Krull dimension and unique factorization in Hurwitz polynomial rings

Phan Thanh Toan

Department of Mathematics, POSTECH

Joint work with Byung Gyun Kang

The polynomial ring $R[x]$

In this talk

In this talk all rings are commutative rings with identity.

The polynomial ring $R[x]$

- Let R be a ring and let

$$
R[x]=\left\{\sum_{i=0}^{n} a_{i} x^{i} \mid n \geq 0, a_{i} \in R\right\}
$$

be the set of polynomials with coefficients in R.

- With the usual addition + and multiplication $\cdot, R[x]$ becomes a ring that contains R as a subring.
- While the usual multiplication in $R[x]$ is usually considered, in general there do exist many other multiplications in $R[x]$ such that together with the usual addition, $R[x]$ is also a ring that contains R as a subring.

A generalization of the polynomial ring $R[x]$

A generalization of the polynomial ring

- Let \mathbb{N}_{0} (respectively \mathbb{N}) be the set of nonnegative (respectively positive) integers.
- Let $\lambda: \mathbb{N}_{0} \rightarrow \mathbb{N}$ be any function such that

$$
\lambda(i) \lambda(j) \text { divides } \lambda(i+j) \text { in } \mathbb{N} \text { for each } i \text { and } j \text { in } \mathbb{N}_{0}
$$

- For each i and j in \mathbb{N}_{0}, let

$$
\alpha_{i, j}=\frac{\lambda(i+j)}{\lambda(i) \lambda(j)} \in \mathbb{N} .
$$

- We define a multiplication $*$ in $R[x]$ by

$$
\left(\sum_{i=0}^{n} a_{i} x^{i}\right) *\left(\sum_{j=0}^{m} b_{j} x^{j}\right)=\sum_{k=0}^{n+m}\left(\sum_{i+j=k} \alpha_{i, j} a_{i} b_{j}\right) x^{k}
$$

- With this multiplication $*$ and the usual addition + , the set $R[x]$ becomes a ring that contains R as a subring.
- We denote this ring by $(R[x], \lambda)$.

A generalization of the polynomial ring $R[x]$

The polynomial ring $R[x]$

- If $\lambda(i)=1$ for all $i \in \mathbb{N}_{0}$, then $\alpha_{i, j}=\frac{\lambda(i+j)}{\lambda(i) \lambda(j)}=1$ for each i and j.

$$
\left(\sum_{i=0}^{n} a_{i} x^{i}\right) *\left(\sum_{j=0}^{m} b_{j} x^{j}\right)=\sum_{k=0}^{n+m}\left(\sum_{i+j=k} 1 \cdot a_{i} b_{j}\right) x^{k} .
$$

- In this case, the multiplication obtained from λ is the usual multiplication in $R[x]$ and we get the usual polynomial ring $R[x]$.

The Hurwitz polynomial ring $R_{H}[x]$

- Let $\lambda(i)=i$! for all $i \in \mathbb{N}_{0}$. Then $\alpha_{i, j}=\frac{\lambda(i+j)}{\lambda(i) \lambda(j)}=\frac{(i+j)!}{i!!!}=\binom{i+j}{i}$ for each i and j in \mathbb{N}.

$$
\left(\sum_{i=0}^{n} a_{i} x^{i}\right) *\left(\sum_{j=0}^{m} b_{j} x^{j}\right)=\sum_{k=0}^{n+m}\left(\sum_{i+j=k}\binom{i+j}{i} a_{i} b_{j}\right) x^{k}
$$

- In this case, the ring $(R[x], \lambda)$ is the well-known Hurwitz polynomial ring, which is denoted by $R_{H}[x]$ (some people use the notation $h(R)$).

A generalization of the polynomial ring $R[x]$

Theorem

Let R be an integral domain with quotient field K. If $\operatorname{char} R=0$, then $(R[x], \lambda)$ is (isomorphic to) an intermediate ring between the usual polynomial rings $R[x]$ and $K[x]$.

Proof

- Define a map $\varphi: K[x] \rightarrow(K[x], \lambda)$ by

$$
\varphi\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} \lambda(i) a_{i} x^{i} .
$$

- Then φ is a ring homomorphism.
- φ is an isomorphism follows from the assumption that R is an integral domain with char $R=0$.
- Since $\varphi(R[x]) \subseteq(R[x], \lambda) \subseteq(K[x], \lambda)$, we have $R[x] \subseteq \varphi^{-1}((R[x], \lambda)) \subseteq K[x]$.

