Matrix rings generated by a companion matrix

Stefan Veldsman Nelson Mandela Metropolitan University

July 2016

Stefan Veldsman Nelson Mandela Metropolit

Kronecker: h(x) irreducible polynomial over field F

•
$$\frac{F[x]}{\langle h(x) \rangle}$$
 field

< A

< ∃ > <

Kronecker: h(x) irreducible polynomial over field F

•
$$\frac{F[x]}{\langle h(x) \rangle}$$
 field

•
$$F \subseteq \frac{F[x]}{\langle h(x) \rangle}$$

Image: Image:

→ ∃ →

Kronecker: h(x) irreducible polynomial over field F

•
$$\frac{F[x]}{\langle h(x) \rangle}$$
 field

•
$$F \subseteq \frac{F[x]}{\langle h(x) \rangle}$$

Image: Image:

→ ∃ →

•
$$h(x) = x^3 - h_2 x^2 - h_1 x - h_0 \in A[x]$$

•
$$h(x) = x^3 - h_2 x^2 - h_1 x - h_0 \in A[x]$$

• $\frac{A[x]}{\langle h(x) \rangle} = \{f(x) + \langle h(x) \rangle \mid f(x) \in A[x]\}$

•
$$h(x) = x^3 - h_2 x^2 - h_1 x - h_0 \in A[x]$$

• $\frac{A[x]}{\langle h(x) \rangle} = \{f(x) + \langle h(x) \rangle \mid f(x) \in A[x]\}$

•
$$h(x) = x^3 - h_2 x^2 - h_1 x - h_0 \in A[x]$$

• $\frac{A[x]}{\langle h(x) \rangle} = \{f(x) + \langle h(x) \rangle \mid f(x) \in A[x]\}$

$$\cong \{ a + bt + ct^2 \mid a, b, c \in A; h(t) = 0 \}$$

•
$$h(x) = x^3 - h_2 x^2 - h_1 x - h_0 \in A[x]$$

• $\frac{A[x]}{\langle h(x) \rangle} = \{f(x) + \langle h(x) \rangle \mid f(x) \in A[x]\}$
 $\cong \{a + bt + ct^2 \mid a, b, c \in A; h(t) = 0\}$
 $\cong \mathbb{M}_{1,3}(A, h) = \{[a \ b \ c] \mid a, b, c \in A\}$

•
$$h(x) = x^3 - h_2 x^2 - h_1 x - h_0 \in A[x]$$

• $\frac{A[x]}{\langle h(x) \rangle} = \{f(x) + \langle h(x) \rangle \mid f(x) \in A[x]\}$
 $\cong \{a + bt + ct^2 \mid a, b, c \in A; h(t) = 0\}$
 $\cong \mathbb{M}_{1,3}(A, h) = \{[a \ b \ c] \mid a, b, c \in A\}$
 $[a \ b \ c][d \ e \ f] = [u \ v \ w] \text{ where}$
 $(a + bt + ct^2)(d + et + ft^2) = u + vt + wt^2$
 $t^3 = h_2 t^2 + h_1 t + h_0$

* ロ > * 個 > * 注 > * 注 >

$\mathbb{M}_{1,3}(A, h) \cong \mathbb{M}_3(A, h)$

$\mathbb{M}_{1,3}(A, h) \cong \mathbb{M}_3(A, h)$

$$\begin{bmatrix} a & b & c \\ h_0 c & a+h_1 c & b+h_2 c \\ h_0(b+h_2 c) & h_0 c+h_1(b+h_2 c) & a+h_1 c+h_2(b+h_2 c) \end{bmatrix}$$
$$\cong \{f(E) \mid f(x) \in A[x]\} \qquad E = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ h_0 & h_1 & h_2 \end{bmatrix}$$

companion matrix of $h(x) = x^3 - h_2 x^2 - h_1 x - h_0$

< ロ > < 同 > < 三 > < 三

$\mathbb{M}_{1,3}(A,h) \cong \mathbb{M}_3(A,h)$

$$\begin{bmatrix} a & b & c \\ h_0c & a+h_1c & b+h_2c \\ h_0(b+h_2c) & h_0c+h_1(b+h_2c) & a+h_1c+h_2(b+h_2c) \end{bmatrix}$$
$$\cong \{f(E) \mid f(x) \in A[x]\} \qquad E = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ h_0 & h_1 & h_2 \end{bmatrix}$$

companion matrix of $h(x) = x^3 - h_2 x^2 - h_1 x - h_0$

•
$$\gamma: A[x] \to \mathbb{M}_3(A)$$
 defined by $\gamma(f(x)) = f(E)$ homomorphism
 $\gamma(A[x]) = \mathbb{M}_3(A, h)$ subring of $\mathbb{M}_3(A)$ generated by E

< ロ > < 同 > < 三 > < 三

 $\mathbb{M}_{1,3}(A,h) \cong \mathbb{M}_3(A,h)$

$$\begin{bmatrix} a & b & c \\ h_0 c & a+h_1 c & b+h_2 c \\ h_0(b+h_2 c) & h_0 c+h_1(b+h_2 c) & a+h_1 c+h_2(b+h_2 c) \end{bmatrix}$$
$$\cong \{f(E) \mid f(x) \in A[x]\} \qquad E = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ h_0 & h_1 & h_2 \end{bmatrix}$$

companion matrix of $h(x) = x^3 - h_2 x^2 - h_1 x - h_0$

• $\gamma: A[x] \to \mathbb{M}_3(A)$ defined by $\gamma(f(x)) = f(E)$ homomorphism $\gamma(A[x]) = \mathbb{M}_3(A, h)$ subring of $\mathbb{M}_3(A)$ generated by E

Barnett matrices.

•
$$\mathbb{C} = \frac{\mathbb{R}[x]}{\langle x^2 + 1 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$
 complex field

•
$$\mathbb{C} = \frac{\mathbb{R}[x]}{\langle x^2 + 1 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$
 complex field
• $\mathbb{Z}[i] = \frac{\mathbb{Z}[x]}{\langle x^2 + 1 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$ Gaussian integers

•
$$\mathbb{C} = \frac{\mathbb{R}[x]}{\langle x^2 + 1 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$
 complex field

•
$$\mathbb{Z}[i] = \frac{\mathbb{Z}[x]}{\langle x^2 + 1 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$$
 Gaussian integers

•
$$\mathbb{Z}[\sqrt{-5}] = \frac{\mathbb{Z}[x]}{\langle x^2 + 5 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -5b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$$

•
$$\mathbb{C} = \frac{\mathbb{R}[x]}{\langle x^2 + 1 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$
 complex field

•
$$\mathbb{Z}[i] = \frac{\mathbb{Z}[x]}{\langle x^2 + 1 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$$
 Gaussian integers

•
$$\mathbb{Z}[\sqrt{-5}] = \frac{\mathbb{Z}[x]}{\langle x^2 + 5 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -5b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$$

