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Introduction

Krull monoids and rings of integer-valued polynomials

Let R be an integral domain with quotient field K and X an
indeterminate over K. Set R®* = R\ {0}, called the monoid of
nonzero elements of R.

Int(R) = {f € K[X] | f(x) € R for all x € R} is called the ring of
integer-valued polynomials over R.
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Introduction

Krull monoids and rings of integer-valued polynomials

Let R be an integral domain with quotient field K and X an
indeterminate over K. Set R®* = R\ {0}, called the monoid of
nonzero elements of R.

Int(R) = {f € K[X] | f(x) € R for all x € R} is called the ring of
integer-valued polynomials over R.

The arithmetic of Krull monoids is well understood. It can be
described in terms of the divisor-class group of the Krull monoid.
Is it possible to study the arithmetic of Int(R) for “interesting
domains” R by using the theory of Krull monoids?
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Introduction

Theorem (Cahen, Gabelli, Houston, 2000)

Let R be an integral domain and X an indeterminate over R. Then
Int(R) is a Krull domain if and only if R is a Krull domain and
Int(R) = R[X].
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Introduction

Theorem (Cahen, Gabelli, Houston, 2000)

Let R be an integral domain and X an indeterminate over R. Then
Int(R) is a Krull domain if and only if R is a Krull domain and
Int(R) = R[X].

What about finding suitable submonoids of Int(R)® that are Krull
monoids?

In this talk a monoid is always a commutative (multiplicative)
cancellative semigroup with identity.
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Introduction

Let H be a monoid, K a quotient group of H and X C K.
1. Set X' ={ze K|zX C H} and X, = (X~ 1)~L.
2. Set F,(H) ={X C K| X, =X and xX C H for some
x € H}, called the set of fractional v-ideals of H.
3. Set F,(H)* = {X € F,(H) | (XX~1), = H}, called the set
of v-invertible fractional v-ideals. It forms a group under
v-multiplication.
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Introduction

Let H be a monoid, K a quotient group of H and X C K.

1. Set X' ={ze K|zX C H} and X, = (X~ 1)~L.

2. Set F,(H) ={X C K| X, =X and xX C H for some
x € H}, called the set of fractional v-ideals of H.

3. Set F,(H)* = {X € F,(H) | (XX~1), = H}, called the set
of v-invertible fractional v-ideals. It forms a group under
v-multiplication.

4. Set H(H) = {xH | x € K}, called the set of fractional
principal ideals of H. It is a subgroup of F,(H)* under
v-multiplication.

5. Set C,(H) = F,(H)*/H(H), called the divisor-class group of
H.

Andreas Reinhart Divisor-class groups of monadic submonoids of Int(R)



Introduction

Let H be a monoid and X C H.

1. Set A(H) ={xe H\ H* | for all u,v € H with x = uv it
follows that u € H* or v € H*}, called the set of atoms of H.

2. X is called a (prime) s-ideal of H if XH = X (and xy € X
implies that x € X or y € X for all x,y € H).
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Introduction

Let H be a monoid and X C H.
1. Set A(H) ={xe H\ H* | for all u,v € H with x = uv it
follows that u € H* or v € H*}, called the set of atoms of H.
2. X is called a (prime) s-ideal of H if XH = X (and xy € X
implies that x € X or y € X for all x,y € H).
3. Set Z,(H) = {l € F,(H) | | C H}, called the set of v-ideals
of H.

4. Let X(H) be the set of minimal non-empty prime s-ideals of
H, called the set of height-one prime ideals of H.
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Introduction

Saturated submonoids

Let H be a monoid and T C H a submonoid. Wesay T C H is
saturated if the following equivalent conditions are satisfied:

a. For all x,y € T with x |y y it follows that x |7 y.
b. For every | € Z,(T) we have I, N T = 1.
c. Forevery xe T, xHN T = xT.
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Introduction

Divisor-closed and monadic submonoids

Let H be a monoid and T C H a submonoid.

1. We say T C H is divisor-closed if for all x,y € H such that
xy € T it follows that x,y € T.

2. Wesay T C His monadic Hif T={g € H|g |y x* for
some k € N} for some x € H.

3. For x € Hset [x]y ={g € H| g |n x* for some k € N},
called the monadic submonoid of H generated by x.
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Introduction

Divisor-closed and monadic submonoids

Let H be a monoid and T C H a submonoid.
1. We say T C H is divisor-closed if for all x,y € H such that
xy € T it follows that x,y € T.
2. Wesay T C His monadic Hif T={g € H|g |y x* for
some k € N} for some x € H.

