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Definitions

Let R be a ring and I its two-sided ideal contained in the Jacobson
radical of R. A right R-module P is called projective if for every
epimorphism f : X → Y and for every homomorphism ϕ : P → Y
there exists a homomorphism g : M → X such that f ◦ g = ϕ, i.e.
the following diagram commutes:

P
g

~~

ϕ
��

X
f
// Y // 0

We say the factor-module P/PI (resp. P/PJ (R)) is the ideal
factor (resp. the radical factor) of P.
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Facts

Properties of projectives

Let R be a ring. Then:

(i) an R-module P is projective iff every epimorphism with P as a
codomain splits iff P is isomorphic to a direct summand of a
free right module F

(ii) (Kaplansky, 1958) Every projective module is a direct sum of
countably generated modules.

(iii) (Př́ıhoda, 2007) Right projective R-modules P and Q are
isomorphic if P/PJ (R) and Q/QJ (R) are isomorphic.
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Definitions

A submodule N of M decomposes M (is DM in M) if there is
a summand S of M such that S ⊆ N and M = S + X ,
whenever N + X = M for a submodule X of M.

A submodule N of M is called SDM in M if there is a
summand S of M such that S ⊆ N and M = S ⊕ X ,
whenever N + X = M for a submodule X of M.

A submodule N of M is called PDM in M if there is a
projective summand S of M such that S ⊆ N and
M = S + X , whenever N + X = M for a submodule X of M.

a submodule N of M is superfluous in M, denoted N << M if
N + L 6= M for any proper submodule L of M.
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Ideal-superfluity

Observation

Let N be a submodule of M. Then N << M if and only if
N ⊆ Rad(M) and N is PDM in M.

It might make sense to define:
Let N be a submodule of a module M. Then N is I -superfluous in
M if N ⊆ MI and N is PDM in M, denoted N <<I M.

Redundancy of ideal-superfluity in the boundary case for projectives

Let M be a right R-module and G be a submodule of M.

(i) G <<J (R) M implies G << M.

(ii) if M satisfies Rad(M) = MJ (R), then also the reverse holds.
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Definitions

A pair (P, f ) is called a projective I -semicover of M if P is
projective and f : P → M is an epimorphism such that
ker f ⊆ PI .

A pair (P, f ) is called a projective I -cover of M if it is a
projective I -semicover of P and ker f decomposes P.
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Properties of projective ideal-covers

Projective ideal-covers redundant in the boundary case

[Alkan, Nicholson, Özcan 2008] A right module M has a projective
J (R)-cover if and only if M has a projective cover.

Relation to ideal-superfluity

Let I ⊆ J (R) and M be a module. A projective module P with a
homomorphism f : P → M is a projective I -cover of M if and only
if f in an epimorphism and ker(f ) is I -superfluous in P.
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Ideal-semiprojectivity

Let R be a ring and let I be a two-sided ideal of R. Then an
R-module P is I -semiprojective if for every epimorphism
f : X → Y such that YI = 0 and every morphism ϕ : P → Y there
is a homomorphism g : P → X such that ϕ = f ◦ g :

P

ϕ
��

∃ g

~~

X
f
// Y // 0

Characterization lemma

Let I be a two-sided ideal of R. Let M be a module. Then M is
I -semiprojective if and only if for every epimorphism f : X → Y
and every homomorphism ϕ : M → Y there exists a
homomorphism g : M → X such that (ϕ− f ◦ g)(M) ⊆ YI .
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Ideal-projectivity

A right R-module P is I -projective if for all right R-modules
X and Y , every R-epimorphism f : X → Y and every
homomorphism ϕ : P → Y there exists a homomorphism
g : P → X such that (f ◦ g − ϕ)(P) <<I Y , i.e. the image of
the triangle of the diagram is I -superfluous in Y .

A right R-module P is radical-semiprojective resp.
radical-projective if for all right R-modules X and Y , every
R-epimorphism f : X → Y and every homomorphism
ϕ : P → Y there exists a homomorphism g : P → X such that
(f ◦ g − ϕ)(P) ⊆ Rad(Y ) resp. (f ◦ g − ϕ)(P) << Rad(Y ).

Note that projective modules are then just 0-projective modules.
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Ideal-projectivity for a finitely generated module

Characterization for a finitely generated module M

Let I ⊆ J (R) and let M be a finitely generated right R-module.

(i) [Izurdiaga 2004] if M is J (R)-semiprojective, then M is
radical-projective.

(ii) if M is I -semiprojective, then M is I -projective.

