Matrix rings generated by a companion matrix

Stefan Veldsman
Nelson Mandela Metropolitan University

July 2016

Introduction

Kronecker: $h(x)$ irreducible polynomial over field F

$$
\frac{F[x]}{\langle h(x)\rangle} \text { field }
$$

Introduction

Kronecker: $h(x)$ irreducible polynomial over field F

- $\frac{F[x]}{\langle h(x)\rangle}$ field
- $F \subseteq \frac{F[x]}{\langle h(x)\rangle}$

Introduction

Kronecker: $h(x)$ irreducible polynomial over field F

- $\frac{F[x]}{\langle h(x)\rangle}$ field
- $F \subseteq \frac{F[x]}{\langle h(x)\rangle}$
- $\quad h(x)$ has a zero in this field.

Introduction

- $h(x)=x^{3}-h_{2} x^{2}-h_{1} x-h_{0} \in A[x]$

Introduction

- $h(x)=x^{3}-h_{2} x^{2}-h_{1} x-h_{0} \in A[x]$
- $\frac{A[x]}{\langle h(x)\rangle}=\{f(x)+\langle h(x)\rangle \mid f(x) \in A[x]\}$

Introduction

- $h(x)=x^{3}-h_{2} x^{2}-h_{1} x-h_{0} \in A[x]$
- $\frac{A[x]}{\langle h(x)\rangle}=\{f(x)+\langle h(x)\rangle \mid f(x) \in A[x]\}$

Introduction

- $h(x)=x^{3}-h_{2} x^{2}-h_{1} x-h_{0} \in A[x]$
- $\frac{A[x]}{\langle h(x)\rangle}=\{f(x)+\langle h(x)\rangle \mid f(x) \in A[x]\}$

$$
\cong\left\{a+b t+c t^{2} \mid a, b, c \in A ; h(t)=0\right\}
$$

Introduction

- $h(x)=x^{3}-h_{2} x^{2}-h_{1} x-h_{0} \in A[x]$
- $\frac{A[x]}{\langle h(x)\rangle}=\{f(x)+\langle h(x)\rangle \mid f(x) \in A[x]\}$
$\cong\left\{a+b t+c t^{2} \mid a, b, c \in A ; h(t)=0\right\}$
$\cong \mathbb{M}_{1,3}(A, h)=\left\{\left[\left.\begin{array}{lll}a & b & c\end{array} \right\rvert\, a, b, c \in A\right\}\right.$

Introduction

- $h(x)=x^{3}-h_{2} x^{2}-h_{1} x-h_{0} \in A[x]$
- $\frac{A[x]}{\langle h(x)\rangle}=\{f(x)+\langle h(x)\rangle \mid f(x) \in A[x]\}$
$\cong\left\{a+b t+c t^{2} \mid a, b, c \in A ; h(t)=0\right\}$
$\cong \mathbb{M}_{1,3}(A, h)=\left\{\left.\left[\begin{array}{lll}a & b & c\end{array}\right] \right\rvert\, a, b, c \in A\right\}$
$\left[\begin{array}{lll}a & b & c\end{array}\right]\left[\begin{array}{lll}d & e & f\end{array}\right]=\left[\begin{array}{lll}u & v & w\end{array}\right]$ where
$\left(a+b t+c t^{2}\right)\left(d+e t+f t^{2}\right)=u+v t+w t^{2}$
$t^{3}=h_{2} t^{2}+h_{1} t+h_{0}$

Introduction

$\mathbb{M}_{1,3}(A, h) \cong \mathbb{M}_{3}(A, h)$

$\left[\begin{array}{ccc}a & b & c \\ h_{0} c & a+h_{1} c & b+h_{2} c \\ h_{0}\left(b+h_{2} c\right) & h_{0} c+h_{1}\left(b+h_{2} c\right) & a+h_{1} c+h_{2}\left(b+h_{2} c\right)\end{array}\right]$

Introduction

$\mathbb{M}_{1,3}(A, h) \cong \mathbb{M}_{3}(A, h)$
$\left[\begin{array}{ccc}a & b & c \\ h_{0} c & a+h_{1} c & b+h_{2} c \\ h_{0}\left(b+h_{2} c\right) & h_{0} c+h_{1}\left(b+h_{2} c\right) & a+h_{1} c+h_{2}\left(b+h_{2} c\right)\end{array}\right]$
$\cong\{f(E) \mid f(x) \in A[x]\} \quad E=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ h_{0} & h_{1} & h_{2}\end{array}\right]$
companion matrix of $h(x)=x^{3}-h_{2} x^{2}-h_{1} x-h_{0}$

Introduction

$$
\mathbb{M}_{1,3}(A, h) \cong \mathbb{M}_{3}(A, h)
$$

$$
\left[\begin{array}{ccc}
a & b & c \\
h_{0} c & a+h_{1} c & b+h_{2} c \\
h_{0}\left(b+h_{2} c\right) & h_{0} c+h_{1}\left(b+h_{2} c\right) & a+h_{1} c+h_{2}\left(b+h_{2} c\right)
\end{array}\right]
$$

$$
\cong\{f(E) \mid f(x) \in A[x]\} \quad E=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
h_{0} & h_{1} & h_{2}
\end{array}\right]
$$

$$
\text { companion matrix of } h(x)=x^{3}-h_{2} x^{2}-h_{1} x-h_{0}
$$

- $\gamma: A[x] \rightarrow \mathbb{M}_{3}(A)$ defined by $\gamma(f(x))=f(E)$ homomorphism $\gamma(A[x])=\mathbb{M}_{3}(A, h)$ subring of $\mathbb{M}_{3}(A)$ generated by E

Introduction

$$
\mathbb{M}_{1,3}(A, h) \cong \mathbb{M}_{3}(A, h)
$$

$$
\left[\begin{array}{ccc}
a & b & c \\
h_{0} c & a+h_{1} c & b+h_{2} c \\
h_{0}\left(b+h_{2} c\right) & h_{0} c+h_{1}\left(b+h_{2} c\right) & a+h_{1} c+h_{2}\left(b+h_{2} c\right)
\end{array}\right]
$$

$$
\cong\{f(E) \mid f(x) \in A[x]\} \quad E=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
h_{0} & h_{1} & h_{2}
\end{array}\right]
$$

$$
\text { companion matrix of } h(x)=x^{3}-h_{2} x^{2}-h_{1} x-h_{0}
$$

- $\gamma: A[x] \rightarrow \mathbb{M}_{3}(A)$ defined by $\gamma(f(x))=f(E)$ homomorphism $\gamma(A[x])=\mathbb{M}_{3}(A, h)$ subring of $\mathbb{M}_{3}(A)$ generated by E
- Barnett matrices.

