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Definitions. Let R be a domain and / a nonzero ideal of R.

e (Northcott/Rees, 1954) An ideal J C | is said to be a reduction of
[if JI" = ["*1 for some positive integer n.

e (Northcott/Rees) I is basic if it has no proper reductions.

e R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:

e For a,b € R, we have (&%, b?)(a, b) = (a, b)*
« Hence (&2, b%)(a, b)? = ((a, b)2)2,

e s0 (&, b?) is a reduction of (a, b)?.

Theorem. But in a Priifer domain, we do have (&2, b?) = (a, b)? for all
a,b.
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¢ (Northcott/Rees) I is basic if it has no proper reductions.
e R has the basic ideal property if each ideal of R is basic.

It is difficult for a domain R to be basic:
e For a,b € R, we have (&2, b?)(a, b) = (a, b)°.
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* s0 (&, b?) is a reduction of (a, b)?.

Theorem. But in a Priifer domain, we do have (&2, b?) = (a, b)? for all
a,b.




Motivation:

Theorem (Hays). Let R be a domain.

e (Hays, TAMS, 1973) R is a Prifer domain < R has the finite
basic ideal property.

e (Hays, PAMS, 1975) R is a one-dimensional Priifer domain < R
has the (full) basic ideal property.
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Recall that a domain R is completely integrally closed if every
nonzero ideal of R is v-invertible.

Proposition. Let x be a star operation on an integral domain R.
1. If R has the x-basic ideal property, then R is completely integrally
closed.

2. R has the v-basic ideal property if and only if R is completely
integrally closed.
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Proposition. A v-domain (nonzero finitely generated ideals are v-
invertible) has the finite v-basic ideal property.

Proposition. If a domain R has the finite x-basic ideal property, then
R also has the finite x¢-basic ideal property. In particular, if R has the
finite v-basic ideal property, then R also has the finite {-basic ideal

property.

Corollary. A PvMD has the finite t-basic ideal property.




So here’s the correct result:

Theorem. Let R be a domain.

1. Ris a Prufer v-multiplication domain < R has the finite w-basic
ideal property.

2. Ris a Prifer domain v-multiplication domain of {-dimension 1 <
R has the (full) w-basic ideal property.

Sketch of proof:

1. (=) It is easy to show that x-invertible ideals are x-basic. Since
finitely generated ideals are t-invertible, they are t = w-basic.
(<) R has the finite w-basic ideal property implies that R is
integrally closed. Let M € Max;(R), and let a, b € M. Since
(a2, b?) is a reduction of (a, b)?, we have (&2, b?)y = ((a, b)?)w
and hence (&2, b?)Ry = (a, b)?Ru. Therefore, R is a PvMD.

2. Use a lemma that has not been mentioned. (I hope you
appreciate this insight.)
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Examples.
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