(iii) M is I -(semi)projective if and only if for the canonical
projection π : M → M/MI there exists a finitely generated
module F and a pair of homomorphisms α : P → F and
β : F → P such that π = π ◦ β ◦ α

Izurdiaga 2004, Example 3.11

There exist a (non-finitely generated) J (R)-semiprojective module
that is not radical-projective.
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Ideal-supplements

Let R be a ring, I be a two-sided ideal and M be a right
R-module.

We say that submodule K of M is a supplemented submodule
of M if there is a submodule G of M such that M = K + G
and G is minimal with this property. (i.e. G is a supplement
of K if K + G = M and K ∩ G superfluous in G .
We say that a submodule G of M is an I -supplement if there
is a submodule K of M such that K + G = M and K ∩ G is
I -superfluous in G . (note that 0-supplements are just direct
summands)

Ideal-supplements redundant in the boundary case for projectives

Let M be a module and G be a submodule of M.

(i) if G is a J (R)-supplement then G is a supplement.

(ii) if G satisfies Rad(G ) = GJ (R), then also the reverse holds.
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Previous results

Mohammed-Sandomierski, J.Alg. 127, 206-217 (1989)

Equivalence of redundancy in the boundary case (the f.g. setting)

Let R be a ring, J (R) its Jacobson radical. Then FIE:

(1) every supplement submodule in a finitely generated left
R-module is a direct summand

(2) if M is a finitely generated left R-module such that the left
R/J (R)-module M/J (R)M is projective then M is projective

(3) every finitely generated J (R)-(semi)projective R-module is
projective

Redundancy for the prime radical

Let R be a ring, let I be a an ideal contained in the β(R) of R.
Every finitely generated I -(semi)projective R-module is projective.
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Previous results

Izurdiaga M.C.: Supplement Submodules and Generalization of
Projective Modules J.Alg. 277 (2004)

Equivalence of redundancy in the boundary case (the general
setting)

(1) every supplement submodule of a projective module is a direct
summand

(2) for every set Γ, for every A ∈ RFMΓ(R) with
A− A2 ∈ J (RFMΓ(R)) and such that there is T ∈ RFMΓ(R)
satisfying TA2 = A, ATA = A holds.

(3) every radical-projective module is projective.
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Previous results

Facchini A., Herbera D., Shakhaev I.: ”Flat modules and lifting of
projective modules”, Pac.J.Math 220/1, 49-67 (2005)

Lifting of pure monos in the boundary case

Let Q and Q ′ be projective right R-modules and let ϕ : Q ′ → Q
be a homomorphism. If the mapping
ϕ : Q ′/Q ′J (R)→ Q/QJ (R) induced by ϕ is a pure
monomorphism, then ϕ is a pure monomorphism.

Proposition 7.3

Let M be a finitely generated flat right module over a ring R and
let P be a projective module. If M/MJ (R) ' P/PJ (R), then
M ' P.
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Lifting projectives modulo the radical factors

FHS 2005 - Theorem 7.1

Let (R/J (R))n ' P ⊕ Q. Then FIE:

(i-ii) there exists a finitely generated (countably presented) flat MR

such that the radical factor of M is isomorphic to P

(iii) there exists a projective Q ′R such that the radical factor of Q ′

is isomorphic to Q

(iv-v) there exists a finitely generated (countably presented) flat RN
such that the radical factor of N is isomorphic to
HomR(Q,R/J (R))

(vi) there exists a projective RP
′ such that the radical factor of Q

is isomorphic to HomR(P,R/J (R))
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Lifting projectives modulo the superfluous ideal factors

Let I be an ideal of R, I ⊆ J (R). If (R/I )n = P ⊕ Q, then FIE:

(L1-2) there exists a finitely generated (countably presented) flat MR

such that the ideal factor of M is isomorphic to P

(L3) there exists a projective Q ′R such that the ideal factor of Q ′ is
isomorphic to Q

(L4-5) there exists a finitely generated (countably presented) flat RN
such that the ideal factor of N is isomorphic to HomR(Q,R/I )

(L6) there exists a projective RP
′ such that the ideal factor of Q is

isomorphic to HomR(P,R/J (R))

Corollary

Let M be a f.g. flat right R-module and let P be a projective right
R-module. If γ : P → M is a projective I -cover, then P ' M.
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Main result

Theorem - the f.g. setting

Let R be a ring and I ⊆ J (R) be a two-sided ideal of R. Then the
following is equivalent:

(1) for every finitely generated projective right R-module P, every
I -supplement is a direct summand.