Introduction

$$
\mathbb{C}=\frac{\mathbb{R}[x]}{\left\langle x^{2}+1\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \text { complex field }
$$

Introduction

$$
\begin{aligned}
& \mathbb{C}=\frac{\mathbb{R}[x]}{\left\langle x^{2}+1\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \text { complex field } \\
& \mathbb{Z}[i]=\frac{\mathbb{Z}[x]}{\left\langle x^{2}+1\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\} \text { Gaussian integers }
\end{aligned}
$$

Introduction

$$
\begin{aligned}
& \mathbb{C}=\frac{\mathbb{R}[x]}{\left\langle x^{2}+1\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \text { complex field } \\
& \mathbb{Z}[i]=\frac{\mathbb{Z}[x]}{\left\langle x^{2}+1\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\} \text { Gaussian integers } \\
& \mathbb{Z}[\sqrt{-5}]=\frac{\mathbb{Z}[x]}{\left\langle x^{2}+5\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-5 b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}
\end{aligned}
$$

Introduction

$$
\begin{aligned}
& \mathbb{C}=\frac{\mathbb{R}[x]}{\left\langle x^{2}+1\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \text { complex field } \\
& \mathbb{Z}[i]=\frac{\mathbb{Z}[x]}{\left\langle x^{2}+1\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\} \text { Gaussian integers } \\
& \mathbb{Z}[\sqrt{-5}]=\frac{\mathbb{Z}[x]}{\left\langle x^{2}+5\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-5 b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}
\end{aligned}
$$

- quadratic extension

$$
\mathbb{Q}(\sqrt{d})=\frac{\mathbb{Q}[x]}{\left\langle x^{2}+d\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-d b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\}
$$

Introduction

$$
\begin{aligned}
& \mathbb{C}=\frac{\mathbb{R}[x]}{\left\langle x^{2}+1\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \text { complex field } \\
& \mathbb{Z}[i]=\frac{\mathbb{Z}[x]}{\left\langle x^{2}+1\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\} \text { Gaussian integers } \\
& \mathbb{Z}[\sqrt{-5}]=\frac{\mathbb{Z}[x]}{\left\langle x^{2}+5\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-5 b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}
\end{aligned}
$$

- quadratic extension

$$
\mathbb{Q}(\sqrt{d})=\frac{\mathbb{Q}[x]}{\left\langle x^{2}+d\right\rangle} \cong\left\{\left.\left[\begin{array}{cc}
a & b \\
-d b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\}
$$

matrices

$$
\frac{\mathbb{R}[x]}{\left\langle x^{3}-1\right\rangle} \cong\left\{\left.\left[\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \text { ring of } 3 \times 3 \text { circulant }
$$

Introduction

- A commutative ring with identity 1

$$
\begin{gathered}
h(x)=x^{k}-h_{k-1} x^{k-1}-\ldots-h_{1} x-h_{0} \text { monic polynomial } \\
\quad \text { degree } k \geq 2
\end{gathered}
$$

Introduction

- A commutative ring with identity 1

$$
\begin{gathered}
h(x)=x^{k}-h_{k-1} x^{k-1}-\ldots-h_{1} x-h_{0} \text { monic polynomial } \\
\quad \text { degree } k \geq 2
\end{gathered}
$$

Introduction

- A commutative ring with identity 1

$$
\begin{gathered}
h(x)=x^{k}-h_{k-1} x^{k-1}-\ldots-h_{1} x-h_{0} \text { monic polynomial } \\
\quad \text { degree } k \geq 2
\end{gathered}
$$

- $A \cong\left[\begin{array}{llll}A & 0 & 0 & \ldots\end{array}\right]$ subring $\mathbb{M}_{1, k}(A, h)$

Introduction

- A commutative ring with identity 1

$$
\begin{gathered}
h(x)=x^{k}-h_{k-1} x^{k-1}-\ldots-h_{1} x-h_{0} \text { monic polynomial } \\
\quad \text { degree } k \geq 2
\end{gathered}
$$

- $A \cong\left[\begin{array}{llll}A & 0 & 0 & \ldots\end{array}\right]$ subring $\mathbb{M}_{1, k}(A, h)$

Introduction

- A commutative ring with identity 1

$$
\begin{gathered}
h(x)=x^{k}-h_{k-1} x^{k-1}-\ldots-h_{1} x-h_{0} \text { monic polynomial } \\
\quad \text { degree } k \geq 2
\end{gathered}
$$

- $A \cong\left[\begin{array}{llll}A & 0 & 0 & \ldots\end{array}\right]$ subring $\mathbb{M}_{1, k}(A, h)$
- radicals of $\mathbb{M}_{1, k}(A, h) \cong \mathbb{M}_{k}(A, h)$

General Radical Theory

- Kurosh-Amitsur radical α semisimple class $\mathcal{S} \alpha$

General Radical Theory

- Kurosh-Amitsur radical α semisimple class $\mathcal{S} \alpha$

General Radical Theory

- Kurosh-Amitsur radical α semisimple class $\mathcal{S} \alpha$
- two factors will determine $\alpha\left(\mathbb{M}_{1, k}(A, h)\right)$
- properties ring A
- properties polynomial $h(x)$

General Radical Theory

- Kurosh-Amitsur radical α semisimple class $\mathcal{S} \alpha$
- two factors will determine $\alpha\left(\mathbb{M}_{1, k}(A, h)\right)$
- properties ring A
- properties polynomial $h(x)$

General Radical Theory

- Kurosh-Amitsur radical α semisimple class $\mathcal{S} \alpha$
- two factors will determine $\alpha\left(\mathbb{M}_{1, k}(A, h)\right)$
- properties ring A
- properties polynomial $h(x)$
- well-developed radical theory for matrix rings

$$
\alpha\left(\mathbb{M}_{k}(A)\right)=\mathbb{M}_{k}(\alpha(A))
$$

General Radical Theory

- Kurosh-Amitsur radical α semisimple class $\mathcal{S} \alpha$
- two factors will determine $\alpha\left(\mathbb{M}_{1, k}(A, h)\right)$
- properties ring A
- properties polynomial $h(x)$
- well-developed radical theory for matrix rings

$$
\alpha\left(\mathbb{M}_{k}(A)\right)=\mathbb{M}_{k}(\alpha(A))
$$

General Radical Theory

- Kurosh-Amitsur radical α semisimple class $\mathcal{S} \alpha$
- two factors will determine $\alpha\left(\mathbb{M}_{1, k}(A, h)\right)$
- properties ring A
- properties polynomial $h(x)$
- well-developed radical theory for matrix rings

$$
\alpha\left(\mathbb{M}_{k}(A)\right)=\mathbb{M}_{k}(\alpha(A))
$$

- more useful $\frac{A[x]}{\langle h(x)\rangle} \cong \mathbb{M}_{1, k}(A, h)$

General Radical Theory

Theorem

人 hypernilpotent radical

$$
\begin{aligned}
& h(x)=x^{k}-h_{k-1} x^{k-1}-\ldots-h_{1} x-h_{0} \in A[x] \\
& h_{k-1}, h_{k-2}, \ldots, h_{1}, h_{0} \in \alpha(A) \text { and } \\
& {[\alpha(A) 0 \ldots 0] \subseteq \alpha\left(\mathbb{M}_{1, k}(A, h)\right) .}
\end{aligned}
$$

General Radical Theory

Theorem

α hypernilpotent radical

$$
\begin{aligned}
& h(x)=x^{k}-h_{k-1} x^{k-1}-\ldots-h_{1} x-h_{0} \in A[x] \\
& h_{k-1}, h_{k-2}, \ldots, h_{1}, h_{0} \in \alpha(A) \text { and } \\
& {[\alpha(A) 0 \ldots 0] \subseteq \alpha\left(\mathbb{M}_{1, k}(A, h)\right) .}
\end{aligned}
$$