• quadratic extension

$$\mathbb{Q}(\sqrt{d}) = \frac{\mathbb{Q}[x]}{\langle x^2 + d \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -db & a \end{bmatrix} \mid a, b \in \mathbb{Q} \right\}$$

•
$$\mathbb{C} = \frac{\mathbb{R}[x]}{\langle x^2 + 1 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$
 complex field

•
$$\mathbb{Z}[i] = \frac{\mathbb{Z}[x]}{\langle x^2 + 1 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$$
 Gaussian integers

•
$$\mathbb{Z}[\sqrt{-5}] = \frac{\mathbb{Z}[x]}{\langle x^2 + 5 \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -5b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$$

• quadratic extension

$$Q(\sqrt{d}) = \frac{Q[x]}{\langle x^2 + d \rangle} \cong \left\{ \begin{bmatrix} a & b \\ -db & a \end{bmatrix} \mid a, b \in \mathbb{Q} \right\}$$
•
$$\frac{\mathbb{R}[x]}{\langle x^3 - 1 \rangle} \cong \left\{ \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\} \text{ ring of } 3 \times 3 \text{ circulant}$$
matrices

Stefan Veldsman Nelson Mandela Metropolit

$$h(x) = x^k - h_{k-1}x^{k-1} - \dots - h_1x - h_0$$
 monic polynomial degree $k \ge 2$

Image: Image:

$$h(x) = x^k - h_{k-1}x^{k-1} - \dots - h_1x - h_0$$
 monic polynomial degree $k \ge 2$

Image: Image:

$$h(x) = x^k - h_{k-1}x^{k-1} - \dots - h_1x - h_0$$
 monic polynomial degree $k \ge 2$

•
$$A \cong [A \ 0 \ 0 \ \dots \ 0]$$
 subring $\mathbb{M}_{1,k}(A, h)$

Image: Image:

$$h(x) = x^k - h_{k-1}x^{k-1} - \dots - h_1x - h_0$$
 monic polynomial degree $k \ge 2$

•
$$A \cong [A \ 0 \ 0 \ \dots \ 0]$$
 subring $\mathbb{M}_{1,k}(A, h)$

Image: Image:

$$h(x) = x^k - h_{k-1}x^{k-1} - \dots - h_1x - h_0$$
 monic polynomial degree $k \ge 2$

•
$$A \cong [A \ 0 \ 0 \ \dots \ 0]$$
 subring $\mathbb{M}_{1,k}(A, h)$

• radicals of
$$\mathbb{M}_{1,k}(A, h) \cong \mathbb{M}_k(A, h)$$

Image: Image:

• Kurosh-Amitsur radical α semisimple class $S\alpha$ • Kurosh-Amitsur radical α semisimple class $S\alpha$

- Kurosh-Amitsur radical α semisimple class Sα
- two factors will determine $\alpha(\mathbb{M}_{1,k}(A, h))$
 - ▶ properties ring A
 - ▶ properties polynomial h(x)

- Kurosh-Amitsur radical α semisimple class Sα
- two factors will determine $\alpha(\mathbb{M}_{1,k}(A, h))$
 - ▶ properties ring A
 - ▶ properties polynomial h(x)

- Kurosh-Amitsur radical α semisimple class Sα
- two factors will determine $\alpha(\mathbb{M}_{1,k}(A, h))$
 - ▶ properties ring A
 - ▶ properties polynomial h(x)
- well-developed radical theory for matrix rings

 $\alpha(\mathbb{M}_k(A)) = \mathbb{M}_k(\alpha(A))$

- Kurosh-Amitsur radical α semisimple class Sα
- two factors will determine $\alpha(\mathbb{M}_{1,k}(A, h))$
 - ▶ properties ring A
 - ▶ properties polynomial h(x)
- well-developed radical theory for matrix rings

 $\alpha(\mathbb{M}_k(A)) = \mathbb{M}_k(\alpha(A))$

- Kurosh-Amitsur radical α semisimple class Sα
- two factors will determine $\alpha(\mathbb{M}_{1,k}(A, h))$
 - ▶ properties ring A
 - ▶ properties polynomial h(x)
- well-developed radical theory for matrix rings

$$\alpha(\mathbb{M}_k(A)) = \mathbb{M}_k(\alpha(A))$$

• more useful
$$rac{A[x]}{\langle h(x)
angle}\cong \mathbb{M}_{1,k}(A,h)$$

Theorem

 $\begin{array}{l} \alpha \ \ \text{hypernilpotent radical} \\ h(x) = x^{k} - h_{k-1}x^{k-1} - \ldots - h_{1}x - h_{0} \in A[x] \\ h_{k-1}, h_{k-2}, \ldots, h_{1}, h_{0} \in \alpha(A) \ \ \text{and} \\ [\alpha(A) \ \ 0 \ \ldots \ 0] \subseteq \alpha(\mathbb{M}_{1,k}(A, h)). \end{array}$

• = • • =

Theorem

$$\begin{array}{l} \alpha \text{ hypernilpotent radical} \\ h(x) = x^k - h_{k-1}x^{k-1} - \ldots - h_1x - h_0 \in A[x] \\ h_{k-1}, h_{k-2}, \ldots, h_1, h_0 \in \alpha(A) \text{ and} \\ [\alpha(A) \ 0 \ \ldots \ 0] \subseteq \alpha(\mathbb{M}_{1,k}(A, h)). \end{array}$$

$$Then \ \alpha(\mathbb{M}_{1,k}(A, h)) = [\alpha(A) \ A \ \ldots \ A] \text{ and} \\ \frac{\mathbb{M}_{1,k}(A, h)}{\alpha(\mathbb{M}_{1,k}(A, h))} \cong A/\alpha(A).$$

・ロト ・ 日 ト ・ 日 ト ・

$$h(x) = x^2 - h_1 x - h_0$$

3 🕨 🖌 3

$$h(x) = x^2 - h_1 x - h_0$$

• ideals of $\mathbb{M}_{1,2}(A, h)$

$$h(x) = x^2 - h_1 x - h_0$$

• ideals of $\mathbb{M}_{1,2}(A, h)$
$$h(x) = x^2 - h_1 x - h_0$$

- ullet ideals of $\mathbb{M}_{1,2}(A,h)$
- *I*, *J* ⊲ *A*

$$\blacktriangleright \qquad [I \ I] = \mathbb{M}_{1,2}(I,h) \triangleleft \mathbb{M}_{1,2}(A,h)$$

$$h(x) = x^2 - h_1 x - h_0$$

- ullet ideals of $\mathbb{M}_{1,2}(A,h)$
- *I*, *J* ⊲ *A*

$$\blacktriangleright \qquad [I \ I] = \mathbb{M}_{1,2}(I,h) \triangleleft \mathbb{M}_{1,2}(A,h)$$

$$h(x) = x^2 - h_1 x - h_0$$

- ullet ideals of $\mathbb{M}_{1,2}(A,h)$
- *I*, *J* ⊲ *A*

►
$$[I \ I] = \mathbb{M}_{1,2}(I, h) \lhd \mathbb{M}_{1,2}(A, h)$$

and $\mathbb{M}_{1,2}(A, h) / \mathbb{M}_{1,2}(I, h) \cong \mathbb{M}_{1,2}(A/I, h)$

