On redundancy of ideal-projectivity for superfluous ideals in the finitely generated setting

Peter Kálnai

Conference on Rings and Polynomials, Graz, Austria 3rd - 8th July, 2016

Table of contents

Preliminaries

- Ideal-superfluity
- Projective ideal-(semi)covers
- Ideal-(semi)projectivity
- Ideal-supplements

2 Main result

- Previous results
- Statement
- Applications
- Future work

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Definitions

Let *R* be a ring and *I* its two-sided ideal contained in the Jacobson radical of *R*. A right *R*-module *P* is called *projective* if for every epimorphism $f: X \to Y$ and for every homomorphism $\varphi: P \to Y$ there exists a homomorphism $g: M \to X$ such that $f \circ g = \varphi$, i.e. the following diagram commutes:

We say the factor-module P/PI (resp. P/PJ(R)) is the ideal factor (resp. the radical factor) of P.

イロン イ部ン イヨン イヨン 三日

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Facts

Properties of projectives

Let R be a ring. Then:

- (i) an *R*-module *P* is projective iff every epimorphism with *P* as a codomain splits iff *P* is isomorphic to a direct summand of a free right module *F*
- (ii) (Kaplansky, 1958) Every projective module is a direct sum of countably generated modules.
- (iii) (Příhoda, 2007) Right projective *R*-modules *P* and *Q* are isomorphic if $P/P\mathcal{J}(R)$ and $Q/Q\mathcal{J}(R)$ are isomorphic.

イロト イヨト イヨト イヨト

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Definitions

- A submodule N of M decomposes M (is DM in M) if there is a summand S of M such that $S \subseteq N$ and M = S + X, whenever N + X = M for a submodule X of M.
- A submodule N of M is called SDM in M if there is a summand S of M such that $S \subseteq N$ and $M = S \oplus X$, whenever N + X = M for a submodule X of M.
- A submodule N of M is called PDM in M if there is a projective summand S of M such that S ⊆ N and M = S + X, whenever N + X = M for a submodule X of M.
- a submodule N of M is superfluous in M, denoted N << M if N + L ≠ M for any proper submodule L of M.

(ロ) (同) (E) (E) (E)

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Ideal-superfluity

Observation

Let N be a submodule of M. Then $N \ll M$ if and only if $N \subseteq Rad(M)$ and N is PDM in M.

It might make sense to define:

Let N be a submodule of a module M. Then N is I-superfluous in M if $N \subseteq MI$ and N is PDM in M, denoted $N \ll M$.

Redundancy of ideal-superfluity in the boundary case for projectives

Let M be a right R-module and G be a submodule of M.

(i)
$$G \ll_{\mathcal{J}(R)} M$$
 implies $G \ll M$.

(ii) if M satisfies $Rad(M) = M\mathcal{J}(R)$, then also the reverse holds.

イロン イヨン イヨン イヨン

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Definitions

- A pair (P, f) is called a projective I-semicover of M if P is projective and f : P → M is an epimorphism such that ker f ⊆ PI.
- A pair (P, f) is called a projective *I*-cover of M if it is a projective *I*-semicover of P and ker f decomposes P.

イロン イヨン イヨン イヨン

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Properties of projective ideal-covers

Projective ideal-covers redundant in the boundary case

[Alkan, Nicholson, Özcan 2008] A right module M has a projective $\mathcal{J}(R)$ -cover if and only if M has a projective cover.

Relation to ideal-superfluity

Let $I \subseteq \mathcal{J}(R)$ and M be a module. A projective module P with a homomorphism $f : P \to M$ is a projective *I*-cover of M if and only if f in an epimorphism and ker(f) is *I*-superfluous in P.

<ロ> (日) (日) (日) (日) (日)

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Ideal-semiprojectivity

Let *R* be a ring and let *I* be a two-sided ideal of *R*. Then an *R*-module *P* is *I*-semiprojective if for every epimorphism $f: X \to Y$ such that YI = 0 and every morphism $\varphi: P \to Y$ there is a homomorphism $g: P \to X$ such that $\varphi = f \circ g$:

Characterization lemma

Let *I* be a two-sided ideal of *R*. Let *M* be a module. Then *M* is *I*-semiprojective if and only if for every epimorphism $f: X \to Y$ and every homomorphism $\varphi: M \to Y$ there exists a homomorphism $g: M \to X$ such that $(\varphi - f \circ g)(M) \subseteq YI$.

