Exponent of local ring extensions of Galois rings and digraphs of the *k*th power mapping

Yotsanan Meemark

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

http://pioneer.netserv.chula.ac.th/~myotsana/

4 July 2016

Overview

- 1 Digraph of the kth power mapping
- 2 Exponent
- 3 Main results

Digraph of the kth power mapping

Let R be a finite commutative ring with identity $1 \neq 0$. For an integer $k \geq 2$, the k**th power mapping digraph over** R, denoted by $G^{(k)}(R)$, is the digraph whose vertex set is R and there is a directed edge from a to b if and only if $a^k = b$.

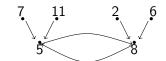
We consider two disjoint subdigraphs:

 $G_1^{(k)}(R)$ induced on the set of vertices in the unit group R^{\times} and

 $G_2^{(k)}(R)$ induced on the remaining vertices which are not invertible.

Example

The digraph $G^{(3)}(\mathbb{Z}_{13})$.



Křížek and Somer studied the digraphs $G^{(2)}(\mathbb{Z}_n)$ and $G^{(k)}(\mathbb{Z}_n)$.

2004

Křížek M., Somer L.: On a connection of number theory with graph theory, *Czechoslovak Math. J.* **54** (2004), 465–485.

2009

Křížek M., Somer L.: On symmetric digraphs of the congruences $x^k \equiv y \pmod{n}$, Discrete Math. **309** (2009), 1999–2009.

Křížek and Somer's tool

The Carmichael λ -function which is defined by a modification of the Euler's φ -function as follows:

- 1 $\lambda(1) = 1 = \varphi(1), \ \lambda(2) = 1 = \varphi(2), \ \lambda(4) = 2 = \varphi(4).$
- $\lambda(2^k) = 2^{k-2} = \frac{1}{2}\varphi(2^k)$, for $k \ge 3$.
- $\lambda(p^k) = (p-1)p^{k-1} = \varphi(p^k)$, for any odd prime p and $k \ge 1$.
- 4 $\lambda(p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}) = \text{lcm}(\lambda(p_1^{k_1}), \lambda(p_2^{k_2}), \dots, \lambda(p_r^{k_r}))$, where p_1, p_2, \dots, p_r are distinct primes and $k_i \geq 1$ for $i \in \{1, \dots, r\}$.

Meemark and Wiroonsri worked on the digraphs $G^{(2)}(\mathbb{F}_{p^n}[x]/(f(x)))$ and $G^{(k)}(\mathbb{F}_{p^n}[x]/(f(x)))$ where f(x) is a monic polynomial of degree ≥ 1 in $\mathbb{F}_{p^n}[x]$.

2010

Meemark Y., Wiroonsri N.: The quadratic digraph on polynomial rings over finite fields, *Finite Fields Appl.* **16** (2010), 334–346.

2012

Meemark Y., Wiroonsri N.: The digraphs of the *k*th power mapping of the quotient ring of polynomial ring over finite fields, *Finite Fields Appl.* **18** (2012), 179–191.

Meemark found that we can replace Carmichael λ -function with the "exponent" of the unit group of $\mathbb{F}_{p^n}[x]/(f(x))$.

2011

Meemark Y., Maingam N.: The digraphs of the square mapping on quotient rings over the Gaussian integers, *Int. J. Number Theory.* **7** (2011), 835–852.

2012

Su H.D., Tang G.H., Wei Y.J.: The square mapping graphs of finite commutative rings, *Algeb. Collo.* **19** (3) (2012), 569–580.

2014

Nan J.H., Tang G.H., Wei Y.J.: The iteration digraphs of group rings over finite fields, *Algebra and Its Appl.* **5** (2014), 1–19.

2015

Tang G.H., Wei Y.J.: The iteration digraphs of finite commutative rings, *Turk. J. Math.* **39** (2015), 872–883.

2015

Deng G., Somer L.: On the symmetric digraphs from the *k*th power mapping on a finite commutative ring, *Discrete Math.*, *Algorithms and Appl.*, Vol.7, No.1 (2015), 1–15.

Exponent of a finite group

Let G be a finite group. The **exponent of** G, denoted by $\exp G$, is the least positive integer n such that $g^n = e$ for all $g \in G$.