(2) every finitely generated I -projective right R-module is
projective

(3) every finitely generated flat right R-module M with the right
R/I -module M/MI projective is itself projective

(4) for every projective right R-module Q, if the factor-module
Q/QI is finitely generated then Q is finitely generated

The condition (4) for the boundary case is s.c.Lazard’s Conjecture.
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Counterexample to Lazard’s Conjecture

Gerasimov-Sakhaev, 1984

Let K be a field and let R be a factor of the K -algebra K 〈x , y〉 by
the ideal I = 〈yx〉. Consider the universal localization RΣ of R
with respect to a set Σ ⊆ M(R) =

⋃∞
n=1 Mn(R) of all matrices

with α̃-image invertible, where α(x) 7→ (1, 0) and α(y) 7→ (0, 1)
and α̃ : M(R)→ M(K ⊕ K ) induced by α. Then there is a
commutative diagram in the category of rings:

R
λ //

α
��

RΣ

αΣ
{{

K ⊕ K

where λ is an embedding, so λ(y)λ(x) = 0RΣ
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Counterexample to Lazard’s Conjecture(
p r
A qT

)
×
(

r ′
)

=

(
p rr ′

A qT r ′

)
,(

r ′′
)
×
(

p r
A qT

)
=

(
r ′′p r ′′r
A qT

)
,(

p r
A qT

)
+

(
p r ′

A q′T

)
=

(
p r + r ′

A qT + q′T

)
,(

p r
A qT

)
+

(
s
)

=

(
p r + s
A qT

)
Criterion for being zero

An element t equals zero in RΣ if and only if there are
b ∈ Rn, c ∈ Rk ,B,C ∈ M(R) such that:

t =

(
p r
A qT

)
=

(
b
B

)
×
(
C cT

)
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Counterexample to Lazard’s Conjecture

Dubrovin, Př́ıhoda, Puninski, 2008, Corollary 2.6

Let x , y ∈ R with yx = 0, 1− x − y ∈ J (R), denote u := x + y ,
s := u − y (so yx = 0 implies s = u−1s2), let ri := u−i−1xui , i ≥ 0

and P =
∞⋃
i=0

riR. Then P is a projective module, P/PJ (R) is

1-generated by x and P is finitely generated if and only if
xu−1y = 0 if and only if su−1s = s.
(Note that s − s2 = (1− u)s ∈ J (R))

Properties of RΣ

The ring homomorphism α̃ induces an isomorphism
RΣ/J (RΣ) ' K ⊕ K . In particular, RΣ is semilocal,
α(1− x − y) = 0 implies 1− x − y ∈ J (RΣ) and x(x + y)−1y 6= 0.
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Lifting idempotents

Lifting idempotents in matrix rings

Let R be a ring and let I ⊆ J (R) be an ideal of R. Then FIE:

(L1’) for every n ∈ N every direct summand of a right R-module
R(n)/I (n) has a projective I -cover

(L2’) for every n ∈ N, if P is a direct summand of (R/I )(n), then
there is a direct summand P ′ of R(n) such that
P = P ′ + I (n)/I (n)(' P ′/P ′I )

(L3’) Mn(I ) is (strongly) lifting in Mn(R) for every n ∈ N
(L4’) every direct summand of a finitely generated right R-module

with a projective I -cover has a projective I -cover.
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Lifting idempotents

Koethe’s Conjecture equivalents, [Krempa, 1972]

(K1) the Koethe’s radical contains every one-sided nil ideal

(K2) the sum of two one-sided nil ideals is a nil ideal

(K3) N (Mn(R)) = Mn(N (R)) for every ring R and every n ∈ N
(K4) J (R[x ]) = N (R)[x ] for every ring R

Lifting idempotents modulo nil ideals

Let R be a ring and N a nil ideal. If f is an idempotent element in
R/N, then there is an idempotent element e in R such that
π(e) = f , where π : R → R/N is the canonical projection.
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Application

Cases when the main result affirmative

If I is an ideal of R is contained in a radical γ ⊆ N that is
matrix-extensible, then the condition (4) holds for I . In particular,
for β(R),L(R).

Proof.

Let P be projective with the finitely generated ideal factor. By the
assumption Mn(I ) ⊆ Mn(γ(R)) = γ(Mn(R)) ⊆ N (Mn(R)). By
(K3) and idempotent lifting modulo nil ideals we infer that (L3’) is
true. Then (L2’) is true and it gives us a finitely generated
summand Q with the ideal factor isomorphic to the ideal factor of
P. The fact that projectives are determined by the superfluous
ideal factors would lead to the conclusion that P ' Q.
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Interests

Are the conditions satisfied for the Koethe’s radical? I.e., are
the conditions an approximation of a positive solution to the
Koethe’s problem?

Is it possible to state the main result analogically in the
general case, i.e. also in the non-finitely generated setting?
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