Then $\alpha\left(\mathbb{M}_{1, k}(A, h)\right)=[\alpha(A) A \ldots A]$ and

$$
\frac{\mathbb{M}_{1, k}(A, h)}{\alpha\left(\mathbb{M}_{1, k}(A, h)\right)} \cong A / \alpha(A)
$$

Ideals

- A commutative ring with identity

$$
h(x)=x^{2}-h_{1} x-h_{0}
$$

Ideals

- A commutative ring with identity

$$
h(x)=x^{2}-h_{1} x-h_{0}
$$

- ideals of $\mathbb{M}_{1,2}(A, h)$

Ideals

- A commutative ring with identity

$$
h(x)=x^{2}-h_{1} x-h_{0}
$$

- ideals of $\mathbb{M}_{1,2}(A, h)$

Ideals

- A commutative ring with identity

$$
h(x)=x^{2}-h_{1} x-h_{0}
$$

- ideals of $\mathbb{M}_{1,2}(A, h)$
- $I, J \triangleleft A$

$$
[I I]=\mathbb{M}_{1,2}(I, h) \triangleleft \mathbb{M}_{1,2}(A, h)
$$

Ideals

- A commutative ring with identity

$$
h(x)=x^{2}-h_{1} x-h_{0}
$$

- ideals of $\mathbb{M}_{1,2}(A, h)$
- $I, J \triangleleft A$

$$
[I I]=\mathbb{M}_{1,2}(I, h) \triangleleft \mathbb{M}_{1,2}(A, h)
$$

Ideals

- A commutative ring with identity

$$
h(x)=x^{2}-h_{1} x-h_{0}
$$

- ideals of $\mathbb{M}_{1,2}(A, h)$
- $I, J \triangleleft A$

$$
\begin{aligned}
& \quad[I I]=\mathbb{M}_{1,2}(I, h) \triangleleft \mathbb{M}_{1,2}(A, h) \\
& \text { and } \mathbb{M}_{1,2}(A, h) / \mathbb{M}_{1,2}(I, h) \cong \mathbb{M}_{1,2}(A / I, h)
\end{aligned}
$$

Ideals

- A commutative ring with identity

$$
h(x)=x^{2}-h_{1} x-h_{0}
$$

- ideals of $\mathbb{M}_{1,2}(A, h)$
- $I, J \triangleleft A$

$$
\begin{aligned}
& {[I I]=\mathbb{M}_{1,2}(I, h) \triangleleft \mathbb{M}_{1,2}(A, h)} \\
& \text { and } \mathbb{M}_{1,2}(A, h) / \mathbb{M}_{1,2}(I, h) \cong \mathbb{M}_{1,2}(A / I, h) \\
& \qquad[I J] \triangleleft \mathbb{M}_{1,2}(A, h) \Leftrightarrow h_{0} J \subseteq I \subseteq J
\end{aligned}
$$

Ideals

- A commutative ring with identity

$$
h(x)=x^{2}-h_{1} x-h_{0}
$$

- ideals of $\mathbb{M}_{1,2}(A, h)$
- $I, J \triangleleft A$

$$
\begin{aligned}
& \quad[I I]=\mathbb{M}_{1,2}(I, h) \triangleleft \mathbb{M}_{1,2}(A, h) \\
& \text { and } \mathbb{M}_{1,2}(A, h) / \mathbb{M}_{1,2}(I, h) \cong \mathbb{M}_{1,2}(A / I, h)
\end{aligned}
$$

$$
\begin{aligned}
& {[I J] \triangleleft \mathbb{M}_{1,2}(A, h) \Leftrightarrow h_{0} J \subseteq I \subseteq J} \\
& {[I A] \triangleleft \mathbb{M}_{1,2}(A, h) \Leftrightarrow h_{0} \in I}
\end{aligned}
$$

Ideals

- A commutative ring with identity

$$
h(x)=x^{2}-h_{1} x-h_{0}
$$

- ideals of $\mathbb{M}_{1,2}(A, h)$
- $I, J \triangleleft A$

$$
\begin{aligned}
& \quad[I I]=\mathbb{M}_{1,2}(I, h) \triangleleft \mathbb{M}_{1,2}(A, h) \\
& \text { and } \mathbb{M}_{1,2}(A, h) / \mathbb{M}_{1,2}(I, h) \cong \mathbb{M}_{1,2}(A / I, h)
\end{aligned}
$$

$$
\begin{aligned}
& \qquad[I J] \triangleleft \mathbb{M}_{1,2}(A, h) \Leftrightarrow h_{0} J \subseteq I \subseteq J \\
& \qquad[I A] \triangleleft \mathbb{M}_{1,2}(A, h) \Leftrightarrow h_{0} \in I \\
& \text { and } \mathbb{M}_{1,2}(A, h) /[I A] \cong A / I
\end{aligned}
$$

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ determines three ideals of A :

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ determines three ideals of A :

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ determines three ideals of A :
$\bar{K}:=K \cap\left[\begin{array}{ll}A & 0\end{array}\right.$,
$K_{1}:=\{a \in A \mid \exists b \in A$ with $[a b] \in K\}$ and $K_{2}:=\{b \in A \mid \exists a \in A$ with $[a b] \in K\}$

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ determines three ideals of A :
$\bar{K}:=K \cap[A 0]$,
$K_{1}:=\{a \in A \mid \exists b \in A$ with $[a b] \in K\}$ and
$K_{2}:=\{b \in A \mid \exists a \in A$ with $[a b] \in K\}$
- $\bar{K} \subseteq K_{1} \subseteq K_{2}$

$$
\begin{aligned}
& h_{0} K_{2} \subseteq K_{1} \\
& {[a b] \in K \Rightarrow \operatorname{det}[a b]=a^{2}+h_{1} a b-h_{0} b^{2} \in \bar{K}}
\end{aligned}
$$

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ determines three ideals of A :

$$
\begin{aligned}
& \bar{K}:=K \cap[A 0], \\
& K_{1}:=\{a \in A \mid \exists b \in A \text { with }[a b] \in K\} \text { and } \\
& K_{2}:=\{b \in A \mid \exists a \in A \text { with }[a b] \in K\}
\end{aligned}
$$

- $\bar{K} \subseteq K_{1} \subseteq K_{2}$

$$
\begin{aligned}
& h_{0} K_{2} \subseteq K_{1} \\
& {[a b] \in K \Rightarrow \operatorname{det}[a b]=a^{2}+h_{1} a b-h_{0} b^{2} \in \bar{K}}
\end{aligned}
$$

- $[\bar{K} \bar{K}]$ and $\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]$ ideals of $\mathbb{M}_{1,2}(A, h) ;[\bar{K} \bar{K}] \subseteq\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]$

Ideals

- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
(i) K is homogeneous (i.e. $K=[I I]$ for some $I \triangleleft A$).

Ideals

- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
(i) K is homogeneous (i.e. $K=[I I]$ for some $I \triangleleft A$).

Ideals

- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
(i) K is homogeneous (i.e. $K=[I I]$ for some $I \triangleleft A$).
(ii) $K=[\bar{K} \bar{K}]$.
(iii) $\bar{K}=K_{1}=K_{2}$.
(iv) $[a b] \in K \Rightarrow[a 0] \in K$ and $[b 0] \in K$.