- \blacksquare exp G divides |G|
- **2** $\exp G = \text{lcm}\{o(a) : a \in G\}$
- If $G = G_1 \times G_2$, then $\exp G = \operatorname{lcm}(\exp G_1, \exp G_2)$.

E.g., $\exp \mathbb{Z}_n = n$ and $\exp S_4 = 12$.

Exponent of a finite ring

For a finite ring R with identity, we write R^{\times} for the group of units of R. The **exponent of** R, denoted by $\lambda(R)$, is defined to be the exponent of the group of units of R. That is, $\lambda(R) = \exp(R^{\times})$.

- 1 We can easily determine the exponent of R if the structure of the group of units is known, such as when R is the ring of integers modulo m, finite fields, Galois rings, and finite chain rings.
- **2** The exponent of the ring of integers modulo m is the "Carmichael λ -function".

Local rings whose unit group structure is known

A **local ring** R is a commutative ring with unique maximal ideal M. We call the field k = R/M the **residue field**. E.g., every field is a local ring and \mathbb{Z}_{p^n} is a local ring.

- Finite fields: \mathbb{F}_q
- lacksquare \mathbb{Z}_{p^s} where p is a prime and $s \in \mathbb{N}$
- Galois rings: $\mathbb{Z}_{p^n}[t]/(g(t))$ where g(t) is irreducible in $\mathbb{Z}_p[t]$
- Finite chain rings: finite commutatitive local rings with unique principal maximal ideal (Hou X.D., Leung K.H., Ma S.L.: On the group of units of finite commutative chain rings, Finite Fields Appl. 9 (2003), 20–38.)

Galois rings

Let n, d be positive integers and p a prime.

- **1** We know that there exists a monic polynomial g(t) in $\mathbb{Z}_{p^n}[t]$ of degree d such that the reduction $\overline{g}(t)$ in $\mathbb{Z}_p[t]$ is irreducible.
- 2 Consider the ring extension $\mathbb{Z}_{p^n}[t]/(g(t))$ of \mathbb{Z}_{p^n} . It is called a **Galois extension** of \mathbb{Z}_{p^n} .
- In Up to isomorphism the Galois extension with parameters n, d and p is unique. Hence, we may denote $\mathbb{Z}_{p^n}[t]/(g(t))$ by $GR(p^n,d)$, and call it the **Galois ring**.
- 4 Observe that $GR(p^n,1)=\mathbb{Z}_{p^n}$ and $GR(p,d)=\mathbb{F}_{p^d}$.

Galois rings

Theorem

- **1** $GR(p^n, d)$ is a finite local ring of characteristic p^n and of order p^{nd} with maximal ideal $M = p(GR(p^n, d))$, which is principal, and residue field $R/M \cong \mathbb{F}_{p^d}$.
- **2** The unit group $GR(p^n, d)^{\times} \cong H \times \mathbb{F}_{p^d}^{\times}$, where H is a group of order $p^{(n-1)d}$ such that:
 - a If (p is odd) or $(p = 2 \text{ and } n \le 2)$, then H is a direct product of d cyclic groups each of order p^{n-1} , and so the exponent of $GR(p^n, d)$ in this case is $p^{n-1}(p^d 1)$.
 - b If p = 2 and $n \ge 3$, then H is a direct product of a cyclic group of order 2, a cyclic group of order 2^{n-2} and d-1 cyclic groups each of order 2^{n-1} , and so the exponent of $GR(2^n, d)$ in this case is $2^{n-1}(2^d-1)$ for $d \ge 2$ and 2^{n-2} for d = 1, respectively.

Local extensions

An extension ring S of a local ring R is called a **local extension** if S is a local ring. Hence, the Galois ring $GR(p^n,d)$ is a local extension of \mathbb{Z}_{p^n} . The next result is well known.

Theorem

Let R be a finite local ring, and f(x) be a monic irreducible polynomial in R[x]. Then $R[x]/(f(x)^a)$ is a finite local ring for any $a \in \mathbb{N}$.