$$h(x) = x^2 - h_1 x - h_0$$

- ullet ideals of $\mathbb{M}_{1,2}(A,h)$
- *I*, *J* ⊲ *A*

►
$$[I \ I] = \mathbb{M}_{1,2}(I, h) \lhd \mathbb{M}_{1,2}(A, h)$$

and $\mathbb{M}_{1,2}(A, h) / \mathbb{M}_{1,2}(I, h) \cong \mathbb{M}_{1,2}(A/I, h)$

$$\blacktriangleright \qquad [I \ J] \lhd \mathbb{M}_{1,2}(A, h) \Leftrightarrow h_0 J \subseteq I \subseteq J$$

$$h(x) = x^2 - h_1 x - h_0$$

- ullet ideals of $\mathbb{M}_{1,2}(A,h)$
- *I*, *J* ⊲ *A*

►
$$[I \ I] = \mathbb{M}_{1,2}(I, h) \lhd \mathbb{M}_{1,2}(A, h)$$

and $\mathbb{M}_{1,2}(A, h) / \mathbb{M}_{1,2}(I, h) \cong \mathbb{M}_{1,2}(A/I, h)$

$$\blacktriangleright \qquad [I \ J] \lhd \mathbb{M}_{1,2}(A, h) \Leftrightarrow h_0 J \subseteq I \subseteq J$$

$$\blacktriangleright \qquad [I \ A] \lhd \mathbb{M}_{1,2}(A, h) \Leftrightarrow h_0 \in I$$

$$h(x) = x^2 - h_1 x - h_0$$

- ullet ideals of $\mathbb{M}_{1,2}(A,h)$
- *I*, *J* ⊲ *A*

►
$$[I \ I] = \mathbb{M}_{1,2}(I, h) \lhd \mathbb{M}_{1,2}(A, h)$$

and $\mathbb{M}_{1,2}(A, h) / \mathbb{M}_{1,2}(I, h) \cong \mathbb{M}_{1,2}(A/I, h)$

$$\blacktriangleright \qquad [I \ J] \lhd \mathbb{M}_{1,2}(A, h) \Leftrightarrow h_0 J \subseteq I \subseteq J$$

$$\overline{K} := K \cap [A \ 0],$$

$$K_1 := \{a \in A \mid \exists \ b \in A \text{ with } [a \ b] \in K\} \text{ and }$$

$$K_2 := \{b \in A \mid \exists \ a \in A \text{ with } [a \ b] \in K\}$$

$$\overline{K} := K \cap [A \ 0], K_1 := \{ a \in A \mid \exists \ b \in A \text{ with } [a \ b] \in K \} \text{ and } K_2 := \{ b \in A \mid \exists \ a \in A \text{ with } [a \ b] \in K \}$$

•
$$\overline{K} \subseteq K_1 \subseteq K_2$$

$$egin{array}{ll} h_0 \mathcal{K}_2 \subseteq \mathcal{K}_1 \ [a \ b] \in \mathcal{K} \Rightarrow \det[a \ b] = a^2 + h_1 a b - h_0 b^2 \in \overline{\mathcal{K}} \end{array}$$

$$\overline{K} := K \cap [A \ 0], K_1 := \{ a \in A \mid \exists \ b \in A \text{ with } [a \ b] \in K \} \text{ and } K_2 := \{ b \in A \mid \exists \ a \in A \text{ with } [a \ b] \in K \}$$

•
$$\overline{K} \subseteq K_1 \subseteq K_2$$

 $h_0 K_2 \subseteq K_1$
 $[a \ b] \in K \Rightarrow \det[a \ b] = a^2 + h_1 ab - h_0 b^2 \in \overline{K}$

• $[\overline{K} \ \overline{K}]$ and $[K_1 \ K_2]$ ideals of $\mathbb{M}_{1,2}(A, h)$; $[\overline{K} \ \overline{K}] \subseteq [K_1 \ K_2]$

< 3 > <

- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
 - (i) K is homogeneous (i.e. $K = [I \ I]$ for some $I \triangleleft A$).

- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
 - (i) K is homogeneous (i.e. $K = [I \ I]$ for some $I \triangleleft A$).

(i) K is homogeneous (i.e.
$$K = [I \ I]$$
 for some $I \triangleleft A$)
(ii) $K = [\overline{K} \ \overline{K}]$.
(iii) $\overline{K} = K_1 = K_2$.
(iv) $[a \ b] \in K \Rightarrow [a \ 0] \in K$ and $[b \ 0] \in K$.

.

(i) K is homogeneous (i.e.
$$K = [I \ I]$$
 for some $I \triangleleft A$).
(ii) $K = [\overline{K} \ \overline{K}]$.
(iii) $\overline{K} = K_1 = K_2$.
(iv) $[a \ b] \in K \Rightarrow [a \ 0] \in K$ and $[b \ 0] \in K$.

Let K ⊲ M_{1,2}(A, h). The following conditions are equivalent:
(i) K is semi-homogeneous (i.e. K = [I J] for some I, J ⊲ A)

(i) K is homogeneous (i.e.
$$K = [I \ I]$$
 for some $I \triangleleft A$).
(ii) $K = [\overline{K} \ \overline{K}]$.
(iii) $\overline{K} = K_1 = K_2$.
(iv) $[a \ b] \in K \Rightarrow [a \ 0] \in K$ and $[b \ 0] \in K$.

Let K ⊲ M_{1,2}(A, h). The following conditions are equivalent:
(i) K is semi-homogeneous (i.e. K = [I J] for some I, J ⊲ A)

(i) K is homogeneous (i.e.
$$K = [I \ I]$$
 for some $I \triangleleft A$).
(ii) $K = [\overline{K} \ \overline{K}]$.
(iii) $\overline{K} = K_1 = K_2$.
(iv) $[a \ b] \in K \Rightarrow [a \ 0] \in K$ and $[b \ 0] \in K$.

