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Krull monoids and rings of integer-valued polynomials

Let R be an integral domain with quotient field K and X an
indeterminate over K . Set R• = R \ {0}, called the monoid of
nonzero elements of R.
Int(R) = {f ∈ K [X ] | f (x) ∈ R for all x ∈ R} is called the ring of
integer-valued polynomials over R.

The arithmetic of Krull monoids is well understood. It can be
described in terms of the divisor-class group of the Krull monoid.
Is it possible to study the arithmetic of Int(R) for “interesting
domains” R by using the theory of Krull monoids?
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Theorem (Cahen, Gabelli, Houston, 2000)

Let R be an integral domain and X an indeterminate over R. Then
Int(R) is a Krull domain if and only if R is a Krull domain and
Int(R) = R[X ].

What about finding suitable submonoids of Int(R)• that are Krull
monoids?
In this talk a monoid is always a commutative (multiplicative)
cancellative semigroup with identity.
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Definition

Let H be a monoid, K a quotient group of H and X ⊆ K .

1. Set X−1 = {z ∈ K | zX ⊆ H} and Xv = (X−1)−1.

2. Set Fv (H) = {X ⊆ K | Xv = X and xX ⊆ H for some
x ∈ H}, called the set of fractional v -ideals of H.

3. Set Fv (H)× = {X ∈ Fv (H) | (XX−1)v = H}, called the set
of v -invertible fractional v -ideals. It forms a group under
v -multiplication.

4. Set H(H) = {xH | x ∈ K}, called the set of fractional
principal ideals of H. It is a subgroup of Fv (H)× under
v -multiplication.

5. Set Cv (H) = Fv (H)×/H(H), called the divisor-class group of
H.
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Definition

Let H be a monoid and X ⊆ H.

1. Set A(H) = {x ∈ H \ H× | for all u, v ∈ H with x = uv it
follows that u ∈ H× or v ∈ H×}, called the set of atoms of H.

2. X is called a (prime) s-ideal of H if XH = X (and xy ∈ X
implies that x ∈ X or y ∈ X for all x , y ∈ H).

3. Set Iv (H) = {I ∈ Fv (H) | I ⊆ H}, called the set of v -ideals
of H.

4. Let X(H) be the set of minimal non-empty prime s-ideals of
H, called the set of height-one prime ideals of H.
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Saturated submonoids

Definition

Let H be a monoid and T ⊆ H a submonoid. We say T ⊆ H is
saturated if the following equivalent conditions are satisfied:

a. For all x , y ∈ T with x |H y it follows that x |T y .

b. For every I ∈ Iv (T ) we have IvH ∩ T = I .

c. For every x ∈ T , xH ∩ T = xT .
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Divisor-closed and monadic submonoids

Definition

Let H be a monoid and T ⊆ H a submonoid.

1. We say T ⊆ H is divisor-closed if for all x , y ∈ H such that
xy ∈ T it follows that x , y ∈ T .

2. We say T ⊆ H is monadic H if T = {g ∈ H | g |H xk for
some k ∈ N} for some x ∈ H.

3. For x ∈ H set [[x ]]H = {g ∈ H | g |H xk for some k ∈ N},
called the monadic submonoid of H generated by x .

The divisor-closed submonoids of an integral domain are precisely
the proper saturated multiplicatively closed subsets in the
terminology of Kaplansky’s book. Every monadic submonoid is
divisor-closed and every divisor-closed submonoid is saturated.
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Familiar situations

Lemma

Let R be an integral domain and X an indeterminate over R.

R• ⊆ R[X ]• and R• ⊆ Int(R)• are divisor-closed submonoids.

R• ⊆ R[X ]• is monadic if and only if R• ⊆ Int(R)• is
monadic if and only if R is a G -domain (i.e., the intersection
of all nonzero prime ideals of R is nonzero).