Main results

Consider a local extension of the Galois ring $GR(p^n, d)$ of the form

$$R = GR(p^n, d)[x]/(f(x)^a),$$

where $a \ge 1$ and f(x) is a monic polynomial in $GR(p^n, d)[x]$ of degree r such that the reduction $\overline{f}(x)$ in $\mathbb{F}_{p^d}[x]$ is irreducible.

R is a local ring of characteristic p^n with maximal ideal

$$M = (p, f(x))/(f(x)^{a})$$

$$= \{h(x) + f(x)l(x) + (f(x)^{a}) : h(x) \in pGR(p^{n}, d)[x],$$

$$l(x) \in GR(p^{n}, d)[x], \deg h < r, \deg l < r(a-1)\}.$$

We shall proceed to compute the "exponent of R" without completely determination of its unit group structure

a=1

When a = 1, it turns out that R is still a Galois ring as a result of the next theorem.

Theorem

Let $f(x) \in GR(p^n, d)[x]$ be a monic polynomial of degree r such that the reduction $\overline{f}(x)$ in $\mathbb{F}_{p^d}[x]$ is irreducible. Then the ring $GR(p^n, d)[x]/(f(x))$ is isomorphic to a Galois ring $GR(p^n, dr)$.

Hence, $R = GR(p^n, d)[x]/(f(x)) \cong GR(p^n, dr)$ and the exponent of R is presented in previous theorem.

a > 2

Deng and Somer (2015) considered the exponent of the ring $\mathbb{F}_{p^n}[x]/(f(x)^a)$, where $a \geq 2$ and f(x) is an irreducible polynomial in $\mathbb{F}_{p^n}[x]$ of degree r in the following theorem.

$\mathsf{Theorem}$

Let f(x) be an irreducible polynomial in $\mathbb{F}_{p^n}[x]$ of degree r and $a \geq 2$. Then

$$\lambda(\mathbb{F}_{p^n}[x]/(f(x)^a)) = p^s(p^{nr}-1),$$

where $p^{s-1} < a \le p^s$ for some $s \in \mathbb{N} \cup \{0\}$.

- I Since R is a local ring with maximal ideal M, we have $R^{\times} \cong (1+M) \times \mathbb{F}_{p^{dr}}^{\times}$ and $\mathbb{F}_{p^{dr}}^{\times}$ is cyclic of order $p^{dr}-1$, so it suffices to determine the exponent of the p-group 1+M.
- 2 Following Deng and Somer, let s be the positive integer such that $p^{s-1} < a \le p^s$. We shall show that every element in 1+M is of order not exceeding p^{s+n-1} and the order of $1+f(x)+(f(x)^a)$ is p^{s+n-1} , so the exponent of the group 1+M is p^{s+n-1} .
- 3 However, our computation is more complicated because the characteristic of the ring R is p^n and the binomial coefficients do not disappear easily like in the extension of fields case where it is of characteristic p.

For $m \in \mathbb{N}$, we write $e_p(m)$ for the maximum power of p in m, that is, $p^{e_p(m)} \mid m$ but $p^{e_p(m)+1} \nmid m$.

The proof is started by deriving some facts on the maximum power of p is binomial coefficients using de Polignac formula.

Theorem (de Polignac formula)

Let $m \in \mathbb{N}$ and p be a prime. Then

$$e_p(m!) = \sum_{i=1}^{\infty} \left[\frac{m}{p^i}\right].$$

We divide the computation into four lemmas as follows.

Lemma 1

Lemma

$$e_p(\binom{p^n}{l_1})=e_p(\binom{p^n}{l_2})$$
, where $1\leq l_1,l_2\leq p-1$ and $n\in\mathbb{N}$. Moreover, $e_p(\binom{p^n}{l_1})=n$.