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Ideal-projectivity

- A right *R*-module *P* is *I*-projective if for all right *R*-modules X and Y, every *R*-epimorphism *f* : X → Y and every homomorphism φ : P → Y there exists a homomorphism g : P → X such that (f ∘ g − φ)(P) <<_I Y, i.e. the image of the triangle of the diagram is *I*-superfluous in Y.
- A right *R*-module *P* is radical-semiprojective resp. radical-projective if for all right *R*-modules *X* and *Y*, every *R*-epimorphism $f : X \to Y$ and every homomorphism $\varphi : P \to Y$ there exists a homomorphism $g : P \to X$ such that $(f \circ g - \varphi)(P) \subseteq Rad(Y)$ resp. $(f \circ g - \varphi)(P) << Rad(Y)$.

Note that projective modules are then just 0-projective modules.

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Ideal-projectivity for a finitely generated module

Characterization for a finitely generated module M

- Let $I \subseteq \mathcal{J}(R)$ and let M be a finitely generated right R-module.
 - (i) [Izurdiaga 2004] if M is $\mathcal{J}(R)$ -semiprojective, then M is radical-projective.
- (ii) if M is I-semiprojective, then M is I-projective.
- (iii) *M* is *I*-(semi)projective if and only if for the canonical projection $\pi : M \to M/MI$ there exists a finitely generated module *F* and a pair of homomorphisms $\alpha : P \to F$ and $\beta : F \to P$ such that $\pi = \pi \circ \beta \circ \alpha$

Izurdiaga 2004, Example 3.11

There exist a (non-finitely generated) $\mathcal{J}(R)$ -semiprojective module that is not radical-projective.

Ideal-superfluity Projective ideal-(semi)covers Ideal-(semi)projectivity Ideal-supplements

Ideal-supplements

Let R be a ring, I be a two-sided ideal and M be a right R-module.

- We say that submodule K of M is a supplemented submodule of M if there is a submodule G of M such that M = K + G and G is minimal with this property. (i.e. G is a supplement of K if K + G = M and K ∩ G superfluous in G.
- We say that a submodule G of M is an I-supplement if there is a submodule K of M such that K + G = M and K ∩ G is I-superfluous in G. (note that 0-supplements are just direct summands)

Ideal-supplements redundant in the boundary case for projectives

Let M be a module and G be a submodule of M.

(i) if G is a $\mathcal{J}(R)$ -supplement then G is a supplement.

(ii) if *G* satisfies $Rad(G) = G, \mathcal{J}(R)$, then also the reverse holds.

Previous results Statement Applications Future work

Previous results

Mohammed-Sandomierski, J.Alg. 127, 206-217 (1989)

Equivalence of redundancy in the boundary case (the f.g. setting)

Let R be a ring, $\mathcal{J}(R)$ its Jacobson radical. Then FIE:

- (1) every supplement submodule in a finitely generated left R-module is a direct summand
- (2) if *M* is a finitely generated left *R*-module such that the left $R/\mathcal{J}(R)$ -module $M/\mathcal{J}(R)M$ is projective then *M* is projective
- (3) every finitely generated *J*(*R*)-(semi)projective *R*-module is projective

Redundancy for the prime radical

Let R be a ring, let I be a an ideal contained in the $\beta(R)$ of R. Every finitely generated I-(semi)projective R-module is projective.

Previous results Statement Applications Future work

Previous results

Izurdiaga M.C.: Supplement Submodules and Generalization of Projective Modules J.Alg. **277** (2004)

Equivalence of redundancy in the boundary case (the general setting)

- (1) every supplement submodule of a projective module is a direct summand
- (2) for every set Γ , for every $\mathbb{A} \in RFM_{\Gamma}(R)$ with $\mathbb{A} \mathbb{A}^2 \in \mathcal{J}(RFM_{\Gamma}(R))$ and such that there is $\mathbb{T} \in RFM_{\Gamma}(R)$ satisfying $\mathbb{T}\mathbb{A}^2 = \mathbb{A}$, $\mathbb{A}\mathbb{T}\mathbb{A} = \mathbb{A}$ holds.
- (3) every radical-projective module is projective.