Ideals

- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
(i) K is homogeneous (i.e. $K=[I I]$ for some $I \triangleleft A$).
(ii) $K=[\bar{K} \bar{K}]$.
(iii) $\bar{K}=K_{1}=K_{2}$.
(iv) $[a b] \in K \Rightarrow[a 0] \in K$ and $[b 0] \in K$.
- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
(i) K is semi-homogeneous (i.e. $K=[I J]$ for some $I, J \triangleleft A$)

Ideals

- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
(i) K is homogeneous (i.e. $K=[I I]$ for some $I \triangleleft A$).
(ii) $K=[\bar{K} \bar{K}]$.
(iii) $\bar{K}=K_{1}=K_{2}$.
(iv) $[a b] \in K \Rightarrow[a 0] \in K$ and $[b 0] \in K$.
- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
(i) K is semi-homogeneous (i.e. $K=[I J]$ for some $I, J \triangleleft A$)

Ideals

- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
(i) K is homogeneous (i.e. $K=[I I]$ for some $I \triangleleft A$).
(ii) $K=[\bar{K} \bar{K}]$.
(iii) $\bar{K}=K_{1}=K_{2}$.
(iv) $[a b] \in K \Rightarrow[a 0] \in K$ and $[b 0] \in K$.
- Let $K \triangleleft \mathbb{M}_{1,2}(A, h)$. The following conditions are equivalent:
(i) K is semi-homogeneous (i.e. $K=[I J]$ for some $I, J \triangleleft A$).
(ii) $K=\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]$.
(iii) $\bar{K}=K_{1}$.
(iv) $[a b] \in K \Rightarrow[a 0] \in K$.

Ideals

- $I \triangleleft A$ h-prime ideal of A

$$
\text { for all } a, b \in A \text {, } \operatorname{det}[a b] \in I \Rightarrow a \in I \text { and } b \in I
$$

Ideals

- $I \triangleleft A$ h-prime ideal of A

$$
\text { for all } a, b \in A, \operatorname{det}[a b] \in I \Rightarrow a \in I \text { and } b \in I
$$

Ideals

- $I \triangleleft A$ h-prime ideal of A

$$
\begin{aligned}
& \text { for all } a, b \in A, \operatorname{det}[a b] \in I \Rightarrow a \in I \text { and } b \in I \\
& \qquad a^{2}+h_{1} a b-h_{0} b^{2} \in I \Rightarrow a \in I \text { and } b \in I
\end{aligned}
$$

Ideals

- $I \triangleleft A$ h-prime ideal of A
for all $a, b \in A, \operatorname{det}[a b] \in I \Rightarrow a \in I$ and $b \in I$ $a^{2}+h_{1} a b-h_{0} b^{2} \in I \Rightarrow a \in I$ and $b \in I$
- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ and $\bar{K} h$-prime $\Rightarrow K$ homogeneous

Ideals

- $I \triangleleft A$ h-prime ideal of A
for all $a, b \in A, \operatorname{det}[a b] \in I \Rightarrow a \in I$ and $b \in I$ $a^{2}+h_{1} a b-h_{0} b^{2} \in I \Rightarrow a \in I$ and $b \in I$
- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ and $\bar{K} h$-prime $\Rightarrow K$ homogeneous

Ideals

- $I \triangleleft A$ h-prime ideal of A

$$
\begin{aligned}
& \text { for all } a, b \in A, \operatorname{det}[a b] \in I \Rightarrow a \in I \text { and } b \in I \\
& \qquad a^{2}+h_{1} a b-h_{0} b^{2} \in I \Rightarrow a \in I \text { and } b \in I
\end{aligned}
$$

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ and $\bar{K} h$-prime $\Rightarrow K$ homogeneous
- K prime ideal of $\mathbb{M}_{1,2}(A, h)$. Then K homogeneous $\Leftrightarrow \bar{K}$ is h-prime ideal of A

Ideals

- $I \triangleleft A$ h-prime ideal of A

$$
\begin{aligned}
& \text { for all } a, b \in A, \operatorname{det}[a b] \in I \Rightarrow a \in I \text { and } b \in I \\
& \qquad a^{2}+h_{1} a b-h_{0} b^{2} \in I \Rightarrow a \in I \text { and } b \in I
\end{aligned}
$$

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ and $\bar{K} h$-prime $\Rightarrow K$ homogeneous
- K prime ideal of $\mathbb{M}_{1,2}(A, h)$. Then K homogeneous $\Leftrightarrow \bar{K}$ is h-prime ideal of A

Ideals

- $I \triangleleft A$ h-prime ideal of A

$$
\begin{aligned}
& \text { for all } a, b \in A, \operatorname{det}[a b] \in I \Rightarrow a \in I \text { and } b \in I \\
& \qquad a^{2}+h_{1} a b-h_{0} b^{2} \in I \Rightarrow a \in I \text { and } b \in I
\end{aligned}
$$

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ and $\bar{K} h$-prime $\Rightarrow K$ homogeneous
- K prime ideal of $\mathbb{M}_{1,2}(A, h)$. Then K homogeneous $\Leftrightarrow \bar{K}$ is h-prime ideal of A
- $I \triangleleft A$. Then $[I I]$ maximal ideal in $\mathbb{M}_{1,2}(A, h)$
$\Leftrightarrow I$-prime maximal ideal in A

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ maximal

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ maximal

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ maximal

$$
\bar{K}=K \cap\left[\begin{array}{ll}
A & 0
\end{array}\right]
$$

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ maximal
$\Leftrightarrow \bar{K}$ maximal ideal A and one of the following three cases hold:

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ maximal
$\Leftrightarrow \bar{K}$ maximal ideal A and one of the following three cases hold:

Ideals

- $K \triangleleft \mathbb{M}_{1,2}(A, h)$ maximal
$\Leftrightarrow \bar{K}$ maximal ideal A and one of the following three cases hold:
(i) $h_{0} \in \bar{K}$ in which case $K=[\bar{K} A]$ or
(ii) $h_{0} \notin \bar{K}, \bar{K}$ is h-prime and $K=[\bar{K} \bar{K}]$ or
(iii) $h_{0} \notin \bar{K}, \bar{K}$ is not h-prime and $[\bar{K} \bar{K}] \varsubsetneqq K$ with $K_{1}=K_{2}=A$.

h-prime integers

- h-prime maximal ideals $p \mathbb{Z}$ of the ring \mathbb{Z} for $h(x)=x^{2}-h_{1} x-h_{0} \in \mathbb{Z}[x]$

h-prime integers

- h-prime maximal ideals $p \mathbb{Z}$ of the ring \mathbb{Z} for $h(x)=x^{2}-h_{1} x-h_{0} \in \mathbb{Z}[x]$

h-prime integers

- h-prime maximal ideals $p \mathbb{Z}$ of the ring \mathbb{Z} for $h(x)=x^{2}-h_{1} x-h_{0} \in \mathbb{Z}[x]$
- given polynomial $h(x)$, prime number $p \in \mathbb{Z}$ is called h-prime if $p \mathbb{Z}$ is h-prime ideal
i.e. for all $a, b \in \mathbb{Z}, p\left|a^{2}+h_{1} a b-h_{0} b^{2} \Rightarrow p\right| a$ and $p \mid b$

h-prime integers

$-\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$

h-prime integers

$-\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$

h-prime integers

- $\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$
- p prime in \mathbb{Z}. Then:
p is h-prime in \mathbb{Z}

h-prime integers

- $\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$
- p prime in \mathbb{Z}. Then:
p is h-prime in \mathbb{Z}