Lemma 2

Lemma

Let $a \ge 2$, and $s, n \in \mathbb{N}$, where $p^{s-1} < a \le p^s$. For, $0 \le i \le s-2$, $1 < k < (p-1)p^{s-2-i} - 1$. Then:

- 2 $e_p(\binom{p^{s+n-1}}{p^{s-1-i}+l_1}) = e_p(\binom{p^{s+n-1}}{p^{s-1-i}+l_2})$, where $1 \le l_1, l_2 \le p-1$. Moreover, $e_p(\binom{p^{s+n-1}}{p^{s-1-i}+l_1}) \ge n$.
- $e_p(\binom{p^{s+n-1}}{p^{s-1-i}+kp}) \geq n.$
- 4 $e_p(\binom{p^{s+n-1}}{p^{s-1-i}+kp+l_1}) = e_p(\binom{p^{s+n-1}}{p^{s-1-i}+kp+l_2})$, where $1 \le l_1, l_2 \le p-1$. Moreover, $e_p(\binom{p^{s+n-1}}{p^{s-1-i}+kp+l_1}) \ge n$.

Lemmas 3–4

Lemma

Let $a \ge 2$, and $s, n \in \mathbb{N}$, where $p^{s-1} < a \le p^s$. Let f(x) be a monic polynomial in $GR(p^n, d)[x]$ such that the reduction $\overline{f}(x)$ in $\mathbb{F}_{p^d}[x]$ is irreducible. Then:

- $(1+f(x)+(f(x)^a))^{p^{s+n-1-t}} \neq 1+(f(x)^a) \text{ for all } t \in \mathbb{N}.$

Lemma

$$e_p(m!) < \frac{m}{p-1}$$
 for all $m \in \mathbb{N}$.

Now, we are ready to compute the exponent of $GR(p^n, d)[x]/(f(x)^a)$, when $a \ge 2$.

$\mathsf{Theorem}$

Let $f(x) \in GR(p^n, d)[x]$ be a monic polynomial of degree r such that the reduction $\overline{f}(x)$ in $\mathbb{F}_{p^d}[x]$ is irreducible, and $a \geq 2$. If s is the positive integer such that $p^{s-1} < a \leq p^s$, then

$$\lambda(GR(p^n,d)[x]/(f(x)^a)) = p^{s+n-1}(p^{dr}-1).$$

Proof

Let $h(x) \in pGR(p^n, d)[x]$, and $I(x) \in GR(p^n, d)[x]$, where deg h < r, and deg I < r(a - 1). Then

$$(1+h+fl+(f^{a}))^{p^{s+n-1}} = (1+fl)^{p^{s+n-1}} + \binom{p^{s+n-1}}{1} (1+fl)^{p^{s+n-1}-1}h$$

$$+ \dots + \binom{p^{s+n-1}}{p^{s+n-1}-1} (1+fl)h^{p^{s+n-1}-1}$$

$$+ h^{p^{s+n-1}} + (f^{a}).$$

Proof

Since $h(x) \in pGR(p^n, d)[x]$, Lemma 4 forces that

$$\binom{p^{s+n-1}}{1}h = \cdots = \binom{p^{s+n-1}}{p^{s+n-1}-1}h^{p^{s+n-1}-1} = h^{p^{s+n-1}} = 0.$$

Thus,

$$(1+h+fl+(f^{a}))^{p^{s+n-1}} = (1+fl)^{p^{s+n-1}} + (f^{a})$$

$$= 1 + \binom{p^{s+n-1}}{1}fl + \dots + \binom{p^{s+n-1}}{p^{s-1}}(fl)^{p^{s-1}}$$

$$+ \dots + \binom{p^{s+n-1}}{a-1}(fl)^{a-1} + (f^{a}).$$

Lemmas 1 and 2 imply that $p^n \mid {p^{s+n-1} \choose i}$ for all i.

Hence, $(1+h+fl+(f^a))^{p^{s+n-1}}=1+(f^a)$.

Proof

Thus, Lemma 3 implies that p^{s+n-1} is the order of $1 + f + (f^a) \in 1 + M$, so $\exp(1 + M) = p^{s+n-1}$.

Therefore,

$$\lambda(GR(p^n, d)[x]/(f(x)^a)) = \operatorname{lcm}(\exp(1+M), \exp \mathbb{F}_{p^{dr}}^{\times})$$
$$= p^{s+n-1}(p^{dr} - 1)$$

as desired.

Meemark Y., Tocharoenirattisai I.: Exponent of local ring extension of Galois rings and digraphs of the *k*th power mapping, *Turk. J. Math.*, to appear.

The End

http://pioneer.netserv.chula.ac.th/~myotsana/