3. For x € Hset [x]y ={g € H| g |n x* for some k € N},
called the monadic submonoid of H generated by x.

The divisor-closed submonoids of an integral domain are precisely
the proper saturated multiplicatively closed subsets in the
terminology of Kaplansky's book. Every monadic submonoid is
divisor-closed and every divisor-closed submonoid is saturated.
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Introduction

Familiar situations

Let R be an integral domain and X an indeterminate over R.
@ R* C R[X]® and R*® C Int(R)* are divisor-closed submonoids.
@ R* C R[X]® is monadic if and only if R®* C Int(R)® is
monadic if and only if R is a G-domain (i.e., the intersection
of all nonzero prime ideals of R is nonzero).

@ R*®* C R[X]® is saturated, but not divisor-closed.
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Introduction

Some remarks

Let H be a monoid.

1. His called a Krull monoid if every non-empty (fractional)
v-ideal of H is v-invertible and H satisfies the ACC on
v-ideals. If H is a Krull monoid, then every v-ideal of H is a
finite v-product of height-one prime ideals of H.
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Introduction

Some remarks

Let H be a monoid.

1. His called a Krull monoid if every non-empty (fractional)
v-ideal of H is v-invertible and H satisfies the ACC on
v-ideals. If H is a Krull monoid, then every v-ideal of H is a
finite v-product of height-one prime ideals of H.

2. H is called a quasi finitely generated monoid if H satisfies the
ACC on s-ideals (equivalently, H is atomic and
{uH | u € A(H)} is finite). If H is a quasi finitely generated
Krull monoid, then X(H) is finite and C,(H) is a finitely
generated abelian group.

Andreas Reinhart Divisor-class groups of monadic submonoids of Int(R)



Introduction

Some remarks

Let H be a monoid.

1. His called a Krull monoid if every non-empty (fractional)
v-ideal of H is v-invertible and H satisfies the ACC on
v-ideals. If H is a Krull monoid, then every v-ideal of H is a
finite v-product of height-one prime ideals of H.

2. H is called a quasi finitely generated monoid if H satisfies the
ACC on s-ideals (equivalently, H is atomic and
{uH | u € A(H)} is finite). If H is a quasi finitely generated
Krull monoid, then X(H) is finite and C,(H) is a finitely
generated abelian group.

3. If x € H is such that [x] is a Krull monoid, then [x] is a quasi
finitely generated monoid.
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Introduction

Some remarks

Let R be an integral domain.
1. R°® is quasi finitely generated if and only if R is a
Cohen-Kaplansky domain.

2. R°® is a quasi finitely generated Krull monoid if and only if R
is a semilocal PID. The divisor-class group of R*® is trivial in
this case.
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Introduction

When monadic submonoids of Int(R) are Krull

Theorem (R, 2014)

Let R be a factorial domain. Then every monadic submonoid of
Int(R)® is a Krull monoid.
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Introduction

When monadic submonoids of Int(R) are Krull

Theorem (R, 2014)

Let R be a factorial domain. Then every monadic submonoid of
Int(R)® is a Krull monoid.

Theorem (Frisch)

Let R be a Krull domain. Then every monadic submonoid of
Int(R)® is a Krull monoid.
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Introduction

When monadic submonoids of Int(R) are Krull

Theorem (R, 2014)

Let R be a factorial domain. Then every monadic submonoid of
Int(R)® is a Krull monoid.

Theorem (Frisch)

Let R be a Krull domain. Then every monadic submonoid of
Int(R)® is a Krull monoid.

Goal: Describe the structure of the divisor-class groups of monadic
submonoids [f]i(r)e of Int(R)*® if R is factorial. This can be
done by studying atoms and height-one prime ideals and the
relations between them.
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Elementary results

Description of atoms |

Definition

Let R be a factorial domain and P a system of representatives of
A(R). Let d : Int(R)®* — R* be defined by

d(g) = [lpep pmin{ve(eCNIXERY for all g € Int(R)°.
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Elementary results

Description of atoms |

Definition

Let R be a factorial domain and P a system of representatives of
A(R). Let d : Int(R)®* — R* be defined by

d(g) = [lpep pmin{ve(eCNIXERY for all g € Int(R)°.

Let R be a factorial domain, X an indeterminate over R and
f € R[X]®. Then there are some a € R®*, n € N and f an n-tuple
of pairwise non-associated non-constant atoms of R[X] such that

[f1 = [2117-, £l
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Elementary results

Description of atoms I

Proposition

Let R be a factorial domain, a € R®*, n € N and f an n-tuple of
pairwise non-associated non-constant atoms of R[X]. Set
f =al]/_, fi. Then there is some finite E C Nj \ {0} such that

(ulf] | € AU} = {ulf] | v € AR).u |r d(F)}0
(Gl |y € E}.