h-prime integers

- $\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$
- p prime in \mathbb{Z}. Then:
p is h-prime in \mathbb{Z}
$\Leftrightarrow p \mathbb{Z} h$-prime ideal of \mathbb{Z}

h-prime integers

- $\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$
- p prime in \mathbb{Z}. Then:
p is h-prime in \mathbb{Z}
$\Leftrightarrow p \mathbb{Z} h$-prime ideal of \mathbb{Z}
$\Leftrightarrow[p \mathbb{Z} p \mathbb{Z}]=\mathbb{M}_{1,2}(p \mathbb{Z}, h)$ is a maximal ideal of $\mathbb{M}_{1,2}(\mathbb{Z}, h)$

h-prime integers

- $\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$
- p prime in \mathbb{Z}. Then:
p is h-prime in \mathbb{Z}
$\Leftrightarrow p \mathbb{Z} h$-prime ideal of \mathbb{Z}
$\Leftrightarrow[p \mathbb{Z} p \mathbb{Z}]=\mathbb{M}_{1,2}(p \mathbb{Z}, h)$ is a maximal ideal of $\mathbb{M}_{1,2}(\mathbb{Z}, h)$
$\Leftrightarrow \frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)}$ is a field

h-prime integers

- $\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$
- p prime in \mathbb{Z}. Then:
p is h-prime in \mathbb{Z}
$\Leftrightarrow p \mathbb{Z} h$-prime ideal of \mathbb{Z}
$\Leftrightarrow[p \mathbb{Z} p \mathbb{Z}]=\mathbb{M}_{1,2}(p \mathbb{Z}, h)$ is a maximal ideal of $\mathbb{M}_{1,2}(\mathbb{Z}, h)$
$\Leftrightarrow \frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)}$ is a field
$\Leftrightarrow \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$ is a field

h-prime integers

- $\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$
- p prime in \mathbb{Z}. Then:
p is h-prime in \mathbb{Z}
$\Leftrightarrow p \mathbb{Z} h$-prime ideal of \mathbb{Z}
$\Leftrightarrow[p \mathbb{Z} p \mathbb{Z}]=\mathbb{M}_{1,2}(p \mathbb{Z}, h)$ is a maximal ideal of $\mathbb{M}_{1,2}(\mathbb{Z}, h)$
$\Leftrightarrow \frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)}$ is a field
$\Leftrightarrow \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$ is a field
$\Leftrightarrow h(x)$ is irreducible over \mathbb{Z}_{p}

h-prime integers

- $\frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)} \cong \mathbb{M}_{1,2}\left(\frac{\mathbb{Z}}{p \mathbb{Z}}, h\right) \cong \mathbb{M}_{1,2}\left(\mathbb{Z}_{p}, h\right) \cong \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$
- p prime in \mathbb{Z}. Then:
p is h-prime in \mathbb{Z}
$\Leftrightarrow p \mathbb{Z} h$-prime ideal of \mathbb{Z}
$\Leftrightarrow[p \mathbb{Z} p \mathbb{Z}]=\mathbb{M}_{1,2}(p \mathbb{Z}, h)$ is a maximal ideal of $\mathbb{M}_{1,2}(\mathbb{Z}, h)$
$\Leftrightarrow \frac{\mathbb{M}_{1,2}(\mathbb{Z}, h)}{\mathbb{M}_{1,2}(p \mathbb{Z}, h)}$ is a field
$\Leftrightarrow \frac{\mathbb{Z}_{p}[x]}{\langle h(x)\rangle}$ is a field
$\Leftrightarrow h(x)$ is irreducible over \mathbb{Z}_{p}
$\Leftrightarrow h(t) \neq 0$ for all $t \in \mathbb{Z}_{p}$

h-prime integers

a prime p in \mathbb{Z} is h-prime
$\Rightarrow \operatorname{det}[a b]= \pm p$ has no solutions in \mathbb{Z}

h-prime integers

a prime p in \mathbb{Z} is h-prime
$\Rightarrow \operatorname{det}[a b]= \pm p$ has no solutions in \mathbb{Z}

h-prime integers

a prime p in \mathbb{Z} is h-prime
$\Rightarrow \operatorname{det}[a b]= \pm p$ has no solutions in \mathbb{Z}
(i.e. $a^{2}+h_{1} a b-h_{0} b^{2}= \pm p$ has no solutions in \mathbb{Z})

h-prime integers

a prime p in \mathbb{Z} is h-prime
$\Rightarrow \operatorname{det}[a b]= \pm p$ has no solutions in \mathbb{Z}
(i.e. $a^{2}+h_{1} a b-h_{0} b^{2}= \pm p$ has no solutions in \mathbb{Z})
$\Leftrightarrow[p 0]$ is a prime element in the $\operatorname{ring} \mathbb{M}_{1,2}(\mathbb{Z}, h)$

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers
for a prime $p, a^{2}+b^{2}=p$ has solutions exactly when $p=4 k+1$

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers
for a prime $p, a^{2}+b^{2}=p$ has solutions exactly when $p=4 k+1$
- prime p is h-prime
$\Leftrightarrow a^{2}+b^{2}=p$ has no solutions in \mathbb{Z}

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers
for a prime $p, a^{2}+b^{2}=p$ has solutions exactly when $p=4 k+1$
- prime p is h-prime
$\Leftrightarrow a^{2}+b^{2}=p$ has no solutions in \mathbb{Z}

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers
for a prime $p, a^{2}+b^{2}=p$ has solutions exactly when $p=4 k+1$
- prime p is h-prime
$\Leftrightarrow a^{2}+b^{2}=p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a Gaussian prime (i.e. $[p 0]$ prime in $\left.\mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]\right)$

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers
for a prime $p, a^{2}+b^{2}=p$ has solutions exactly when $p=4 k+1$
- prime p is h-prime
$\Leftrightarrow a^{2}+b^{2}=p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a Gaussian prime (i.e. [$p 0$] prime in $\left.\mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]\right)$
$\Leftrightarrow p=4 k+3$

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers
for a prime $p, a^{2}+b^{2}=p$ has solutions exactly when $p=4 k+1$
- prime p is h-prime
$\Leftrightarrow a^{2}+b^{2}=p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a Gaussian prime (i.e. [$p 0$] prime in $\left.\mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]\right)$
$\Leftrightarrow p=4 k+3$
- not universal for all quadratic polynomials over \mathbb{Z} (irreducible or not)

