is *completely integrally closed* if every nonzero ideal of R is ν-invertible.

Proposition. Let \star be a star operation on an integral domain R.

1. If R has the \star-basic ideal property, then R is completely integrally closed.

2. R has the ν-basic ideal property if and only if R is completely integrally closed.
Proposition. A ν-domain (nonzero finitely generated ideals are ν-invertible) has the finite ν-basic ideal property.

Proposition. If a domain \(R \) has the finite \(\star \)-basic ideal property, then \(R \) also has the finite \(\star_f \)-basic ideal property. In particular, if \(R \) has the finite ν-basic ideal property, then \(R \) also has the finite \(t \)-basic ideal property.

Corollary. A PνMD has the finite \(t \)-basic ideal property.
Proposition. A \(\nu \)-domain (nonzero finitely generated ideals are \(\nu \)-invertible) has the finite \(\nu \)-basic ideal property.

Proposition. If a domain \(R \) has the finite \(\star \)-basic ideal property, then \(R \) also has the finite \(\star_f \)-basic ideal property. In particular, if \(R \) has the finite \(\nu \)-basic ideal property, then \(R \) also has the finite \(t \)-basic ideal property.

Corollary. A \(P \nu \text{MD} \) has the finite \(t \)-basic ideal property.
Proposition. A \(\nu \)-domain (nonzero finitely generated ideals are \(\nu \)-invertible) has the finite \(\nu \)-basic ideal property.

Proposition. If a domain \(R \) has the finite \(\star \)-basic ideal property, then \(R \) also has the finite \(\star_f \)-basic ideal property. In particular, if \(R \) has the finite \(\nu \)-basic ideal property, then \(R \) also has the finite \(t \)-basic ideal property.

Corollary. A \(\nu \)MD has the finite \(t \)-basic ideal property.
Proposition. A ν-domain (nonzero finitely generated ideals are ν-invertible) has the finite ν-basic ideal property.

Proposition. If a domain R has the finite \star-basic ideal property, then R also has the finite \star_f-basic ideal property. In particular, if R has the finite ν-basic ideal property, then R also has the finite t-basic ideal property.

Corollary. A PνMD has the finite t-basic ideal property.
So here’s the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer ν-multiplication domain \iff R has the finite w-basic ideal property.

2. R is a Prüfer domain ν-multiplication domain of t-dimension 1 \iff R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t = w$-basic. (\Leftarrow) R has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \text{Max}_t(R)$, and let $a, b \in M$. Since (a^2, b^2) is a reduction of $(a, b)^2$, we have $(a^2, b^2)_w = ((a, b)^2)_w$ and hence $(a^2, b^2)_wR_M = (a, b)^2R_M$. Therefore, R is a PvMD.

2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)
So here's the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain \iff R has the finite w-basic ideal property.

2. R is a Prüfer domain v-multiplication domain of t-dimension 1 \iff R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t = w$-basic. (\Leftarrow) R has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \text{Max}_t(R)$, and let $a, b \in M$. Since (a^2, b^2) is a reduction of $(a, b)^2$, we have $(a^2, b^2)_w = ((a, b)^2)_w$ and hence $(a^2, b^2)R_M = (a, b)^2 R_M$. Therefore, R is a $PvMD$.

2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)
So here’s the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\iff R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension 1 $\iff R$ has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t = w$-basic. (\Leftarrow) R has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \text{Max}_t(R)$, and let $a, b \in M$. Since (a^2, b^2) is a reduction of $(a, b)^2$, we have $(a^2, b^2)_w = ((a, b)^2)_w$ and hence $(a^2, b^2)_R = (a, b)^2_R$. Therefore, R is a $PvMD$.

2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)
So here’s the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer ν-multiplication domain $\iff R$ has the finite w-basic ideal property.

2. R is a Prüfer domain ν-multiplication domain of t-dimension 1 $\iff R$ has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t = w$-basic. (\Leftarrow) R has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \text{Max}_t(R)$, and let $a, b \in M$. Since (a^2, b^2) is a reduction of $(a, b)^2$, we have $(a^2, b^2)_w = ((a, b)^2)_w$ and hence $(a^2, b^2)R_M = (a, b)^2 R_M$. Therefore, R is a νMD.

2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)
So here's the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer ν-multiplication domain $\iff R$ has the finite w-basic ideal property.

2. R is a Prüfer domain ν-multiplication domain of t-dimension 1 $\iff R$ has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t = w$-basic. (\Leftarrow) R has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \text{Max}_t(R)$, and let $a, b \in M$. Since (a^2, b^2) is a reduction of $(a, b)^2$, we have $(a^2, b^2)_w = ((a, b)^2)_w$ and hence $(a^2, b^2)R_M = (a, b)^2R_M$. Therefore, R is a $P\nu$MD.