イロン イヨン イヨン イヨン

Previous results Statement Applications Future work

Previous results

Facchini A., Herbera D., Shakhaev I.: "Flat modules and lifting of projective modules", Pac.J.Math 220/1, 49-67 (2005)

Lifting of pure monos in the boundary case

Let Q and Q' be projective right R-modules and let $\varphi : Q' \to Q$ be a homomorphism. If the mapping $\overline{\varphi} : Q'/Q'\mathcal{J}(R) \to Q/Q\mathcal{J}(R)$ induced by φ is a pure monomorphism, then φ is a pure monomorphism.

Proposition 7.3

Let *M* be a finitely generated flat right module over a ring *R* and let *P* be a projective module. If $M/M\mathcal{J}(R) \simeq P/P\mathcal{J}(R)$, then $M \simeq P$.

イロト イポト イヨト イヨト

3

Previous results Statement Applications Future work

Lifting projectives modulo the radical factors

FHS 2005 - Theorem 7.1

Let $(R/\mathcal{J}(R))^n \simeq P \oplus Q$. Then FIE:

- (i-ii) there exists a finitely generated (countably presented) flat M_R such that the radical factor of M is isomorphic to P
- (iii) there exists a projective Q^\prime_R such that the radical factor of Q^\prime is isomorphic to Q
- (iv-v) there exists a finitely generated (countably presented) flat $_RN$ such that the radical factor of N is isomorphic to $Hom_R(Q, R/\mathcal{J}(R))$
 - (vi) there exists a projective $_{R}P'$ such that the radical factor of Q is isomorphic to $Hom_{R}(P, R/\mathcal{J}(R))$

イロト イポト イヨト イヨト

3

Previous results Statement Applications Future work

Lifting projectives modulo the superfluous ideal factors

Let I be an ideal of R, $I \subseteq \mathcal{J}(R)$. If $(R/I)^n = P \oplus Q$, then FIE:

- (L1-2) there exists a finitely generated (countably presented) flat M_R such that the ideal factor of M is isomorphic to P
 - (L3) there exists a projective Q^\prime_R such that the ideal factor of Q^\prime is isomorphic to Q
- (L4-5) there exists a finitely generated (countably presented) flat $_RN$ such that the ideal factor of N is isomorphic to $Hom_R(Q, R/I)$
 - (L6) there exists a projective $_{R}P'$ such that the ideal factor of Q is isomorphic to $Hom_{R}(P, R/\mathcal{J}(R))$

Corollary

Let *M* be a f.g. flat right *R*-module and let *P* be a projective right *R*-module. If $\gamma : P \to M$ is a projective *I*-cover, then $P \simeq M$.

Previous results Statement Applications Future work

Main result

Theorem - the f.g. setting

Let R be a ring and $I \subseteq \mathcal{J}(R)$ be a two-sided ideal of R. Then the following is equivalent:

- (1) for every finitely generated projective right *R*-module *P*, every *I*-supplement is a direct summand.
- (2) every finitely generated *I*-projective right *R*-module is projective
- (3) every finitely generated flat right *R*-module *M* with the right R/I-module M/MI projective is itself projective
- (4) for every projective right *R*-module Q, if the factor-module Q/QI is finitely generated then Q is finitely generated

The condition (4) for the boundary case is s.c. Lazard's Conjecture.