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers
for a prime $p, a^{2}+b^{2}=p$ has solutions exactly when $p=4 k+1$
- prime p is h-prime
$\Leftrightarrow a^{2}+b^{2}=p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a Gaussian prime (i.e. [$p 0$] prime in $\left.\mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]\right)$
$\Leftrightarrow p=4 k+3$
- not universal for all quadratic polynomials over \mathbb{Z} (irreducible or not)

h-prime integers

- $h(x)=x^{2}+1 \in \mathbb{Z}[x], \mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]$ is the ring of Gaussian integers
for a prime $p, a^{2}+b^{2}=p$ has solutions exactly when $p=4 k+1$
- prime p is h-prime
$\Leftrightarrow a^{2}+b^{2}=p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a Gaussian prime (i.e. [$p 0$] prime in $\left.\mathbb{M}_{1,2}(\mathbb{Z}, h)=\mathbb{Z}[i]\right)$
$\Leftrightarrow p=4 k+3$
- not universal for all quadratic polynomials over \mathbb{Z} (irreducible or not)
$h(x)=x^{2}+3$, the primes $p=5,11,17$ and 23 are h-prime in \mathbb{Z} but 3 and 13 not h-prime

h-prime integers

- $h(x)=x^{2}-2 \in \mathbb{Z}[x]$

h-prime integers

- $h(x)=x^{2}-2 \in \mathbb{Z}[x]$

h-prime integers

- $h(x)=x^{2}-2 \in \mathbb{Z}[x]$
prime p is h-prime in \mathbb{Z}
$\Leftrightarrow a^{2}-2 b^{2}= \pm p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a prime of the form $8 k+3$ or $8 k+5$

h-prime integers

- $h(x)=x^{2}-2 \in \mathbb{Z}[x]$
prime p is h-prime in \mathbb{Z}
$\Leftrightarrow a^{2}-2 b^{2}= \pm p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a prime of the form $8 k+3$ or $8 k+5$
- $h(x)=x^{2}-1 \in \mathbb{Z}[x], p$ prime

h-prime integers

- $h(x)=x^{2}-2 \in \mathbb{Z}[x]$
prime p is h-prime in \mathbb{Z}
$\Leftrightarrow a^{2}-2 b^{2}= \pm p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a prime of the form $8 k+3$ or $8 k+5$
- $h(x)=x^{2}-1 \in \mathbb{Z}[x], p$ prime

h-prime integers

- $h(x)=x^{2}-2 \in \mathbb{Z}[x]$
prime p is h-prime in \mathbb{Z}
$\Leftrightarrow a^{2}-2 b^{2}= \pm p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a prime of the form $8 k+3$ or $8 k+5$
- $h(x)=x^{2}-1 \in \mathbb{Z}[x], p$ prime
$a^{2}-b^{2}= \pm p$ no solutions in $\mathbb{Z} \Leftrightarrow p=2$

h-prime integers

- $h(x)=x^{2}-2 \in \mathbb{Z}[x]$
prime p is h-prime in \mathbb{Z}
$\Leftrightarrow a^{2}-2 b^{2}= \pm p$ has no solutions in \mathbb{Z}
$\Leftrightarrow p$ is a prime of the form $8 k+3$ or $8 k+5$
- $h(x)=x^{2}-1 \in \mathbb{Z}[x], p$ prime
$a^{2}-b^{2}= \pm p$ no solutions in $\mathbb{Z} \Leftrightarrow p=2$
2 is not h-prime no h-primes in \mathbb{Z}.

Radicals of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0} ;$ ring $\mathbb{M}_{1,2}(A, h)$

Radicals of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0} ;$ ring $\mathbb{M}_{1,2}(A, h)$

Radicals of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0} ;$ ring $\mathbb{M}_{1,2}(A, h)$
- trace $[a b]=2 a+h_{1} b$

Lemma

α radical with $R=\alpha\left(\mathbb{M}_{1,2}(A, h)\right)$. Then

$$
\begin{aligned}
& R \subseteq\{[a b] \mid \operatorname{det}[a b] \in \bar{R} \text { and trace }[a b] \in \bar{R}\} \\
& \subseteq\left\{\left[\left.\begin{array}{ll}
a b]
\end{array} \right\rvert\,[a b]^{2}=\left[a^{2}+h_{0} b^{2} 2 a b+h_{1} b^{2}\right] \in[\bar{R} \bar{R}]\right\} .\right.
\end{aligned}
$$

If α is a hypernilpotent radical, then equalities between all sets.

Radicals of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0} ;$ ring $\mathbb{M}_{1,2}(A, h)$
- trace $[a b]=2 a+h_{1} b$

Lemma

α radical with $R=\alpha\left(\mathbb{M}_{1,2}(A, h)\right)$. Then

$$
\begin{aligned}
& R \subseteq\{[a b] \mid \operatorname{det}[a b] \in \bar{R} \text { and trace }[a b] \in \bar{R}\} \\
& \subseteq\left\{\left[\left.\begin{array}{ll}
a b]
\end{array} \right\rvert\,[a b]^{2}=\left[a^{2}+h_{0} b^{2} 2 a b+h_{1} b^{2}\right] \in[\bar{R} \bar{R}]\right\} .\right.
\end{aligned}
$$

If α is a hypernilpotent radical, then equalities between all sets.

Radicals of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0} ;$ ring $\mathbb{M}_{1,2}(A, h)$
- $\operatorname{trace}[a b]=2 a+h_{1} b$

Lemma

α radical with $R=\alpha\left(\mathbb{M}_{1,2}(A, h)\right)$. Then

$$
\left.\left.\begin{array}{rl}
R \subseteq\left\{\left[\begin{array}{ll}
a & b
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
a & b
\end{array}\right] \bar{R} \text { and trace }[a b\right.
\end{array} a \in \bar{R}\right\}\right] .
$$

If α is a hypernilpotent radical, then equalities between all sets.

- relationship between $\alpha(A)$ and \bar{R} where $R=\alpha\left(\mathbb{M}_{1,2}(A, h)\right)$

Radicals of 2×2 Barnett matrix rings

- α strong $\Rightarrow \alpha(A) \cong[\alpha(A) 0] \subseteq \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \cap[A 0]=\bar{R}$

Radicals of 2×2 Barnett matrix rings

- α strong $\Rightarrow \alpha(A) \cong[\alpha(A) 0] \subseteq \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \cap[A 0]=\bar{R}$

Radicals of 2×2 Barnett matrix rings

- α strong $\Rightarrow \alpha(A) \cong[\alpha(A) 0] \subseteq \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \cap[A 0]=\bar{R}$
- $\alpha(A)=\bar{R} \Leftrightarrow$ for all $a \in A$, the equivalence

$$
a \in \alpha(A) \Leftrightarrow[a 0] \in \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \text { holds }
$$

Radicals of 2×2 Barnett matrix rings

- α strong $\Rightarrow \alpha(A) \cong[\alpha(A) 0] \subseteq \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \cap[A 0]=\bar{R}$
- $\alpha(A)=\bar{R} \Leftrightarrow$ for all $a \in A$, the equivalence

$$
a \in \alpha(A) \Leftrightarrow[a 0] \in \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \text { holds }
$$

Radicals of 2×2 Barnett matrix rings

- α strong $\Rightarrow \alpha(A) \cong[\alpha(A) 0] \subseteq \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \cap[A 0]=\bar{R}$
- $\alpha(A)=\bar{R} \Leftrightarrow$ for all $a \in A$, the equivalence

$$
a \in \alpha(A) \Leftrightarrow[a 0] \in \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \text { holds }
$$

- α element transfer property with respect to A and h (ETP)

Radicals of 2×2 Barnett matrix rings

- α strong $\Rightarrow \alpha(A) \cong[\alpha(A) 0] \subseteq \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \cap[A 0]=\bar{R}$
- $\alpha(A)=\bar{R} \Leftrightarrow$ for all $a \in A$, the equivalence

$$
a \in \alpha(A) \Leftrightarrow[a 0] \in \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \text { holds }
$$

- α element transfer property with respect to A and h (ETP)