• Let $K \lhd \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:

(i) K is semi-homogeneous (i.e. $K = [I \ J]$ for some $I, J \triangleleft A$). (ii) $K = [K_1 \ K_2]$. (iii) $\overline{K} = K_1$. (iv) $[a \ b] \in K \Rightarrow [a \ 0] \in K$.

for all $a, b \in A$, det $[a \ b] \in I \Rightarrow a \in I$ and $b \in I$

for all $a, b \in A$, det $[a \ b] \in I \Rightarrow a \in I$ and $b \in I$

for all
$$a, b \in A$$
, det $[a \ b] \in I \Rightarrow a \in I$ and $b \in I$
 $a^2 + h_1 a b - h_0 b^2 \in I \Rightarrow a \in I$ and $b \in I$

э

イロン イヨン イヨン イ

for all
$$a, b \in A$$
, $det[a \ b] \in I \Rightarrow a \in I$ and $b \in I$
 $a^2 + h_1 ab - h_0 b^2 \in I \Rightarrow a \in I$ and $b \in I$

• $K \lhd \mathbb{M}_{1,2}(A, h)$ and \overline{K} h-prime $\Rightarrow K$ homogeneous

for all
$$a, b \in A$$
, $det[a \ b] \in I \Rightarrow a \in I$ and $b \in I$
 $a^2 + h_1 ab - h_0 b^2 \in I \Rightarrow a \in I$ and $b \in I$

• $K \lhd \mathbb{M}_{1,2}(A, h)$ and \overline{K} h-prime $\Rightarrow K$ homogeneous

for all
$$a, b \in A$$
, det $[a \ b] \in I \Rightarrow a \in I$ and $b \in I$
 $a^2 + h_1 a b - h_0 b^2 \in I \Rightarrow a \in I$ and $b \in I$

- $K \lhd \mathbb{M}_{1,2}(A, h)$ and \overline{K} h-prime $\Rightarrow K$ homogeneous
- K prime ideal of M_{1,2}(A, h). Then K homogeneous ⇔ K is h-prime ideal of A

for all
$$a, b \in A$$
, det $[a \ b] \in I \Rightarrow a \in I$ and $b \in I$
 $a^2 + h_1 a b - h_0 b^2 \in I \Rightarrow a \in I$ and $b \in I$

- $K \lhd \mathbb{M}_{1,2}(A, h)$ and \overline{K} h-prime $\Rightarrow K$ homogeneous
- K prime ideal of M_{1,2}(A, h). Then K homogeneous ⇔ K is h-prime ideal of A

for all
$$a, b \in A$$
, $det[a \ b] \in I \Rightarrow a \in I$ and $b \in I$
 $a^2 + h_1 a b - h_0 b^2 \in I \Rightarrow a \in I$ and $b \in I$

- $K \lhd \mathbb{M}_{1,2}(A, h)$ and \overline{K} h-prime $\Rightarrow K$ homogeneous
- K prime ideal of M_{1,2}(A, h). Then K homogeneous ⇔ K is h-prime ideal of A
- I ⊲ A. Then [I I] maximal ideal in M_{1,2}(A, h)
 ⇔ I h-prime maximal ideal in A

• $K \lhd \mathbb{M}_{1,2}(A, h)$ maximal

э

・ロト ・ 日 ト ・ 日 ト ・

• $K \lhd \mathbb{M}_{1,2}(A, h)$ maximal

э

・ロト ・ 日 ト ・ 日 ト ・

• $K \lhd \mathbb{M}_{1,2}(A, h)$ maximal

 $\overline{K} = K \cap [A \ 0]$

• $K \lhd \mathbb{M}_{1,2}(A, h)$ maximal $\Leftrightarrow \overline{K}$ maximal ideal A and one of the following three cases hold: • $K \lhd \mathbb{M}_{1,2}(A, h)$ maximal $\Leftrightarrow \overline{K}$ maximal ideal A and one of the following three cases hold: K < M_{1,2}(A, h) maximal
⇔ K maximal ideal A and one of the following three cases hold:
(i) h₀ ∈ K in which case K = [K A] or
(ii) h₀ ∉ K, K is h-prime and K = [K K] or
(iii) h₀ ∉ K, K is not h-prime and [K K] ⊊ K with K₁ = K₂ = A.

h-prime maximal ideals *p*ℤ of the ring ℤ for *h*(*x*) = *x*² − *h*₁*x* − *h*₀ ∈ ℤ[*x*]

3 1 4

h-prime maximal ideals *p*ℤ of the ring ℤ for *h*(*x*) = *x*² − *h*₁*x* − *h*₀ ∈ ℤ[*x*]

3 1 4

- *h*-prime maximal ideals *p*ℤ of the ring ℤ for *h*(*x*) = *x*² − *h*₁*x* − *h*₀ ∈ ℤ[*x*]
- given polynomial h(x), prime number p ∈ Z is called h-prime if pZ is h-prime ideal

i.e. for all
$$a, b \in \mathbb{Z}$$
, $p \mid a^2 + h_1 a b - h_0 b^2 \Rightarrow p \mid a$ and $p \mid b$

•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

メロト メロト メヨト メ

•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

メロト メロト メヨト メ
•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

- p prime in \mathbb{Z} . Then:
 - *p* is *h*-prime in \mathbb{Z}

•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

- p prime in \mathbb{Z} . Then:
 - *p* is *h*-prime in \mathbb{Z}

•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

- p prime in \mathbb{Z} . Then:
 - $p \text{ is } h \text{-prime in } \mathbb{Z}$ $\Leftrightarrow p\mathbb{Z} \ h \text{-prime ideal of } \mathbb{Z}$

•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

- p prime in \mathbb{Z} . Then:
 - $p \text{ is } h\text{-prime in } \mathbb{Z}$ $\Leftrightarrow p\mathbb{Z} \ h\text{-prime ideal of } \mathbb{Z}$ $\Leftrightarrow [p\mathbb{Z} \ p\mathbb{Z}] = \mathbb{M}_{1,2}(p\mathbb{Z}, h) \text{ is a maximal ideal of } \mathbb{M}_{1,2}(\mathbb{Z}, h)$

•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

$$\begin{array}{l} p \text{ is } h\text{-prime in } \mathbb{Z} \\ \Leftrightarrow p\mathbb{Z} \ h\text{-prime ideal of } \mathbb{Z} \\ \Leftrightarrow [p\mathbb{Z} \ p\mathbb{Z}] = \mathbb{M}_{1,2}(p\mathbb{Z}, h) \text{ is a maximal ideal of } \mathbb{M}_{1,2}(\mathbb{Z}, h) \\ \Leftrightarrow \frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p\mathbb{Z}, h)} \text{ is a field} \end{array}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

$$\begin{array}{l} p \text{ is } h\text{-prime in } \mathbb{Z} \\ \Leftrightarrow p\mathbb{Z} \ h\text{-prime ideal of } \mathbb{Z} \\ \Leftrightarrow [p\mathbb{Z} \ p\mathbb{Z}] = \mathbb{M}_{1,2}(p\mathbb{Z}, h) \text{ is a maximal ideal of } \mathbb{M}_{1,2}(\mathbb{Z}, h) \\ \Leftrightarrow \frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p\mathbb{Z}, h)} \text{ is a field} \\ \Leftrightarrow \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle} \text{ is a field} \end{array}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

$$\begin{array}{l} p \text{ is } h\text{-prime in } \mathbb{Z} \\ \Leftrightarrow p\mathbb{Z} \ h\text{-prime ideal of } \mathbb{Z} \\ \Leftrightarrow [p\mathbb{Z} \ p\mathbb{Z}] = \mathbb{M}_{1,2}(p\mathbb{Z}, h) \text{ is a maximal ideal of } \mathbb{M}_{1,2}(\mathbb{Z}, h) \\ \Leftrightarrow \frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p\mathbb{Z}, h)} \text{ is a field} \\ \Leftrightarrow \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle} \text{ is a field} \\ \Leftrightarrow h(x) \text{ is irreducible over } \mathbb{Z}_p \end{array}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