Previous results Statement Applications Future work

Counterexample to Lazard's Conjecture

Gerasimov-Sakhaev, 1984

Let K be a field and let R be a factor of the K-algebra $K\langle x, y \rangle$ by the ideal $I = \langle yx \rangle$. Consider the universal localization R_{Σ} of R with respect to a set $\Sigma \subseteq M(R) = \bigcup_{n=1}^{\infty} M_n(R)$ of all matrices with $\tilde{\alpha}$ -image invertible, where $\alpha(x) \mapsto (1,0)$ and $\alpha(y) \mapsto (0,1)$ and $\tilde{\alpha} : M(R) \to M(K \oplus K)$ induced by α . Then there is a commutative diagram in the category of rings:

where λ is an embedding, so $\lambda(y)\lambda(x) = 0_{R_{\Sigma}}$

Previous results Statement Applications Future work

Counterexample to Lazard's Conjecture

$$\begin{pmatrix} \mathbf{p} & r \\ \mathbb{A} & \mathbf{q}^{T} \end{pmatrix} \times \begin{pmatrix} r' \\ \mathbf{p} & r \\ \mathbb{A} & \mathbf{q}^{T} r' \end{pmatrix}, \begin{pmatrix} r'' \\ \mathbf{p} & r \\ \mathbb{A} & \mathbf{q}^{T} \end{pmatrix} = \begin{pmatrix} \mathbf{p} & r'' \\ \mathbb{A} & \mathbf{q}^{T} \end{pmatrix}, \begin{pmatrix} \mathbf{p} & r \\ \mathbb{A} & \mathbf{q}^{T} \end{pmatrix} + \begin{pmatrix} \mathbf{p} & r' \\ \mathbb{A} & \mathbf{q}'^{T} \end{pmatrix} = \begin{pmatrix} \mathbf{p} & r + r' \\ \mathbb{A} & \mathbf{q}^{T} + \mathbf{q}'^{T} \end{pmatrix}, \begin{pmatrix} \mathbf{p} & r \\ \mathbb{A} & \mathbf{q}^{T} \end{pmatrix} + \begin{pmatrix} s \\ \mathbb{A} & \mathbf{q}^{T} \end{pmatrix} = \begin{pmatrix} \mathbf{p} & r + s \\ \mathbb{A} & \mathbf{q}^{T} \end{pmatrix}$$

Criterion for being zero

An element t equals zero in R_{Σ} if and only if there are $\mathbf{b} \in \mathbb{R}^{n}, \mathbf{c} \in \mathbb{R}^{k}, \mathbb{B}, \mathbb{C} \in M(\mathbb{R})$ such that:

$$t = \begin{pmatrix} \mathbf{p} & r \\ \mathbb{A} & \mathbf{q}^T \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbb{B} \end{pmatrix} \times \begin{pmatrix} \mathbf{c} \\ \mathbb{C} & \mathbf{c}^T \end{pmatrix}$$

Peter Kálnai

On redundancy of ideal-projectivity for superfluous ideals in the

Previous results Statement Applications Future work

Counterexample to Lazard's Conjecture

Dubrovin, Příhoda, Puninski, 2008, Corollary 2.6

Let $x, y \in R$ with yx = 0, $1 - x - y \in \mathcal{J}(R)$, denote u := x + y, s := u - y (so yx = 0 implies $s = u^{-1}s^2$), let $r_i := u^{-i-1}xu^i, i \ge 0$ and $P = \bigcup_{i=0}^{\infty} r_i R$. Then P is a projective module, $P/P\mathcal{J}(R)$ is 1-generated by \overline{x} and P is finitely generated if and only if $xu^{-1}y = 0$ if and only if $su^{-1}s = s$. (Note that $s - s^2 = (1 - u)s \in \mathcal{J}(R)$)

Properties of R_{Σ}

The ring homomorphism $\widetilde{\alpha}$ induces an isomorphism $R_{\Sigma}/\mathcal{J}(R_{\Sigma}) \simeq K \oplus K$. In particular, R_{Σ} is semilocal, $\alpha(1-x-y) = 0$ implies $1-x-y \in \mathcal{J}(R_{\Sigma})$ and $x(x+y)^{-1}y \neq 0$.

Previous results Statement Applications Future work

Lifting idempotents

Lifting idempotents in matrix rings

Let R be a ring and let $I \subseteq \mathcal{J}(R)$ be an ideal of R. Then FIE:

- (L1') for every $n \in \mathbb{N}$ every direct summand of a right R-module $R^{(n)}/I^{(n)}$ has a projective *I*-cover
- (L2') for every $n \in \mathbb{N}$, if P is a direct summand of $(R/I)^{(n)}$, then there is a direct summand P' of $R^{(n)}$ such that $P = P' + I^{(n)}/I^{(n)} (\simeq P'/P'I)$
- (L3') $M_n(I)$ is (strongly) lifting in $M_n(R)$ for every $n \in \mathbb{N}$
- (L4') every direct summand of a finitely generated right *R*-module with a projective *I*-cover has a projective *I*-cover.