2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)
So here’s the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain $\iff R$ has the finite w-basic ideal property.
2. R is a Prüfer domain v-multiplication domain of t-dimension 1 $\iff R$ has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t = w$-basic.
 (\Leftarrow) R has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \text{Max}_t(R)$, and let $a, b \in M$. Since (a^2, b^2) is a reduction of $(a, b)^2$, we have $(a^2, b^2)_w = ((a, b)^2)_w$ and hence $(a^2, b^2)R_M = (a, b)^2 R_M$. Therefore, R is a PvMD.

2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)
So here’s the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer ν-multiplication domain \iff R has the finite w-basic ideal property.
2. R is a Prüfer domain ν-multiplication domain of t-dimension 1 \iff R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t = w$-basic. (\Leftarrow) R has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \text{Max}_t(R)$, and let $a, b \in M$. Since (a^2, b^2) is a reduction of $(a, b)^2$, we have $(a^2, b^2)_w = ((a, b)^2)_w$ and hence $(a^2, b^2)R_M = (a, b)^2R_M$. Therefore, R is a PvMD.

2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)
So here’s the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer ν-multiplication domain $\iff R$ has the finite w-basic ideal property.
2. R is a Prüfer domain ν-multiplication domain of t-dimension 1 $\iff R$ has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t = w$-basic. (\Leftarrow) R has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \text{Max}_t(R)$, and let $a, b \in M$. Since (a^2, b^2) is a reduction of $(a, b)^2$, we have $(a^2, b^2)_w = ((a, b)^2)_w$ and hence $(a^2, b^2)R_M = (a, b)^2R_M$. Therefore, R is a PvMD.

2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)
Motivation (Incorrect "theorem")

Preliminaries

Correct result

Examples.

So here’s the correct result:

Theorem. Let R be a domain.

1. R is a Prüfer v-multiplication domain \iff R has the finite w-basic ideal property.

2. R is a Prüfer domain v-multiplication domain of t-dimension 1 \iff R has the (full) w-basic ideal property.

Sketch of proof:

1. (\Rightarrow) It is easy to show that \star-invertible ideals are \star-basic. Since finitely generated ideals are t-invertible, they are $t = w$-basic. (\Leftarrow) R has the finite w-basic ideal property implies that R is integrally closed. Let $M \in \text{Max}_t(R)$, and let $a, b \in M$. Since (a^2, b^2) is a reduction of $(a, b)^2$, we have $(a^2, b^2)_w = ((a, b)^2)_w$ and hence $(a^2, b^2)R_M = (a, b)^2 R_M$. Therefore, R is a PvMD.

2. Use a lemma that has not been mentioned. (I hope you appreciate this insight.)
Motivation (Incorrect "theorem")

Preliminaries

Correct result

Examples.

Krull

(1) \(w\)-basic = \(v\)\(\nu\)MD + \(t\)-dim 1

(2) finite \(w\)-basic = \(v\)\(\nu\)MD

(3) \(v\)-domain

(4) finite \(v\)-basic

(5) finite \(t\)-basic

(6) integrally closed

\(v\)-basic = completely integrally closed

\(t\)-basic

(7) \(w\)-basic = \(v\)\(\nu\)MD + \(t\)-dim 1

(8) finite \(w\)-basic = \(v\)\(\nu\)MD

(9) \(v\)-domain
Motivation (Incorrect "theorem")

Preliminaries

Correct result

Examples.

Krull

Heinzer-Ohm

\(w\)-basic = P \(v\)MD + \(t\)-dim 1

\(v\)-domain

\(v\)-basic = completely integrally closed

R = ring of entire functions

\(t\)-basic

\(k[[X]] + (Y, Z)k((X))[Y, Z] \)

finite \(v\)-basic

finite \(t\)-basic

\(k + Yk((X))[[Y]] \)

integrally closed
Motivation (Incorrect "theorem")

Preliminaries

Correct result

Examples.

- Krull
 - w-basic $= \text{PvMD} + t$-dim 1
 - finite w-basic $= \text{PvMD}$
 - v-basic $= \text{completely integrally closed}$
 - finite v-basic
 - finite t-basic
 - integrally closed

- Heinzer-Ohm
 - w-basic $= \text{PvMD} + t$-dim 1
 - finite w-basic $= \text{PvMD}$
 - v-domain
 - finite v-basic
 - finite t-basic
 - integrally closed

- $R = \text{ring of entire functions}$
 - v-basic $= \text{completely integrally closed}$

- (1)
- (2)
- (3)
- (4) $k[[X]] + (Y, Z)k((X))[Y, Z]$
- (5) $\uparrow \text{(Kadri)}$
- (6) $k + Yk((X))[Y]$