Radicals of 2×2 Barnett matrix rings

- α strong $\Rightarrow \alpha(A) \cong[\alpha(A) 0] \subseteq \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \cap[A 0]=\bar{R}$
- $\alpha(A)=\bar{R} \Leftrightarrow$ for all $a \in A$, the equivalence

$$
a \in \alpha(A) \Leftrightarrow[a 0] \in \alpha\left(\mathbb{M}_{1,2}(A, h)\right) \text { holds }
$$

- α element transfer property with respect to A and h (ETP)
- nil radical and Jacobson radical have ETP

Radicals of 2×2 Barnett matrix rings

Theorem

a hypernilpotent radical with ETP. Then:

$$
\alpha\left(\mathbb{M}_{1,2}(A, h)\right)=\{[a b] \mid \operatorname{det}[a b] \in \alpha(A) \text { and } \operatorname{trace}[a b] \in \alpha(A)\}
$$

Radicals of 2×2 Barnett matrix rings

Theorem

a hypernilpotent radical with ETP. Then:

$$
\begin{aligned}
& \alpha\left(\mathbb{M}_{1,2}(A, h)\right)=\{[a b] \mid \operatorname{det}[a b] \in \alpha(A) \text { and } \operatorname{trace}[a b] \in \alpha(A)\} \\
& =\left\{[a b] \mid[a b]^{2} \in[\alpha(A) \alpha(A)]\right\}
\end{aligned}
$$

Radicals of 2×2 Barnett matrix rings

Theorem

a hypernilpotent radical with ETP. Then:

$$
\begin{aligned}
& \alpha\left(\mathbb{M}_{1,2}(A, h)\right)=\{[a b] \mid \operatorname{det}[a b] \in \alpha(A) \text { and } \operatorname{trace}[a b] \in \alpha(A)\} \\
& =\left\{[a b] \mid[a b]^{2} \in[\alpha(A) \alpha(A)]\right\} \\
& =\left\{[a b] \mid a^{2}+h_{0} b^{2} \in \alpha(A) \text { and } 2 a+h_{1} b \in \alpha(A)\right\} .
\end{aligned}
$$

Radicals of 2×2 Barnett matrix rings

Theorem

a hypernilpotent radical with ETP. Then:

$$
\begin{aligned}
& \quad \alpha\left(\mathbb{M}_{1,2}(A, h)\right)=\{[a b] \mid \operatorname{det}[a b] \in \alpha(A) \text { and trace }[a b] \in \alpha(A)\} \\
& \quad=\left\{[a b] \mid[a b]^{2} \in[\alpha(A) \alpha(A)]\right\} \\
& \quad=\left\{[a b] \mid a^{2}+h_{0} b^{2} \in \alpha(A) \text { and } 2 a+h_{1} b \in \alpha(A)\right\} \text {. } \\
& \text { If } \mathbb{M}_{1,2}(\alpha(A), h) \text { semiprime ideal of } \mathbb{M}_{1,2}(A, h) \text {, then } \\
& \alpha\left(\mathbb{M}_{1,2}(A, h)\right)=\mathbb{M}_{1,2}(\alpha(A), h) \text {. }
\end{aligned}
$$

Nil radical of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0}$

Nil radical of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0}$

Nil radical of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0}$
- \mathcal{N} nil radical of the ring $\mathbb{M}_{1,2}(A, h)$

Nil radical of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0}$
- \mathcal{N} nil radical of the ring $\mathbb{M}_{1,2}(A, h)$

Nil radical of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0}$
- \mathcal{N} nil radical of the ring $\mathbb{M}_{1,2}(A, h)$

```
Theorem
N nil radical
N}(\mp@subsup{\mathbb{M}}{1,2}{}(A,h)
={[a b] 佒,2 (A,h)|[a b] 2}\in\mp@subsup{\mathbb{M}}{1,2}{(\mathcal{N}(A),h)}.
```


Nil radical of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0}$
- \mathcal{N} nil radical of the ring $\mathbb{M}_{1,2}(A, h)$

```
Theorem
N nil radical
N}(\mp@subsup{\mathbb{M}}{1,2}{}(A,h)
={[a b] 佒,2 (A,h)|[a b] 2}\in\mp@subsup{\mathbb{M}}{1,2}{(\mathcal{N}(A),h)}.
```

- A integral domain
- $\mathcal{N}(A)=0$

Nil radical of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0}$
- \mathcal{N} nil radical of the ring $\mathbb{M}_{1,2}(A, h)$

```
Theorem
N nil radical
N}(\mp@subsup{\mathbb{M}}{1,2}{}(A,h)
={[a b] 佒,2 (A,h)|[a b] 2}\in\mp@subsup{\mathbb{M}}{1,2}{(\mathcal{N}(A),h)}.
```

- A integral domain
- $\mathcal{N}(A)=0$

Nil radical of 2×2 Barnett matrix rings

- $h(x)=x^{2}-h_{1} x-h_{0}$
- \mathcal{N} nil radical of the ring $\mathbb{M}_{1,2}(A, h)$

Theorem

\mathcal{N} nil radical
$\mathcal{N}\left(\mathbb{M}_{1,2}(A, h)\right)$
$=\left\{\left[\begin{array}{ll}a & \left.b] \in \mathbb{M}_{1,2}(A, h) \mid[a b]^{2} \in \mathbb{M}_{1,2}(\mathcal{N}(A), h)\right\} .\end{array}\right.\right.$

- A integral domain
- $\mathcal{N}(A)=0$
- h can have at most two roots in A

Nil radical

- $\Delta=$ discriminant of $h(x)$

$$
=h_{1}^{2}+4 h_{0}
$$

Nil radical

- $\Delta=$ discriminant of $h(x)$

$$
=h_{1}^{2}+4 h_{0}
$$

Nil radical

- $\Delta=$ discriminant of $h(x)$

$$
=h_{1}^{2}+4 h_{0}
$$

Theorem

A integral domain, \mathcal{N} nil radical. Then:
$\mathcal{N}\left(\mathbb{M}_{1,2}(A, h)\right)$
$=\left\{\begin{array}{l}\{0\} \text { if } \Delta \neq 0 \\ \left\{[a b] \in \mathbb{M}_{1,2}(A, h) \mid 2 a+h_{1} b=0\right\} \text { if } \Delta=0 \text { and charA } \neq 2 \\ \left\{[a b] \in \mathbb{M}_{1,2}(A, h) \mid a^{2}+h_{0} b^{2}=0\right\} \text { if } \Delta=0 \text { and charA }=2\end{array}\right.$

Nil radical

Theorem

A integral domain, $h(x)=x^{2}-h_{1} x-h_{0}$ with discriminant $\Delta=h_{1}^{2}+4 h_{0}$. Then:

Nil radical

Theorem

A integral domain, $h(x)=x^{2}-h_{1} x-h_{0}$ with discriminant $\Delta=h_{1}^{2}+4 h_{0}$. Then:
$\mathbb{M}_{1,2}(A, h)$ has non-zero nilpotent elements
\Leftrightarrow there is $0 \neq u \in A$ such that $u h(x)=(a x+b)^{2}$ for some $a, b \in A$

Nil radical

Theorem

A integral domain, $h(x)=x^{2}-h_{1} x-h_{0}$ with discriminant $\Delta=h_{1}^{2}+4 h_{0}$. Then:
$\mathbb{M}_{1,2}(A, h)$ has non-zero nilpotent elements
\Leftrightarrow there is $0 \neq u \in A$ such that $u h(x)=(a x+b)^{2}$ for some $a, b \in A$
$\Rightarrow \Delta=0$

Nil radical

Theorem

A integral domain, $h(x)=x^{2}-h_{1} x-h_{0}$ with discriminant $\Delta=h_{1}^{2}+4 h_{0}$. Then:
$\mathbb{M}_{1,2}(A, h)$ has non-zero nilpotent elements
\Leftrightarrow there is $0 \neq u \in A$ such that $u h(x)=(a x+b)^{2}$ for some $a, b \in A$
$\Rightarrow \Delta=0$
$\Leftrightarrow 4 h(x)=\left(2 x-h_{1}\right)^{2}$.