•
$$\frac{\mathbb{M}_{1,2}(\mathbb{Z},h)}{\mathbb{M}_{1,2}(p\mathbb{Z},h)} \cong \mathbb{M}_{1,2}(\frac{\mathbb{Z}}{p\mathbb{Z}},h) \cong \mathbb{M}_{1,2}(\mathbb{Z}_p,h) \cong \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle}$$

$$\begin{array}{l} p \text{ is } h\text{-prime in } \mathbb{Z} \\ \Leftrightarrow p\mathbb{Z} \ h\text{-prime ideal of } \mathbb{Z} \\ \Leftrightarrow [p\mathbb{Z} \ p\mathbb{Z}] = \mathbb{M}_{1,2}(p\mathbb{Z}, h) \text{ is a maximal ideal of } \mathbb{M}_{1,2}(\mathbb{Z}, h) \\ \Leftrightarrow \frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p\mathbb{Z}, h)} \text{ is a field} \\ \Leftrightarrow \frac{\mathbb{Z}_p[x]}{\langle h(x) \rangle} \text{ is a field} \\ \Leftrightarrow h(x) \text{ is irreducible over } \mathbb{Z}_p \\ \Leftrightarrow h(t) \neq 0 \text{ for all } t \in \mathbb{Z}_p \end{array}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• a prime p in \mathbb{Z} is h-prime $\Rightarrow \det[a \ b] = \pm p$ has no solutions in \mathbb{Z} • a prime p in \mathbb{Z} is h-prime $\Rightarrow \det[a \ b] = \pm p$ has no solutions in \mathbb{Z}

• a prime p in Z is h-prime

$$\Rightarrow \det[a \ b] = \pm p \text{ has no solutions in } Z$$
(i.e. $a^2 + h_1 ab - h_0 b^2 = \pm p \text{ has no solutions in } Z$)

-

イロン イヨン イヨン イ

h-prime integers

• $h(x) = x^2 + 1 \in \mathbb{Z}[x]$, $\mathbb{M}_{1,2}(\mathbb{Z}, h) = \mathbb{Z}[i]$ is the ring of Gaussian integers

< 🗇 🕨

- **4 ∃ ≻** 4

h-prime integers

• $h(x) = x^2 + 1 \in \mathbb{Z}[x]$, $\mathbb{M}_{1,2}(\mathbb{Z}, h) = \mathbb{Z}[i]$ is the ring of Gaussian integers

< 🗇 🕨

- **4 ∃ ≻** 4

h-prime integers

• $h(x) = x^2 + 1 \in \mathbb{Z}[x]$, $\mathbb{M}_{1,2}(\mathbb{Z}, h) = \mathbb{Z}[i]$ is the ring of Gaussian integers

for a prime p, $a^2 + b^2 = p$ has solutions exactly when p = 4k + 1

★ ∃ →

for a prime p, $a^2 + b^2 = p$ has solutions exactly when p = 4k + 1

• prime p is h-prime

 $\Leftrightarrow a^2 + b^2 = p$ has no solutions in $\mathbb Z$

for a prime p, $a^2 + b^2 = p$ has solutions exactly when p = 4k + 1

• prime p is h-prime

 $\Leftrightarrow a^2 + b^2 = p$ has no solutions in $\mathbb Z$

for a prime p, $a^2 + b^2 = p$ has solutions exactly when p = 4k + 1

• prime p is h-prime

 $\Leftrightarrow a^2 + b^2 = p$ has no solutions in \mathbb{Z} $\Leftrightarrow p$ is a Gaussian prime (i.e. $[p \ 0]$ prime in $\mathbb{M}_{1,2}(\mathbb{Z}, h) = \mathbb{Z}[i]$)

for a prime p, $a^2 + b^2 = p$ has solutions exactly when p = 4k + 1

• prime p is h-prime

 $\Leftrightarrow a^{2} + b^{2} = p \text{ has no solutions in } \mathbb{Z}$ $\Leftrightarrow p \text{ is a Gaussian prime (i.e. } [p \ 0] \text{ prime in } \mathbb{M}_{1,2}(\mathbb{Z}, h) = \mathbb{Z}[i])$ $\Leftrightarrow p = 4k + 3$

for a prime p, $a^2 + b^2 = p$ has solutions exactly when p = 4k + 1

• prime *p* is *h*-prime

 $\Leftrightarrow a^{2} + b^{2} = p \text{ has no solutions in } \mathbb{Z}$ $\Leftrightarrow p \text{ is a Gaussian prime (i.e. } [p \ 0] \text{ prime in } \mathbb{M}_{1,2}(\mathbb{Z}, h) = \mathbb{Z}[i])$ $\Leftrightarrow p = 4k + 3$

• not universal for all quadratic polynomials over $\mathbb Z$ (irreducible or not)

イロト 不得下 イヨト イヨト 二日

for a prime p, $a^2 + b^2 = p$ has solutions exactly when p = 4k + 1

• prime *p* is *h*-prime

 $\Leftrightarrow a^{2} + b^{2} = p \text{ has no solutions in } \mathbb{Z}$ $\Leftrightarrow p \text{ is a Gaussian prime (i.e. } [p \ 0] \text{ prime in } \mathbb{M}_{1,2}(\mathbb{Z}, h) = \mathbb{Z}[i])$ $\Leftrightarrow p = 4k + 3$

• not universal for all quadratic polynomials over $\mathbb Z$ (irreducible or not)

イロト 不得下 イヨト イヨト 二日

for a prime p, $a^2 + b^2 = p$ has solutions exactly when p = 4k + 1

• prime *p* is *h*-prime

 $\Leftrightarrow a^{2} + b^{2} = p \text{ has no solutions in } \mathbb{Z}$ $\Leftrightarrow p \text{ is a Gaussian prime (i.e. } [p \ 0] \text{ prime in } \mathbb{M}_{1,2}(\mathbb{Z}, h) = \mathbb{Z}[i])$ $\Leftrightarrow p = 4k + 3$

• not universal for all quadratic polynomials over $\mathbb Z$ (irreducible or not)

 $h(x) = x^2 + 3$, the primes p = 5, 11, 17 and 23 are *h*-prime in \mathbb{Z} but 3 and 13 not *h*-prime

•
$$h(x) = x^2 - 2 \in \mathbb{Z}[x]$$

•
$$h(x) = x^2 - 2 \in \mathbb{Z}[x]$$

•
$$h(x) = x^2 - 2 \in \mathbb{Z}[x]$$

prime p is h-prime in \mathbb{Z} $\Leftrightarrow a^2 - 2b^2 = \pm p$ has no solutions in \mathbb{Z} $\Leftrightarrow p$ is a prime of the form 8k + 3 or 8k + 5