Andreas Reinhart Divisor-class groups of monadic submonoids of Int(R)



Elementary results

Description of atoms I

Proposition

Let R be a factorial domain, a € R®*, n € N and f an n-tuple of
pairwise non-associated non-constant atoms of R[X]. Set
f =al]/_, fi. Then there is some finite E C Nj \ {0} such that

{ulf]| v € A(IFD} = {vlf] | u € A(R), u g d(F)}
{< “n [l y € E}.

Suppose that f € Int(R)®. Then f = £ for some g € R[X]* and
c € R* and [f] is a monadic submonoid of [g].
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Elementary results

Description of atoms I

Proposition

Let R be a factorial domain, a € R®*, n € N and f an n-tuple of
pairwise non-associated non-constant atoms of R[X]. Set
f =al]/_, fi. Then there is some finite E C Nj \ {0} such that

{ulf]| v € A(IFD} = {vlf] | u € A(R), u g d(F)}
{< Hn [l y € E}.

Suppose that f € Int(R)®. Then f = £ for some g € R[X]* and
c € R* and [f] is a monadic submonoid of [g].

Let H be a monoid and T C H a divisor-closed submonoid. Then

A(T) = A(H)N T.

Andreas Reinhart Divisor-class groups of monadic submonoids of Int(R)



Elementary results

A simple observation

Let R be a factorial domain and f € Int(R)®.
1. If u e A([f]) N R, then u[f] is a radical ideal of [f].
2. If P € X([f]) and u,w € PN A(R), then u ~ps w.

Andreas Reinhart Divisor-class groups of monadic submonoids of Int(R)



Elementary results

Description of height-one prime ideals |

Proposition

Let R be a factorial domain, K a field of quotients of R, X an
indeterminate over K and f € R[X]®. Then

{Pex([f]) | PN R =0} = {gK[X]N[f] | & € [F] N A(K[X])}.
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Elementary results

Description of height-one prime ideals |

Proposition

Let R be a factorial domain, K a field of quotients of R, X an
indeterminate over K and f € R[X]®. Then
{Pex([f]) | PN R =0} = {gK[X]N[f] | & € [F] N A(K[X])}.

Definition

Let R be a factorial domain, f € Int(R)®, a € [f] N R and

A C B C [f]. We say that A is a-compatible if there is some
w € [f] such that a |g (L((”V';’))
maximal a-compatible in B if A is maximal (with respect to
inclusion) among the a-compatible subsets of B.

for all u € A. Moreover, A is called
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Elementary results

Description of height-one prime ideals Il

Proposition

Let R be a factorial domain, f € Int(R)®, S a system of
representatives of A([f]) \ R, p € A([f]) "R and A C [f]. Then
{PeXx([f]) IpeP={(QU{pHIf]| Q CS,Q is maximal
p-compatible in S}.
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Elementary results

Description of height-one prime ideals Il

Proposition

Let R be a factorial domain, f € Int(R)®, S a system of
representatives of A([f]) \ R, p € A([f]) "R and A C [f]. Then
{PeXx([f]) IpeP={(QU{pHIf]| Q CS,Q is maximal
p-compatible in S}.

Lemma

Let H be a Krull monoid and T C H a saturated submonoid. Then
T is a Krull monoid and for every P € X(T) there is some

Q € X(H) such that P = QN T. In particular, X(T) is the set of
minimal elements of {QN T | Q@ € X(H)} \ {0}.
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Elementary results

Connection between atoms and height-one prime ideals |

Definition
Let R be a factorial domain, P a system of representatives of
A(R) and f € Int(R)®. Let er : [f] — R* be defined by

d(gh)
er(g) = [Lep pmax{vf’(fi’))'heﬂﬂl} for all g € [f].
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Elementary results

Connection between atoms and height-one prime ideals |

Definition

Let R be a factorial domain, P a system of representatives of
A(R) and f € Int(R)®. Let er : [f] — R* be defined by

d(gh)
er(g) = [Lep pmax{vf’(ﬁ‘;’)”hem} for all g € [f].