R• ⊆ R[[X ]]• is saturated, but not divisor-closed.
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Some remarks

Remark

Let H be a monoid.

1. H is called a Krull monoid if every non-empty (fractional)
v -ideal of H is v -invertible and H satisfies the ACC on
v -ideals. If H is a Krull monoid, then every v -ideal of H is a
finite v -product of height-one prime ideals of H.

2. H is called a quasi finitely generated monoid if H satisfies the
ACC on s-ideals (equivalently, H is atomic and
{uH | u ∈ A(H)} is finite). If H is a quasi finitely generated
Krull monoid, then X(H) is finite and Cv (H) is a finitely
generated abelian group.

3. If x ∈ H is such that [[x ]] is a Krull monoid, then [[x ]] is a quasi
finitely generated monoid.
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Some remarks

Remark

Let R be an integral domain.

1. R• is quasi finitely generated if and only if R is a
Cohen-Kaplansky domain.

2. R• is a quasi finitely generated Krull monoid if and only if R
is a semilocal PID. The divisor-class group of R• is trivial in
this case.
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When monadic submonoids of Int(R) are Krull

Theorem (R, 2014)

Let R be a factorial domain. Then every monadic submonoid of
Int(R)• is a Krull monoid.

Theorem (Frisch)

Let R be a Krull domain. Then every monadic submonoid of
Int(R)• is a Krull monoid.

Goal: Describe the structure of the divisor-class groups of monadic
submonoids [[f ]]Int(R)• of Int(R)• if R is factorial. This can be
done by studying atoms and height-one prime ideals and the
relations between them.
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Description of atoms I

Definition

Let R be a factorial domain and P a system of representatives of
A(R). Let d : Int(R)• → R• be defined by
d(g) =

∏
p∈P p

min{vp(g(x))|x∈R} for all g ∈ Int(R)•.

Lemma

Let R be a factorial domain, X an indeterminate over R and
f ∈ R[X ]•. Then there are some a ∈ R•, n ∈ N and f an n-tuple
of pairwise non-associated non-constant atoms of R[X ] such that
[[f ]] = [[a

∏n
i=1 fi ]].
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Description of atoms II

Proposition

Let R be a factorial domain, a ∈ R•, n ∈ N and f an n-tuple of
pairwise non-associated non-constant atoms of R[X ]. Set
f = a

∏n
i=1 fi . Then there is some finite E ⊆ Nn

0 \ {0} such that
{u[[f ]] | u ∈ A([[f ]])} = {u[[f ]] | u ∈ A(R), u |R d(f )}∪
{

∏n
i=1 f

yi
i

d(
∏n

i=1 f
yi
i )

[[f ]] | y ∈ E}.

Suppose that f ∈ Int(R)•. Then f = g
c for some g ∈ R[X ]• and

c ∈ R• and [[f ]] is a monadic submonoid of [[g ]].

Lemma

Let H be a monoid and T ⊆ H a divisor-closed submonoid. Then
A(T ) = A(H) ∩ T .
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A simple observation

Lemma

Let R be a factorial domain and f ∈ Int(R)•.

1. If u ∈ A([[f ]]) ∩ R, then u[[f ]] is a radical ideal of [[f ]].

2. If P ∈ X([[f ]]) and u,w ∈ P ∩ A(R), then u '[[f ]] w .
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Description of height-one prime ideals I

Proposition

Let R be a factorial domain, K a field of quotients of R, X an
indeterminate over K and f ∈ R[X ]•. Then
{P ∈ X([[f ]]) | P ∩ R = ∅} = {gK [X ] ∩ [[f ]] | g ∈ [[f ]] ∩ A(K [X ])}.