Nil radical

Theorem

A integral domain, $h(x)=x^{2}-h_{1} x-h_{0}$ with discriminant $\Delta=h_{1}^{2}+4 h_{0}$. Then:
$\mathbb{M}_{1,2}(A, h)$ has non-zero nilpotent elements
\Leftrightarrow there is $0 \neq u \in A$ such that $u h(x)=(a x+b)^{2}$ for some $a, b \in A$
$\Rightarrow \Delta=0$
$\Leftrightarrow 4 h(x)=\left(2 x-h_{1}\right)^{2}$.
If char $A \neq 2$, all four statements are equivalent.

Nil radical

Theorem

Suppose $h(x)=x^{2}-h_{1} x-h_{0} \in A[x]$ has $\Delta=0$; A integral domain. Then:

$$
\text { (1) } h(x)=(x-s)^{2} \text { for some } s \in A \Leftrightarrow-h_{0} \text { is a square in } A \text {. }
$$

Nil radical

Theorem

Suppose $h(x)=x^{2}-h_{1} x-h_{0} \in A[x]$ has $\Delta=0 ; A$ integral domain.
Then:
(1) $h(x)=(x-s)^{2}$ for some $s \in A \Leftrightarrow-h_{0}$ is a square in A.
(2) If char $A \neq 2$, then $h(x)=(x-s)^{2}$ for some $s \in A$
$\Leftrightarrow-h_{0}$ is a square in A
$\Leftrightarrow 2 \mid h_{1}$

Nil radical

- non-unit $p \in A$
prime if for all $a, b \in A, p|a b \Rightarrow p| a$ or $p \mid b$
semiprime if for all $a \in A, p\left|a^{2} \Rightarrow p\right| a$

Nil radical

- non-unit $p \in A$
prime if for all $a, b \in A, p|a b \Rightarrow p| a$ or $p \mid b$
semiprime if for all $a \in A, p\left|a^{2} \Rightarrow p\right| a$

Nil radical

- non-unit $p \in A$
prime if for all $a, b \in A, p|a b \Rightarrow p| a$ or $p \mid b$
semiprime if for all $a \in A, p\left|a^{2} \Rightarrow p\right| a$

Definition

non-unit $p \in A$ weakly semiprime if for all $a \in A$,

$$
p^{2}\left|a^{2} \Rightarrow p\right| a
$$

Nil radical

Theorem

A integral domain. Consider two conditions:
(1) Whenever $h(x)=x^{2}-h_{1} x-h_{0} \in A[x]$ with $\Delta=0$, then $h(x)=(x-s)^{2}$ for some $s \in A$.
(2) 2 is weakly semiprime in A.

Nil radical

Theorem

A integral domain. Consider two conditions:
(1) Whenever $h(x)=x^{2}-h_{1} x-h_{0} \in A[x]$ with $\Delta=0$, then $h(x)=(x-s)^{2}$ for some $s \in A$.
(2) 2 is weakly semiprime in A.

Then $(1) \Rightarrow(2)$ and when char $A \neq 2,(1) \Leftrightarrow(2)$.

Nil radical

$2 \in A$ prime or semiprime $\Rightarrow 2$ is weakly semiprime

Nil radical

$2 \in A$ prime or semiprime $\Rightarrow 2$ is weakly semiprime

Nil radical

$2 \in A$ prime or semiprime $\Rightarrow 2$ is weakly semiprime
\mathbb{Z} integers

- prime has usual meaning
- $n(\neq \pm 1)$ is semiprime if and only if n is square free
- all $n \neq \pm 1$ are weakly semiprime

Nil radical

> Theorem $\begin{aligned} & u \in \mathbb{Z}, u \text { not a square. Then } 2 \text { weakly semiprime in } \mathbb{Z}[\sqrt{u}] \\ & \qquad \Leftrightarrow u \text { is not divisible by } 4 \text {. }\end{aligned}$.

Nil radical

Theorem

$u \in \mathbb{Z}, u$ not a square. Then 2 weakly semiprime in $\mathbb{Z}[\sqrt{u}]$ $\Leftrightarrow u$ is not divisible by 4.

- $\mathbb{Z}[\sqrt{-5}]$ integral domain

2 not semiprime (eg. $2 \mid(1+\sqrt{-5})^{2}$ but $\left.2 \nmid 1+\sqrt{-5}\right)$
2 is weakly semiprime in $\mathbb{Z}[\sqrt{-5}]$.

von Neumann regular radical

- hypoidempotent radicals : nilpotent rings are semisimple

von Neumann regular radical

- hypoidempotent radicals : nilpotent rings are semisimple

von Neumann regular radical

- hypoidempotent radicals: nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any $a \in A$, there is $b \in A$ with $a=a b a$

von Neumann regular radical

- hypoidempotent radicals: nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any $a \in A$, there is $b \in A$ with $a=a b a$

von Neumann regular radical

- hypoidempotent radicals : nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any $a \in A$, there is $b \in A$ with $a=a b a$
- $v\left(\mathbb{M}_{1,2}(A, h)\right)=\left\{[a b] \left\lvert\,\left[\begin{array}{ll}a & 0\end{array}\right]\right.\right.$ and $[b 0]$ are in $\left.v\left(\mathbb{M}_{1,2}(A, h)\right)\right\}$

$$
\subseteq[v(A) v(A)]
$$

von Neumann regular radical

- hypoidempotent radicals : nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any $a \in A$, there is $b \in A$ with $a=a b a$
- $v\left(\mathbb{M}_{1,2}(A, h)\right)=\left\{[a b] \left\lvert\,\left[\begin{array}{ll}a & 0\end{array}\right]\right.\right.$ and $[b 0]$ are in $\left.v\left(\mathbb{M}_{1,2}(A, h)\right)\right\}$

$$
\subseteq[v(A) v(A)]
$$

von Neumann regular radical

- hypoidempotent radicals : nilpotent rings are semisimple
- v von Neumann regular radical ring A radical: for any $a \in A$, there is $b \in A$ with $a=a b a$
- $v\left(\mathbb{M}_{1,2}(A, h)\right)=\left\{[a b] \left\lvert\,\left[\begin{array}{ll}a & 0\end{array}\right]\right.\right.$ and $[b 0]$ are in $\left.v\left(\mathbb{M}_{1,2}(A, h)\right)\right\}$

$$
\begin{aligned}
& \subseteq[v(A) v(A)] \\
& A \in \mathcal{S} v \Rightarrow \mathbb{M}_{1,2}(A, h) \in \mathcal{S} v \text { and } \\
& \mathbb{M}_{1,2}(A, h) \in v \Rightarrow A \in v
\end{aligned}
$$