(ロ) (同) (E) (E) (E)

Previous results Statement Applications Future work

Lifting idempotents

Koethe's Conjecture equivalents, [Krempa, 1972]

(K1) the Koethe's radical contains every one-sided nil ideal

(K2) the sum of two one-sided nil ideals is a nil ideal

- (K3) $\mathcal{N}(M_n(R)) = M_n(\mathcal{N}(R))$ for every ring R and every $n \in \mathbb{N}$
- (K4) $\mathcal{J}(R[x]) = \mathcal{N}(R)[x]$ for every ring R

Lifting idempotents modulo nil ideals

Let *R* be a ring and *N* a nil ideal. If \overline{f} is an idempotent element in R/N, then there is an idempotent element *e* in *R* such that $\pi(e) = \overline{f}$, where $\pi : R \to R/N$ is the canonical projection.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Previous results Statement Applications Future work

Application

Cases when the main result affirmative

If I is an ideal of R is contained in a radical $\gamma \subseteq \mathcal{N}$ that is matrix-extensible, then the condition (4) holds for I. In particular, for $\beta(R), \mathcal{L}(R)$.

Proof.

Let *P* be projective with the finitely generated ideal factor. By the assumption $M_n(I) \subseteq M_n(\gamma(R)) = \gamma(M_n(R)) \subseteq \mathcal{N}(M_n(R))$. By (K3) and idempotent lifting modulo nil ideals we infer that (L3') is true. Then (L2') is true and it gives us a finitely generated summand *Q* with the ideal factor isomorphic to the ideal factor of *P*. The fact that projectives are determined by the superfluous ideal factors would lead to the conclusion that $P \simeq Q$.

イロン イビン イビン イビン

Previous results Statement Applications Future work

Interests

- Are the conditions satisfied for the Koethe's radical? I.e., are the conditions an approximation of a positive solution to the Koethe's problem?
- Is it possible to state the main result analogically in the general case, i.e. also in the non-finitely generated setting?

イロト イポト イヨト イヨト

Previous results Statement Applications Future work

References 1/2

- Alkan M., Nicholson W.K., A. Özcan A. Ç.: A generalization of projective covers J.Alg. 319 (2008) 4947-4960.
- Dubrovin N., Příhoda P., Puninski G.: *Projective modules over* the Gerasimov-Sakhaev counterexample, J.Alg. **319** (2008), 3259-3279.
- Gerasimov V., Sakhaev I.: A counterexample to two conjectures on projective and flat modules, SiberianMath. J. 24 (1984) 855-859.
- Facchini A., Herbera D., Sakhajev I.: Finitely Generated Flat Modules and a Characterization of Semiperfect Rings, Comm.Alg., 31:9, (2003), 4195-4214.

Facchini A., Herbera D., Sakhaev I.: Flat Modules and Lifting of Finitely Generated Projective Modules, Pac.J. Math. 220/1

Peter Kálnai

On redundancy of ideal-projectivity for superfluous ideals in the

Previous results Statement Applications Future work

References 2/2

- Herbera D., Příhoda P.: Infinitely Generated Projective Modules over Pullbacks of Rings Trans. Amer. Math. Soc. 366 (2014), 1433-1454.
- Izurdiaga M.C.: Supplement Submodules and Generalization of Projective Modules, J.Alg. 277 (2004)
- Khurana D., Ghupta R.N.: *Lifting Idempotents and Projective Covers*, Kyunpook Math.J. **41** (2001), 217-227.
- Mohammed A., Sandomierski F.L.: *Complements in Projective Modules*, J.Alg. **127** (1989), 206-217.
- Yongduo W.: *A generalization of supplemented modules*, Far East Journal of Mathematical Sciences (FJMS) Volume **72/1** (2013), 161-167.