Definition

Let R be a factorial domain, f ∈ Int(R)•, a ∈ [[f ]] ∩ R and
A ⊆ B ⊆ [[f ]]. We say that A is a-compatible if there is some

w ∈ [[f ]] such that a |R d(uw)
d(w) for all u ∈ A. Moreover, A is called

maximal a-compatible in B if A is maximal (with respect to
inclusion) among the a-compatible subsets of B.
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Description of height-one prime ideals II

Proposition

Let R be a factorial domain, f ∈ Int(R)•, S a system of
representatives of A([[f ]]) \ R, p ∈ A([[f ]]) ∩ R and A ⊆ [[f ]]. Then
{P ∈ X([[f ]]) | p ∈ P} = {(Q ∪ {p})[[f ]] | Q ⊆ S,Q is maximal
p-compatible in S}.

Lemma

Let H be a Krull monoid and T ⊆ H a saturated submonoid. Then
T is a Krull monoid and for every P ∈ X(T ) there is some
Q ∈ X(H) such that P = Q ∩ T . In particular, X(T ) is the set of
minimal elements of {Q ∩ T | Q ∈ X(H)} \ {∅}.
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Connection between atoms and height-one prime ideals I

Definition

Let R be a factorial domain, P a system of representatives of
A(R) and f ∈ Int(R)•. Let ef : [[f ]]→ R• be defined by

ef (g) =
∏

p∈P p
max{vp( d(gh)

d(h)
)|h∈[[f ]]}

for all g ∈ [[f ]].

Proposition

Let R be a factorial domain, K a field of quotients of R, X an
indeterminate over K and f ∈ R[X ]•. For g ∈ [[f ]] set
Pg = gK [X ] ∩ [[f ]].

1. If g ∈ [[f ]] ∩A(K [X ]), then vPg (x [[f ]]) = vg (x) for all x ∈ [[f ]].

2. If Q ∈ X([[f ]]) and q ∈ Q ∩ A(R), then vQ(x [[f ]]) ≤ vq(ef (x))
for all x ∈ [[f ]].
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Connection between atoms and height-one prime ideals II

Proposition

Let H be a Krull monoid, T ⊆ H a saturated submonoid,
I ∈ Iv (T ) \ {∅} and P ∈ X(T ). Then

vP(I ) = max{d vQ(IvH )

vQ(PvH
)e | Q ∈ X(H),Q ∩ T = P}.
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When height-one prime ideals are principal I

Proposition

Let R be a factorial domain and f ∈ Int(R)•. The following
conditions are equivalent:

1. Every P ∈ X([[f ]]) such that P ∩ R 6= ∅ is principal.

2. For every P ∈ X([[f ]]) such that P ∩ R 6= ∅ there is some
n ∈ N such that (Pn)v is principal.

3. Every u ∈ A([[f ]]) ∩ R is a prime element of [[f ]].

4. d(gh) = d(g)d(h) for all g , h ∈ [[f ]].

If Cv ([[f ]]) is finite, then these conditions are satisfied.
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When height-one prime ideals are principal II

Proposition

Let R be a factorial domain, K a field of quotients of R, X an
indeterminate over K , f ∈ R[X ]• and g ∈ [[f ]]. The following
conditions are equivalent:

1. gK [X ] ∩ [[f ]] is a principal ideal of [[f ]].

2. gK [X ] ∩ [[f ]] = g
d(g) [[f ]].

3. d(gh) = d(g)d(h) for all h ∈ [[f ]].
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Main result

Theorem

Let R be a factorial domain, K a field of quotients of R, X an
indeterminate over K and f ∈ R[X ]•. Set
r = |{P ∈ X([[f ]]) | P ∩R 6= ∅}| − |{u[[f ]] | u ∈ A([[f ]])∩R}|. Then
Cv ([[f ]]) ∼= Zr and the following conditions are equivalent:

1. [[f ]] is factorial.

2. Cv ([[f ]]) is finite.

3. d(gh) = d(g)d(h) for all g , h ∈ [[f ]].
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A realization theorem

Definition

Let G be an abelian group and G0 ⊆ G . Then D(G0) =
sup{|A| | A is a nonempty minimal zero-sum sequence in G0} is
called the Davenport constant of G0.