In this talk

- Recall that if $\lambda(i)=1$ for all $i \in \mathbb{N}_{0}$, then $(R[x], \lambda)$ is the usual polynomial ring $R[x]$.
- In the rest of this talk, we only focus on the case $\lambda(i)=i$! for all $i \in \mathbb{N}_{0}$, i.e., we only consider the Hurwitz polynomial ring $R_{H}[x]:=(R[x], \lambda)$.

Some history

A generalization of the power series ring $R[[x]]$

- Let $\lambda(i)=i!$ for all $i \in \mathbb{N}_{0}$. Then $\alpha_{i, j}=\frac{\lambda(i+j)}{\lambda(i) \lambda(i)}=\frac{(i+j)!}{i!!!}=\binom{i+j}{i}$ for each i and j in \mathbb{N}.
- Similarly, we define a multiplication $*$ in $R[[x]]$ by

$$
\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right) *\left(\sum_{j=0}^{\infty} b_{j} x^{j}\right)=\sum_{k=0}^{\infty}\left(\sum_{i+j=k}\binom{i+j}{i} a_{i} b_{j}\right) x^{k} .
$$

- With this multiplication $*$ and the usual addition + , the set $R[[x]]$ becomes a ring that contains R as a subring.
- The case when $\lambda(i)=i!$ for all $i \in \mathbb{N}_{0}$ gives the well-known Hurwitz power series ring, denoted by $R_{H}[[x]]$. This kind of multiplication was first considered by Hurwitz and was further studied by Bochner, Martin, Fliess, Taft, Benhissi, Koja, Ghanem, and Liu.
- Closely related to the power series ring, the Hurwitz power series ring has been shown to have many interesting properties, including applications in differential algebra.

Krull dimension of the Hurwitz polynomial ring $R[x]$

Proposition

$R_{H}[x]$ is an integral domain if and only if R is an integral domain with char $R=0$.

Remark on $\operatorname{dim} R_{H}[x]$

- Benhissi and Koja noted that char $R \neq 0$, then $R_{H}[x]$ is integral over R and hence $\operatorname{dim} R_{H}[x]=\operatorname{dim} R$.
- If R is a ring such that $\mathbb{Q} \subseteq R$, then $R_{H}[x] \cong R[x]$ and hence $\operatorname{dim} R_{H}[x]=\operatorname{dim} R[x]$.
- Hence, when studying the Krull dimension of $R_{H}[x]$ we can always assume that char $R=0$ (so that $\mathbb{Z} \subseteq R$) and that $\mathbb{Q} \mathbb{R}$.

Well-known result on $\operatorname{dim} R[x]$

It is well-known that if R is a finite-dimensional ring, then

$$
\operatorname{dim} R+1 \leq \operatorname{dim} R[x] \leq 2 \operatorname{dim} R+1
$$

Krull dimension of the Hurwitz polynomial ring $R[x]$

Lemma

If R is a ring, then any three different prime ideals $Q_{1} \subset Q_{2} \subset Q_{3}$ in $R_{H}[x]$ cannot contract to the same prime ideal in R.

Theorem

If R is a finite-dimensional ring, then

$$
\operatorname{dim} R \leq \operatorname{dim} R_{H}[x] \leq 2 \operatorname{dim} R+1
$$

Furthermore, if $\mathbb{Q} \subseteq R$ or R is an integral domain with char $R=0$, then $\operatorname{dim} R+1 \leq \operatorname{dim} R_{H}[x]$.

Proof

- The above lemma shows that $\operatorname{dim} R_{H}[x] \leq 2 \operatorname{dim} R+1$.
- Let $\phi: R_{H}[x] \rightarrow R$ be the natural ring homomorphism mapping each polynomial in $R_{H}[x]$ to its constant term. Hence, if P is a prime ideal in R, then $\phi^{-1}(P)$ is a prime ideal in $R_{H}[x]$. This shows $\operatorname{dim} R_{H}[x] \geq \operatorname{dim} R$.
- If $\mathbb{Q} \subseteq R$, then $R_{H}[x] \cong R[x]$ and hence $\operatorname{dim} R_{H}[x]=\operatorname{dim} R[x] \geq \operatorname{dim} R+1$.
- If R is an integral domain with char $R=0$, then $R_{H}[x]$ is also an integral domain, which means (0) is a prime ideal in $R_{H}[x]$. It follows that $\operatorname{dim} R_{H}[x] \geq n+1$.

Krull dimension of the Hurwitz polynomial ring $R[x]$

Well-known result on $\operatorname{dim} R[x]$

It is well-known that if R is a finite-dimensional Noetherian ring, then $\operatorname{dim} R[x]=\operatorname{dim} R+1$, which is a nice application of Krull's Principal Ideal Theorem.