•
$$h(x) = x^2 - 2 \in \mathbb{Z}[x]$$

prime p is h-prime in \mathbb{Z}
 $\Leftrightarrow a^2 - 2b^2 = \pm p$ has no solutions in \mathbb{Z}
 $\Leftrightarrow p$ is a prime of the form $8k + 3$ or $8k + 5$

•
$$h(x) = x^2 - 1 \in \mathbb{Z}[x]$$
, p prime

•
$$h(x) = x^2 - 2 \in \mathbb{Z}[x]$$

prime p is h-prime in \mathbb{Z}
 $\Leftrightarrow a^2 - 2b^2 = \pm p$ has no solutions in \mathbb{Z}
 $\Leftrightarrow p$ is a prime of the form $8k + 3$ or $8k + 5$

•
$$h(x) = x^2 - 1 \in \mathbb{Z}[x]$$
, p prime

•
$$h(x) = x^2 - 2 \in \mathbb{Z}[x]$$

prime p is h -prime in \mathbb{Z}
 $\Leftrightarrow a^2 - 2b^2 = \pm p$ has no solutions in \mathbb{Z}
 $\Leftrightarrow p$ is a prime of the form $8k + 3$ or $8k + 5$

•
$$h(x) = x^2 - 1 \in \mathbb{Z}[x]$$
, p prime
 $a^2 - b^2 = \pm p$ no solutions in $\mathbb{Z} \Leftrightarrow p = 2$

•
$$h(x) = x^2 - 2 \in \mathbb{Z}[x]$$

prime p is h -prime in \mathbb{Z}
 $\Leftrightarrow a^2 - 2b^2 = \pm p$ has no solutions in \mathbb{Z}
 $\Leftrightarrow p$ is a prime of the form $8k + 3$ or $8k + 5$

•
$$h(x) = x^2 - 1 \in \mathbb{Z}[x]$$
, p prime
 $a^2 - b^2 = \pm p$ no solutions in $\mathbb{Z} \Leftrightarrow p = 2$

2 is not *h*-prime no *h*-primes in \mathbb{Z} .

< □ > < ---->

•
$$h(x) = x^2 - h_1 x - h_0$$
; ring $\mathbb{M}_{1,2}(A, h)$

•
$$h(x) = x^2 - h_1 x - h_0$$
; ring $\mathbb{M}_{1,2}(A, h)$

•
$$h(x) = x^2 - h_1 x - h_0$$
; ring $\mathbb{M}_{1,2}(A, h)$

Lemma

$$\begin{array}{l} \alpha \ \text{radical with } R = \alpha(\mathbb{M}_{1,2}(A,h)). \ \text{Then} \\ R \subseteq \{[a \ b] \ | \ \det[a \ b] \in \overline{R} \ \text{and} \ \text{trace}[a \ b] \in \overline{R} \} \\ \subseteq \{[a \ b] \ | \ [a \ b]^2 = [a^2 + h_0 b^2 \ \ 2ab + h_1 b^2] \in [\overline{R} \ \overline{R}] \}. \\ \text{If } \alpha \ \text{is a hypernilpotent radical, then equalities between all sets.} \end{array}$$

•
$$h(x) = x^2 - h_1 x - h_0$$
; ring $\mathbb{M}_{1,2}(A, h)$

Lemma

$$\begin{array}{l} \alpha \ \text{radical with } R = \alpha(\mathbb{M}_{1,2}(A,h)). \ \text{Then} \\ R \subseteq \{[a \ b] \ | \ \det[a \ b] \in \overline{R} \ \text{and} \ \text{trace}[a \ b] \in \overline{R} \} \\ \subseteq \{[a \ b] \ | \ [a \ b]^2 = [a^2 + h_0 b^2 \ \ 2ab + h_1 b^2] \in [\overline{R} \ \overline{R}] \}. \\ \text{If } \alpha \ \text{is a hypernilpotent radical, then equalities between all sets.} \end{array}$$

•
$$h(x) = x^2 - h_1 x - h_0$$
; ring $\mathbb{M}_{1,2}(A, h)$

Lemma

$$\begin{array}{l} \alpha \ \text{radical with } R = \alpha(\mathbb{M}_{1,2}(A,h)). \ \text{Then} \\ R \subseteq \{[a \ b] \ | \ \det[a \ b] \in \overline{R} \ \text{and} \ \text{trace}[a \ b] \in \overline{R} \} \\ \subseteq \{[a \ b] \ | \ [a \ b]^2 = [a^2 + h_0 b^2 \ \ 2ab + h_1 b^2] \in [\overline{R} \ \overline{R}] \}. \\ \text{If } \alpha \ \text{is a hypernilpotent radical, then equalities between all sets.} \end{array}$$

• relationship between
$$lpha(A)$$
 and \overline{R} where $R=lpha({
m I\!M}_{1,2}(A,h))$

• α strong $\Rightarrow \alpha(A) \cong [\alpha(A) \ 0] \subseteq \alpha(\mathbb{M}_{1,2}(A, h)) \cap [A \ 0] = \overline{R}$

• α strong $\Rightarrow \alpha(A) \cong [\alpha(A) \ 0] \subseteq \alpha(\mathbb{M}_{1,2}(A, h)) \cap [A \ 0] = \overline{R}$
•
$$\alpha$$
 strong $\Rightarrow \alpha(A) \cong [\alpha(A) \ 0] \subseteq \alpha(\mathbb{M}_{1,2}(A, h)) \cap [A \ 0] = \overline{R}$

•
$$\alpha(A) = \overline{R} \Leftrightarrow$$
 for all $a \in A$, the equivalence
 $a \in \alpha(A) \Leftrightarrow [a \ 0] \in \alpha(\mathbb{M}_{1,2}(A, h))$ holds

•
$$\alpha$$
 strong $\Rightarrow \alpha(A) \cong [\alpha(A) \ 0] \subseteq \alpha(\mathbb{M}_{1,2}(A, h)) \cap [A \ 0] = \overline{R}$

•
$$\alpha(A) = \overline{R} \Leftrightarrow$$
 for all $a \in A$, the equivalence
 $a \in \alpha(A) \Leftrightarrow [a \ 0] \in \alpha(\mathbb{M}_{1,2}(A, h))$ holds

•
$$\alpha$$
 strong $\Rightarrow \alpha(A) \cong [\alpha(A) \ 0] \subseteq \alpha(\mathbb{M}_{1,2}(A, h)) \cap [A \ 0] = \overline{R}$

•
$$\alpha(A) = \overline{R} \Leftrightarrow$$
 for all $a \in A$, the equivalence
 $a \in \alpha(A) \Leftrightarrow [a \ 0] \in \alpha(\mathbb{M}_{1,2}(A, h))$ holds

• α element transfer property with respect to A and h (ETP)

•
$$\alpha$$
 strong $\Rightarrow \alpha(A) \cong [\alpha(A) \ 0] \subseteq \alpha(\mathbb{M}_{1,2}(A, h)) \cap [A \ 0] = \overline{R}$