Proposition
Let R be a factorial domain, K a field of quotients of R, X an
indeterminate over K and f € R[X]*. For g € [f] set
Pg = gK[X] N [f].
1. If g € [f] N A(K[X]), then vp, (x[f]) = vg(x) for all x € [f].
2. If Q € X([f]) and g € Q N A(R), then vo(x[f]) < vq(er(x))
for all x € [f].
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Elementary results

Connection between atoms and height-one prime ideals Il

Proposition
Let H be a Krull monoid, T C H a saturated submonoid,
1€Z,(T)\ {0} and P € X(T). Then

vP(/)_max{(VQ(VH 11Qex(H),QNnT =P},
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Elementary results

When height-one prime ideals are principal |

Proposition

Let R be a factorial domain and f € Int(R)®. The following
conditions are equivalent:

1. Every P € X([f]) such that PN R # 0 is principal.

2. For every P € X([f]) such that P N R # () there is some
n € N such that (P"), is principal.

3. Every u € A([f]) N R is a prime element of [f].
4. d(gh) = d(g)d(h) for all g, h € [f].
If C,([f]) is finite, then these conditions are satisfied.
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Elementary results

When height-one prime ideals are principal Il

Proposition

Let R be a factorial domain, K a field of quotients of R, X an
indeterminate over K, f € R[X]® and g € [f]. The following
conditions are equivalent:

1. gK[X] N [f] is a principal ideal of [f].
2. gKIX]IN[f] = %l{f]].
3. d(gh) = d(g)d(h) for all h € [f].

Andreas Reinhart Divisor-class groups of monadic submonoids of Int(R)



Important results

Main result

Theorem

Let R be a factorial domain, K a field of quotients of R, X an
indeterminate over K and f € R[X]®. Set

r=1{P e X(If1) | PN R # 0} - [{ulf] | u € A(If]) N RY]. Then

Cv([f]) = Z" and the following conditions are equivalent:
1. [f] is factorial.
2. C,([f]) is finite.
3. d(gh) = d(g)d(h) for all g, h € [f].
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Important results

A realization theorem

Definition
Let G be an abelian group and Gop C G. Then D(Gp) =

sup{|A| | A is a nonempty minimal zero-sum sequence in Gp} is
called the Davenport constant of Gg.
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Important results

A realization theorem

Definition
Let G be an abelian group and Gop C G. Then D(Gp) =

sup{|A| | A is a nonempty minimal zero-sum sequence in Gp} is
called the Davenport constant of Gg.

Theorem

Let R be a factorial domain, X an indeterminate over R, P a
system of representatives of A(R), n€ N, a€ R" and p € P" such
that for all i € [1,n], p1 |r ai — 1, a;i + pkR € (R/pxR)* for all

k € [2,n] and if i > 1, then
n=|{p+pmR[JjeL,n}=[R/pR| <|R/piR|. Set

H = [I1"-,(aiX — pi)]- Then C,(H) = Z"1,

{IP1| P € X(H)} ={[P~']| P € X(H)} and

D({[P]| P € X(H)}) > n.
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Important results

Products of divisor-class groups

Let R be a factorial domain, X an indeterminate over R, a € R
and f, g € R[X]® such that GCDgx|(f,g) = R[X]*,
GCDg(f(a),g(a)) = R* and d(rs) = d(r)d(s) for all r € [f] and
s € [g]. Then C,([fe]) = Cu([]) x Cv(Ie])-
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Important results

Products of divisor-class groups

Let R be a factorial domain, X an indeterminate over R, a € R
and f, g € R[X]® such that GCDgx|(f,g) = R[X]*,
GCDg(f(a),g(a)) = R* and d(rs) = d(r)d(s) for all r € [f] and
s € [g]. Then C,([fe]) = Cu([]) x Cv(Ie])-

Let R be a factorial domain, X an indeterminate over R and
f,g € R[X]® such that GCDgx(f, g) = R[X]*,
GCDg(f(x),g(x)) = R* for all but finitely many x € R and
d(rs) = d(r)d(s) for all r € [f] and s € [g]. If x € [f] and
y € [g. then C,(by]) = €, ([x]) x C (D).
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Important results

When is d(rs) = d(r)d(s)?

Let R be a factorial domain, X an indeterminate over R, a € R
and f, g € R[X]® such that GCDg(f(a),g(a)) = R* and for all
p € A(R) and h € A(R[X]) with (p |r f(a) and h |g[x] &) or
(p |r g(a) and h |gix) f) it follows that p |rx) h — h(a). Then
d(rs) = d(r)d(s) for all r € [f] and s € [g].
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Examples and open problems

SETIES

Let X be an indeterminate over Q. Set

g = (95095X + 2)(95095X + 3) and

h=(6X+5)(6X +7)(6X + 11)(6X + 13)(6X + 19). Then
Co([gh]) = Cu([g]) x Cu([h]) = Z x Z* =2 7.
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Examples and open problems

SETIES

Let X be an indeterminate over Q. Set

g = (95095X + 2)(95095X + 3) and

h=(6X+5)(6X +7)(6X + 11)(6X + 13)(6X + 19). Then
Co([gh]) = Cu([g]) x Co([h]) = Z x Z* =2 7°.