Remark

- The Hurwitz polynomial ring $R_{H}[x]$ is a Noetherian ring if and only if R is a Noetherian ring containing \mathbb{Q}.
- Hence, Krull's Principal Ideal Theorem cannot be applied to $R_{H}[x]$ to show that $\operatorname{dim} R_{H}[x] \leq \operatorname{dim} R+1$ when R does not contain \mathbb{Q}.
- However, we can still show that $\operatorname{dim} R_{H}[x] \leq \operatorname{dim} R+1$ if R is a Noetherian ring.

Theorem

If R is a finite-dimensional Noetherian ring, then

$$
\operatorname{dim} R \leq \operatorname{dim} R_{H}[x] \leq \operatorname{dim} R+1
$$

Furthermore, $\operatorname{dim} R_{H}[x]=\operatorname{dim} R+1$ if one of the following holds.
(1) $\mathbb{Q} \subseteq R$.
(2) R is an integral domain with char $R=0$.
(3) $\operatorname{dim} R=0$ (i.e., R is an Artinian ring) and char $R=0$.

Krull dimension of the Hurwitz polynomial ring $R[x]$

Proof

The result is proved by using induction on $\operatorname{dim} R$ and the fact P is a prime ideal of R such that ht $P=1$ and char $R / P=0$, then ht $P_{H}[x]=1$.

Theorem

Let R be a Noetherian ring with $\operatorname{dim} R=n \geq 1$. Then the following are equivalent.
(1) $\operatorname{dim} R_{H}[x]=\operatorname{dim} R=n$.
(2) For a minimal prime ideal P of $R, \operatorname{char} R / P=0$ implies $\operatorname{dim} R / P \leq n-1$.

Unique factorization in $R_{H}[x]$

Lemma

If R is a domain with char $R=0$, then x is an irreducible element in $R_{H}[x]$.

Proof

- Suppose that there exist $f=\sum_{i=0}^{r} b_{i} x^{i}$ and $g=\sum_{j=0}^{s} c_{j} x^{j}$ in $R_{H}[x]$ such that $x=f * g$.
- We may assume that $r \leq s$.
- Since $R_{H}[x]$ is a domain, by comparing the degree on both sides of $x=f * g$, we get $r=0$ and $s=1$.
- It follows that $1=b_{0} c_{1}$ and hence $f=b_{0}$ is a unit.

Theorem

The following are equivalent for a ring R.
(1) $R_{H}[x]$ is a UFD.
(2) R is a UFD and $\mathbb{Q} \subseteq R$.
(3) R is a UFD and $R_{H}[x] \cong R[x]$.

Unique factorization in $R_{H}[x]$

Proof

$(1) \Rightarrow(2)$: Suppose that $R_{H}[x]$ is a UFD. In particular, $R_{H}[x]$ is a domain. Thus, R is a domain with $\operatorname{char} R=0$.

- If $\mathbb{Q} \subseteq R$, then $R[x] \cong R_{H}[x]$ is a UFD and hence R is a UFD.
- We now show that $\mathbb{Q} \subseteq R$. Suppose on the contrary that $\mathbb{Q} \not \subset R$. Then there exists a prime number p that is not a unit in R. We have

$$
\underbrace{x * x * \cdots * x}_{p \text { times }}=p!x^{p}=(p!) * x^{p} .
$$

- By the above lemma, x is a prime element in $R_{H}[x]$ (since $R_{H}[x]$ is a UFD). Thus, x divides either p ! or x^{p} in $R_{H}[x]$. It is easy to see that x cannot divide $p!$. So x divides x^{p}.
- Therefore, there exists an element f in $R_{H}[x]$ such that $x * f=x^{p}$ and hence f must have the form $f=b x^{p-1}$ for some $b \in R$. We have

$$
p b x^{p}=x *\left(b x^{p-1}\right)=x * f=x^{p} .
$$

This means $p b=1$ and p is a unit in R, a contradiction.
(2) $\Rightarrow(3)$: If $\mathbb{Q} \subseteq R$, then $R_{H}[x] \cong R[x]$.
$(3) \Rightarrow(1)$: It follows from the well known result that if R is a UFD, then so is $R[x]$.

Unique factorization in $R_{H}[x]$

Theorem

The following are equivalent for a ring R.
(1) $R_{H}[x]$ is a Krull domain.
(2) R is a Krull domain and $\mathbb{Q} \subseteq R$.
(3) R is a Krull domain and $R_{H}[x] \cong R[x]$.

Unique factorization in $R_{H}[x]$

For more please see

B. G. Kang and P. T. Toan, Krull dimension and unique factorization in Hurwitz polynomial rings, to appear in Rocky Mountain J. Math..

Thank you!