Theorem

Let R be a factorial domain, X an indeterminate over R, P a
system of representatives of A(R), n ∈ N, a ∈ Rn and p ∈ Pn such
that for all i ∈ [1, n], p1 |R ai − 1, ai + pkR ∈ (R/pkR)× for all
k ∈ [2, n] and if i > 1, then
n = |{pj + p1R | j ∈ [1, n]}| = |R/p1R| < |R/piR|. Set
H = [[

∏n
i=1(aiX − pi )]]. Then Cv (H) ∼= Zn−1,

{[P] | P ∈ X(H)} = {[P−1] | P ∈ X(H)} and
D({[P] | P ∈ X(H)}) ≥ n.
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Products of divisor-class groups

Theorem

Let R be a factorial domain, X an indeterminate over R, a ∈ R
and f , g ∈ R[X ]• such that GCDR[X ](f , g) = R[X ]×,
GCDR(f (a), g(a)) = R× and d(rs) = d(r)d(s) for all r ∈ [[f ]] and
s ∈ [[g ]]. Then Cv ([[fg ]]) ∼= Cv ([[f ]])× Cv ([[g ]]).

Theorem

Let R be a factorial domain, X an indeterminate over R and
f , g ∈ R[X ]• such that GCDR[X ](f , g) = R[X ]×,
GCDR(f (x), g(x)) = R× for all but finitely many x ∈ R and
d(rs) = d(r)d(s) for all r ∈ [[f ]] and s ∈ [[g ]]. If x ∈ [[f ]] and
y ∈ [[g ]], then Cv ([[xy ]]) ∼= Cv ([[x ]])× Cv ([[y ]]).
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When is d(rs) = d(r)d(s)?

Remark

Let R be a factorial domain, X an indeterminate over R, a ∈ R
and f , g ∈ R[X ]• such that GCDR(f (a), g(a)) = R× and for all
p ∈ A(R) and h ∈ A(R[X ]) with (p |R f (a) and h |R[X ] g) or
(p |R g(a) and h |R[X ] f ) it follows that p |R[X ] h − h(a). Then
d(rs) = d(r)d(s) for all r ∈ [[f ]] and s ∈ [[g ]].
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Examples

Example

Let X be an indeterminate over Q. Set
g = (95095X + 2)(95095X + 3) and
h = (6X + 5)(6X + 7)(6X + 11)(6X + 13)(6X + 19). Then
Cv ([[gh]]) ∼= Cv ([[g ]])× Cv ([[h]]) ∼= Z× Z4 ∼= Z5.

Example

Let X be an indeterminate over Q. Set a = 5713492603,
f = (aX + 1)(aX + 2)(aX + 3), g = f (aX+2)

12 and
h = (6Xf + 7)(6Xf + 13)(6Xf + 19)(6Xf + 31)(6Xf + 37)
(6Xf + 43)(6Xf + 67). Then
Cv ([[gh]]) ∼= Cv ([[g ]])× Cv ([[h]]) ∼= Z/2Z× Z6.
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Motivational aspect

Theorem (Frisch, 2013)

Every finite non-empty subset of N≥2 is the set of lengths of some
element of Int(Z).

Theorem (Kainrath, 1999)

Let H be a Krull monoid with infinite divisor-class group G such
that every class of G contains a height-one prime ideal. Then
every finite non-empty subset of N≥2 is the set of lengths of some
element of H.

Is the former theorem a consequence of the latter theorem?
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Theorem (Frisch, 2013)

Every finite non-empty subset of N≥2 is the set of lengths of some
element of Int(Z).

Theorem (Kainrath, 1999)

Let H be a Krull monoid with infinite divisor-class group G such
that every class of G contains a height-one prime ideal. Then
every finite non-empty subset of N≥2 is the set of lengths of some
element of H.