•
$$\alpha(A) = \overline{R} \Leftrightarrow$$
 for all $a \in A$, the equivalence
 $a \in \alpha(A) \Leftrightarrow [a \ 0] \in \alpha(\mathbb{M}_{1,2}(A, h))$ holds

• α element transfer property with respect to A and h (ETP)

- α strong $\Rightarrow \alpha(A) \cong [\alpha(A) \ 0] \subseteq \alpha(\mathbb{M}_{1,2}(A, h)) \cap [A \ 0] = \overline{R}$
- $\alpha(A) = \overline{R} \Leftrightarrow$ for all $a \in A$, the equivalence $a \in \alpha(A) \Leftrightarrow [a \ 0] \in \alpha(\mathbb{M}_{1,2}(A, h))$ holds
- α element transfer property with respect to A and h (ETP)
- nil radical and Jacobson radical have ETP

 α hypernilpotent radical with ETP. Then: $\alpha(\mathbb{M}_{1,2}(A, h)) = \{[a \ b] \mid det[a \ b] \in \alpha(A) \text{ and } trace[a \ b] \in \alpha(A)\}$

 $\begin{array}{l} \alpha \text{ hypernilpotent radical with ETP. Then:} \\ \alpha(\mathbb{M}_{1,2}(A,h)) = \{[a\ b] \mid \det[a\ b] \in \alpha(A) \text{ and } trace[a\ b] \in \alpha(A) \} \\ = \{[a\ b] \mid [a\ b]^2 \in [\alpha(A)\ \alpha(A)] \} \end{array}$

 $\begin{aligned} \alpha \text{ hypernilpotent radical with ETP. Then:} \\ \alpha(\mathbb{M}_{1,2}(A, h)) &= \{[a \ b] \mid \det[a \ b] \in \alpha(A) \text{ and trace}[a \ b] \in \alpha(A) \} \\ &= \{[a \ b] \mid [a \ b]^2 \in [\alpha(A) \ \alpha(A)]\} \\ &= \{[a \ b] \mid a^2 + h_0 b^2 \in \alpha(A) \text{ and } 2a + h_1 b \in \alpha(A)\}. \end{aligned}$

 $\begin{aligned} & \text{hypernilpotent radical with ETP. Then:} \\ & \alpha(\mathbb{M}_{1,2}(A,h)) = \{[a \ b] \ | \ \det[a \ b] \in \alpha(A) \ \text{and trace}[a \ b] \in \alpha(A) \} \\ & = \{[a \ b] \ | \ [a \ b]^2 \in [\alpha(A) \ \alpha(A)]\} \\ & = \{[a \ b] \ | \ a^2 + h_0 b^2 \in \alpha(A) \ \text{and } 2a + h_1 b \in \alpha(A)\}. \end{aligned}$

Nil radical of 2×2 Barnett matrix rings

•
$$h(x) = x^2 - h_1 x - h_0$$

Nil radical of 2×2 Barnett matrix rings

•
$$h(x) = x^2 - h_1 x - h_0$$

•
$$h(x) = x^2 - h_1 x - h_0$$

• ${\mathcal N}$ nil radical of the ring ${\mathbb M}_{1,2}({\textit{A}},{\textit{h}})$

•
$$h(x) = x^2 - h_1 x - h_0$$

• ${\mathcal N}$ nil radical of the ring ${\mathbb M}_{1,2}({\textit{A}},{\textit{h}})$

•
$$h(x) = x^2 - h_1 x - h_0$$

•
$${\mathcal N}$$
 nil radical of the ring ${f M}_{1,2}({\it A},{\it h})$

$$\begin{split} \mathcal{N} & \textit{nil radical} \\ \mathcal{N}(\mathbb{M}_{1,2}(A, h)) \\ &= \{ [a \ b] \in \mathbb{M}_{1,2}(A, h) \mid [a \ b]^2 \in \mathbb{M}_{1,2}(\mathcal{N}(A), h) \}. \end{split}$$

•
$$h(x) = x^2 - h_1 x - h_0$$

•
$${\mathcal N}$$
 nil radical of the ring ${f M}_{1,2}({\it A},{\it h})$

$$\begin{split} \mathcal{N} & \textit{nil radical} \\ \mathcal{N}(\mathbb{M}_{1,2}(A, h)) \\ &= \{ [a \ b] \in \mathbb{M}_{1,2}(A, h) \mid [a \ b]^2 \in \mathbb{M}_{1,2}(\mathcal{N}(A), h) \}. \end{split}$$

• A integral domain

$$\blacktriangleright \mathcal{N}(A) = 0$$

•
$$h(x) = x^2 - h_1 x - h_0$$

•
$${\mathcal N}$$
 nil radical of the ring ${f M}_{1,2}({\it A},{\it h})$

$$\begin{split} \mathcal{N} & \textit{nil radical} \\ \mathcal{N}(\mathbb{M}_{1,2}(A, h)) \\ &= \{ [a \ b] \in \mathbb{M}_{1,2}(A, h) \mid [a \ b]^2 \in \mathbb{M}_{1,2}(\mathcal{N}(A), h) \}. \end{split}$$

• A integral domain

$$\blacktriangleright \mathcal{N}(A) = 0$$

•
$$h(x) = x^2 - h_1 x - h_0$$

•
$${\mathcal N}$$
 nil radical of the ring ${f M}_{1,2}({\it A},{\it h})$

$$\begin{split} \mathcal{N} & \textit{nil radical} \\ \mathcal{N}(\mathbb{M}_{1,2}(A, h)) \\ &= \{ [a \ b] \in \mathbb{M}_{1,2}(A, h) \mid [a \ b]^2 \in \mathbb{M}_{1,2}(\mathcal{N}(A), h) \}. \end{split}$$

• A integral domain

▶ $\mathcal{N}(A) = 0$ ▶ *h* can have at most two roots in *A* • $\Delta = \text{discriminant of } h(x)$

$$= h_1^2 + 4h_0$$

э

イロト イロト イヨト イ

• $\Delta = \text{discriminant of } h(x)$

$$= h_1^2 + 4h_0$$

э

イロト イロト イヨト イ

•
$$\Delta = \text{discriminant of } h(x)$$

$$= h_1^2 + 4h_0$$

A integral domain,
$$\mathcal{N}$$
 nil radical. Then:

$$\mathcal{N}(\mathbb{M}_{1,2}(A, h))$$

$$= \begin{cases} \{0\} \text{ if } \Delta \neq 0 \\ \{[a \ b] \in \mathbb{M}_{1,2}(A, h) \mid 2a + h_1b = 0\} \text{ if } \Delta = 0 \text{ and } charA \neq 2 \\ \{[a \ b] \in \mathbb{M}_{1,2}(A, h) \mid a^2 + h_0b^2 = 0\} \text{ if } \Delta = 0 \text{ and } charA = 2 \end{cases}$$

э

メロト メロト メヨト メ

A integral domain, $h(x) = x^2 - h_1 x - h_0$ with discriminant $\Delta = h_1^2 + 4h_0$. Then:

3 1 4

A integral domain, $h(x) = x^2 - h_1 x - h_0$ with discriminant $\Delta = h_1^2 + 4h_0$. Then: $\mathbb{M}_{1,2}(A, h)$ has non-zero nilpotent elements

 \Leftrightarrow there is $0 \neq u \in A$ such that $uh(x) = (ax + b)^2$ for some a, $b \in A$

A integral domain, $h(x) = x^2 - h_1 x - h_0$ with discriminant $\Delta = h_1^2 + 4h_0$. Then: $\mathbb{M}_{1,2}(A, h)$ has non-zero nilpotent elements \Leftrightarrow there is $0 \neq u \in A$ such that $uh(x) = (ax + b)^2$ for some $a, b \in A$ $\Rightarrow \Delta = 0$

A integral domain, $h(x) = x^2 - h_1 x - h_0$ with discriminant $\Delta = h_1^2 + 4h_0$. Then: $\mathbb{M}_{1,2}(A, h)$ has non-zero nilpotent elements \Leftrightarrow there is $0 \neq u \in A$ such that $uh(x) = (ax + b)^2$ for some $a, b \in A$ $\Rightarrow \Delta = 0$ $\Leftrightarrow 4h(x) = (2x - h_1)^2$.

A integral domain, $h(x) = x^2 - h_1 x - h_0$ with discriminant $\Delta = h_1^2 + 4h_0$. Then: $\mathbb{M}_{1,2}(A, h)$ has non-zero nilpotent elements \Leftrightarrow there is $0 \neq u \in A$ such that $uh(x) = (ax + b)^2$ for some $a, b \in A$ $\Rightarrow \Delta = 0$ $\Leftrightarrow 4h(x) = (2x - h_1)^2$. If char $A \neq 2$, all four statements are equivalent.

Suppose $h(x) = x^2 - h_1 x - h_0 \in A[x]$ has $\Delta = 0$; A integral domain. Then: (1) $h(x) = (x - s)^2$ for some $s \in A \Leftrightarrow -h_0$ is a square in A.

イロト イヨト イヨト イヨ

Suppose
$$h(x) = x^2 - h_1 x - h_0 \in A[x]$$
 has $\Delta = 0$; A integral domain.
Then:
(1) $h(x) = (x - s)^2$ for some $s \in A \Leftrightarrow -h_0$ is a square in A.
(2) If charA $\neq 2$, then $h(x) = (x - s)^2$ for some $s \in A$
 $\Leftrightarrow -h_0$ is a square in A
 $\Leftrightarrow 2 \mid h_1$

・ロト ・ 日 ・ ・ ヨ ト ・

• non-unit $p \in A$

prime if for all $a, b \in A, p \mid ab \Rightarrow p \mid a \text{ or } p \mid b$

semiprime if for all $a \in A$, $p \mid a^2 \Rightarrow p \mid a$

3 ×

• non-unit $p \in A$

prime if for all $a, b \in A, p \mid ab \Rightarrow p \mid a \text{ or } p \mid b$

semiprime if for all $a \in A$, $p \mid a^2 \Rightarrow p \mid a$

3 ×

• non-unit $p \in A$

prime if for all $a, b \in A, p \mid ab \Rightarrow p \mid a \text{ or } p \mid b$

semiprime if for all $a \in A$, $p \mid a^2 \Rightarrow p \mid a$

Definition

non-unit $p \in A$ weakly semiprime if for all $a \in A$, $p^2 \mid a^2 \Rightarrow p \mid a$

A integral domain. Consider two conditions: (1) Whenever $h(x) = x^2 - h_1 x - h_0 \in A[x]$ with $\Delta = 0$, then $h(x) = (x - s)^2$ for some $s \in A$. (2) 2 is weakly semiprime in A.

A integral domain. Consider two conditions: (1) Whenever $h(x) = x^2 - h_1 x - h_0 \in A[x]$ with $\Delta = 0$, then $h(x) = (x - s)^2$ for some $s \in A$. (2) 2 is weakly semiprime in A. Then $(1) \Rightarrow (2)$ and when char $A \neq 2$, $(1) \Leftrightarrow (2)$.

• $2 \in A$ prime or semiprime $\Rightarrow 2$ is weakly semiprime

Image: Image:

• $2 \in A$ prime or semiprime $\Rightarrow 2$ is weakly semiprime

Image: Image:

- $2 \in A$ prime or semiprime $\Rightarrow 2$ is weakly semiprime
- \mathbb{Z} integers
 - ▶ prime has usual meaning
 - ▶ $n \ (\neq \pm 1)$ is semiprime if and only if n is square free
 - ▶ all $n \neq \pm 1$ are weakly semiprime

 $u \in \mathbb{Z}$, u not a square. Then 2 weakly semiprime in $\mathbb{Z}[\sqrt{u}]$ \Leftrightarrow u is not divisible by 4.

3 1 4
Theorem

 $u \in \mathbb{Z}$, u not a square. Then 2 weakly semiprime in $\mathbb{Z}[\sqrt{u}]$ \Leftrightarrow u is not divisible by 4.

- $\mathbb{Z}[\sqrt{-5}]$ integral domain
 - 2 not semiprime (eg. 2 | $(1+\sqrt{-5})^2$ but $2 \nmid 1+\sqrt{-5})$
 - 2 is weakly semiprime in $\mathbb{Z}[\sqrt{-5}]$.

• hypoidempotent radicals : nilpotent rings are semisimple

• hypoidempotent radicals : nilpotent rings are semisimple

- hypoidempotent radicals : nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any a ∈ A, there is b ∈ A with a = aba

- hypoidempotent radicals : nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any a ∈ A, there is b ∈ A with a = aba

- hypoidempotent radicals : nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any a ∈ A, there is b ∈ A with a = aba

•
$$\nu(\mathbb{M}_{1,2}(A, h)) = \{ [a \ b] \mid [a \ 0] \text{ and } [b \ 0] \text{ are in } \nu(\mathbb{M}_{1,2}(A, h)) \}$$

 $\subseteq [\nu(A) \ \nu(A)]$

- hypoidempotent radicals : nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any a ∈ A, there is b ∈ A with a = aba

•
$$\nu(\mathbb{M}_{1,2}(A, h)) = \{ [a \ b] \mid [a \ 0] \text{ and } [b \ 0] \text{ are in } \nu(\mathbb{M}_{1,2}(A, h)) \}$$

 $\subseteq [\nu(A) \ \nu(A)]$

- hypoidempotent radicals : nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any a ∈ A, there is b ∈ A with a = aba

•
$$\nu(\mathbb{M}_{1,2}(A, h)) = \{ [a \ b] \mid [a \ 0] \text{ and } [b \ 0] \text{ are in } \nu(\mathbb{M}_{1,2}(A, h)) \}$$

 $\subseteq [\nu(A) \ \nu(A)]$

 $A \in Sv \Rightarrow \mathbb{M}_{1,2}(A, h) \in Sv$ and $\mathbb{M}_{1,2}(A, h) \in v \Rightarrow A \in v$