Let X be an indeterminate over Q. Set a = 5713492603,
f = (aX + 1)(aX +2)(aX +3), g = X2 and

h = (6XF + 7)(6XF + 13)(6XF + 19)(6XF + 31)(6XF + 37)
(6XF + 43)(6XF + 67). Then
Cu([ghl) = Cu(lgl) x Cu([h]) = Z/2Z x Z°.
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Examples and open problems

Motivational aspect

Theorem (Frisch, 2013)

Every finite non-empty subset of N>» is the set of lengths of some
element of Int(Z).
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Examples and open problems

Motivational aspect

Theorem (Frisch, 2013)

Every finite non-empty subset of N>» is the set of lengths of some
element of Int(Z).

Theorem (Kainrath, 1999)

Let H be a Krull monoid with infinite divisor-class group G such
that every class of G contains a height-one prime ideal. Then
every finite non-empty subset of N>, is the set of lengths of some
element of H.
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Examples and open problems

Motivational aspect

Theorem (Frisch, 2013)

Every finite non-empty subset of N>» is the set of lengths of some
element of Int(Z).

Theorem (Kainrath, 1999)

Let H be a Krull monoid with infinite divisor-class group G such
that every class of G contains a height-one prime ideal. Then
every finite non-empty subset of N>, is the set of lengths of some
element of H.

Is the former theorem a consequence of the latter theorem?
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Examples and open problems

Elasticity and tame degree

Let H be an atomic monoid.
1. p(H) = sup{ rs:lﬁi 2) | 3 € H\ H*} is called the elasticity of H.
2. t(H) = sup{inf{N € Ng | for all z € Z(a) there is some
"€ Z(a) with uH* | Z/ and d(z,2') < N} | a € H,
u € A(H),u | a} is called the tame degree of H.

N
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Examples and open problems

A corollary

Proposition (Geroldinger, Halter-Koch, 2006)

Let H be a Krull monoid such that

{[P1I Pex(H)}={[P"]|PeX(H)} and

D = D({[P] | P € X(H)}) > 2. Then p(H) > 2 and t(H) > D.
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Examples and open problems

A corollary

Proposition (Geroldinger, Halter-Koch, 2006)

Let H be a Krull monoid such that

{[P1I Pex(H)}={[P"]|PeX(H)} and

D = D({[P] | P € X(H)}) > 2. Then p(H) > 2 and t(H) > D.

Let R be a factorial domain, X an indeterminate over R and P a

system of representatives of A(R). Let (P;);en be a sequence of

finite subsets of P such that for every i € N there is some p € P;
for which i < |P;| = |{r+pR|r € P;}| =|R/pR| < |R/qR| < >
for all g € Pi \ {p}. Then p(Int(R)) = t(Int(R)) = oc.
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Examples and open problems

Theorem (Cahen, Chabert, 1995)

Let R be a Krull domain and / a pseudo-principal ideal of R (i.e.,
some power of | is contained in a proper principal ideal of R) such
that R// is finite. Then p(Int(R)) = oc.
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Theorem (Cahen, Chabert, 1995)

Let R be a Krull domain and / a pseudo-principal ideal of R (i.e.,
some power of | is contained in a proper principal ideal of R) such
that R// is finite. Then p(Int(R)) = oc.

Corollary (Cahen, Chabert, 1995)

Let R be a PID with at least one finite residue field. Then
p(Int(R)) = oo.
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Examples and open problems

Open problems |

Let H be a monoid such that every monadic submonoid of H is a
Krull monoid (i.e., H is a monadically Krull monoid). Then H is a
completely integrally closed FF-monoid. If T C H is a saturated
submonoid, then T is monadically Krull.
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Examples and open problems

Open problems |

Let H be a monoid such that every monadic submonoid of H is a
Krull monoid (i.e., H is a monadically Krull monoid). Then H is a
completely integrally closed FF-monoid. If T C H is a saturated
submonoid, then T is monadically Krull.

In particular, if R is an integral domain such that Int(R)® is
monadically Krull, then R® is monadically Krull. It is an open
problem whether the converse is true.
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Examples and open problems

Open problems ||

@ Let R be a factorial domain, f € Int(R)® and g € [f]. Is
there some group epimorphism ¢ : C,([f]) — Cv([g])?
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Examples and open problems

Open problems ||

@ Let R be a factorial domain, f € Int(R)® and g € [f]. Is
there some group epimorphism ¢ : C,([f]) — Cv([g])?

@ Let G be a finitely generated abelian group. Is there some
f € Int(Z)* such that C,([f]) = G?
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