Is the former theorem a consequence of the latter theorem?
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Elasticity and tame degree

Definition

Let H be an atomic monoid.

1. ρ(H) = sup{ sup L(a)
min L(a) | a ∈ H \H×} is called the elasticity of H.

2. t(H) = sup{inf{N ∈ N0 | for all z ∈ Z(a) there is some
z ′ ∈ Z(a) with uH× | z ′ and d(z , z ′) ≤ N} | a ∈ H,
u ∈ A(H), u | a} is called the tame degree of H.
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A corollary

Proposition (Geroldinger, Halter-Koch, 2006)

Let H be a Krull monoid such that
{[P] | P ∈ X(H)} = {[P−1] | P ∈ X(H)} and
D = D({[P] | P ∈ X(H)}) ≥ 2. Then ρ(H) ≥ D

2 and t(H) ≥ D.

Corollary

Let R be a factorial domain, X an indeterminate over R and P a
system of representatives of A(R). Let (Pi )i∈N be a sequence of
finite subsets of P such that for every i ∈ N there is some p ∈ Pi
for which i < |Pi | = |{r + pR | r ∈ Pi}| = |R/pR| < |R/qR| <∞
for all q ∈ Pi \ {p}. Then ρ(Int(R)) = t(Int(R)) =∞.

Andreas Reinhart Divisor-class groups of monadic submonoids of Int(R)



Introduction
Elementary results
Important results

Examples and open problems

A corollary

Proposition (Geroldinger, Halter-Koch, 2006)

Let H be a Krull monoid such that
{[P] | P ∈ X(H)} = {[P−1] | P ∈ X(H)} and
D = D({[P] | P ∈ X(H)}) ≥ 2. Then ρ(H) ≥ D

2 and t(H) ≥ D.

Corollary

Let R be a factorial domain, X an indeterminate over R and P a
system of representatives of A(R). Let (Pi )i∈N be a sequence of
finite subsets of P such that for every i ∈ N there is some p ∈ Pi
for which i < |Pi | = |{r + pR | r ∈ Pi}| = |R/pR| < |R/qR| <∞
for all q ∈ Pi \ {p}. Then ρ(Int(R)) = t(Int(R)) =∞.

Andreas Reinhart Divisor-class groups of monadic submonoids of Int(R)



Introduction
Elementary results
Important results

Examples and open problems

Remark

Theorem (Cahen, Chabert, 1995)

Let R be a Krull domain and I a pseudo-principal ideal of R (i.e.,
some power of I is contained in a proper principal ideal of R) such
that R/I is finite. Then ρ(Int(R)) =∞.

Corollary (Cahen, Chabert, 1995)

Let R be a PID with at least one finite residue field. Then
ρ(Int(R)) =∞.
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Open problems I

Remark

Let H be a monoid such that every monadic submonoid of H is a
Krull monoid (i.e., H is a monadically Krull monoid). Then H is a
completely integrally closed FF-monoid. If T ⊆ H is a saturated
submonoid, then T is monadically Krull.

In particular, if R is an integral domain such that Int(R)• is
monadically Krull, then R• is monadically Krull. It is an open
problem whether the converse is true.
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Open problems I

Remark

Let H be a monoid such that every monadic submonoid of H is a
Krull monoid (i.e., H is a monadically Krull monoid). Then H is a
completely integrally closed FF-monoid. If T ⊆ H is a saturated
submonoid, then T is monadically Krull.

In particular, if R is an integral domain such that Int(R)• is
monadically Krull, then R• is monadically Krull. It is an open
problem whether the converse is true.
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Open problems II

Let R be a factorial domain, f ∈ Int(R)• and g ∈ [[f ]]. Is
there some group epimorphism φ : Cv ([[f ]])→ Cv ([[g ]])?

Let G be a finitely generated abelian group. Is there some
f ∈ Int(Z)• such that Cv ([[f ]]) ∼= G?
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