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Background

When D is an integral domain with field of fractions K , the ring of integer-valued
polynomials on D is defined to be

Int(D) = {f (x) ∈ K [x ] | f (d) ∈ D for all d ∈ D}

Over the past few years, attention has turned to a generalization of Int(D) where
we allow the polynomials to act on elements of a D-algebra instead of just on D.

Example
Let n > 1 and consider polynomials in K [x ] that map matrices in Mn(D) back to
Mn(D) under evaluation:

{f (x) ∈ K [x ] | f (a) ∈ Mn(D) for all a ∈ Mn(D)}

This is the ring of integer-valued polynomials on Mn(D) with coefficients in K .
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Standard Assumptions

Throughout:
D is an integral domain

K is the field of fractions of D

A denotes a torsion-free D-algebra such that A ∩ K = D

We say A is of finite type if A is finitely generated as a D-module
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Two Ways to Generalize

One way to generalize Int(D) is to replace D with A in the definition.

Definition
We define IntK (A) = {f (x) ∈ K [x ] | f (a) ∈ A for all a ∈ A}

Since we are assuming that A ∩ K = D, we always have

D[x ] ⊆ IntK (A) ⊆ Int(D)

Another way to generalize Int(D) is to replace D with A and replace K with a
larger ring that contains A.

Definition
Let B = K ⊗D A be the extension of A to a K -algebra. We define

Int(A) = {f (x) ∈ B[x ] | f (a) ∈ A for all a ∈ A}

With this notation, IntK (A) = Int(A) ∩ K [x ]

Nicholas J. Werner (SUNY College at Old Westbury) IVP on Algebras July 3, 2016 6 / 39



Two Ways to Generalize

One way to generalize Int(D) is to replace D with A in the definition.

Definition
We define IntK (A) = {f (x) ∈ K [x ] | f (a) ∈ A for all a ∈ A}

Since we are assuming that A ∩ K = D, we always have

D[x ] ⊆ IntK (A) ⊆ Int(D)

Another way to generalize Int(D) is to replace D with A and replace K with a
larger ring that contains A.

Definition
Let B = K ⊗D A be the extension of A to a K -algebra. We define

Int(A) = {f (x) ∈ B[x ] | f (a) ∈ A for all a ∈ A}

With this notation, IntK (A) = Int(A) ∩ K [x ]
Nicholas J. Werner (SUNY College at Old Westbury) IVP on Algebras July 3, 2016 6 / 39



Is Int(A) a ring?

IntK (A) = {f (x) ∈ K [x ] | f (a) ∈ A for all a ∈ A}

Int(A) = {f (x) ∈ B[x ] | f (a) ∈ A for all a ∈ A}

IntK (A) is always a commutative ring.

If A is commutative, then Int(A) is also a commutative ring.

But, what if A is noncommutative?

For instance, what happens when A = Mn(D), so that B = Mn(K )?

In cases like these, B[x ] (and hence Int(A)) contains polynomials with coefficients
from a noncommutative ring.
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Polynomials over Noncommutative Rings
If B is a noncommutative ring, then we will add and multiply polynomials as we
normally would: for all a, b ∈ B,

axn + bxn = (a + b)xn and (axn)(bxm) = (ab)xn+m

General conventions:
1. the indeterminate x commutes with everything
2. polynomials are evaluated with the indeterminate on the right

Evaluation can behave in unexpected ways. For example:

Let a, b ∈ B be such that ab 6= ba.
Let f (x) = x − a and g(x) = x − b be elements of B[x ].
Let h(x) = f (x)g(x) = x2 − (a + b)x + ab.
Then, f (a)g(a) = 0, but h(a) = ab − ba 6= 0.

Since Int(A) is defined entirely in terms of evaluation, it is nontrivial to prove that
it is closed under multiplication.
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A Sufficient Condition for Int(A) to be a Ring

Int(A) = {f (x) ∈ B[x ] | f (a) ∈ A for all a ∈ A}
The set Int(A) is always closed under addition (and in fact has a left
IntK (A)-module structure).

The following theorem gives a condition under which Int(A) is a ring.

Theorem
Assume each a ∈ A can be written as a finite sum a =

∑
i ci ui , where ci , ui ∈ A,

each ui is a unit in A, and each ci is central in B. Then, Int(A) is a ring.

In particular, Int(A) is a ring in the following cases:
Matrix rings: A = Mn(D)
Group rings: A = DG
Lipschitz quaternions: A = Z⊕ Zi⊕ Zj⊕ Zk, where i2 = j2 = −1 and
ij = k = −ji
Hurwitz quaternions:
A = {a + bi + cj + dk | a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1

2}
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Necessary and Sufficient Conditions?

The theorem stated on the previous slide is sufficient, but is not necessary.

Theorem (S. Frisch)
Let n > 1. Let A be the set of upper triangular matrices in Mn(D). Then, Int(A)
is a ring.

Open Problems
If possible, find an example of a D-algebra A such that Int(A) is not a ring.
Give necessary and sufficient conditions on A so that Int(A) is a ring.

Conjecture
Assume that A is of finite type. Then, Int(A) is a ring.
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Non-triviality of IntK (A)

Nicholas J. Werner (SUNY College at Old Westbury) IVP on Algebras July 3, 2016 11 / 39



Back to IntK (A)

Recall that

IntK (A) = {f (x) ∈ K [x ] | f (a) ∈ A for all a ∈ A}
= Int(A) ∩ K [x ]

Also recall that we are assuming A∩K = D. This condition is equivalent to having

D[x ] ⊆ IntK (A) ⊆ Int(D)

It is natural to consider when these containments are proper. That is:

When is D[x ] $ IntK (A)?
When is IntK (A) $ Int(D)?

We will investigate the first question now, and come back to the second question
later.
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Non-triviality for Int(D)

In the traditional setting, we say that Int(D) is nontrivial if D[x ] $ Int(D). We
adopt the same terminology for IntK (A).

Definition
IntK (A) is nontrivial if D[x ] $ IntK (A).

There are known characterizations of when Int(D) is nontrivial.

For a Noetherian domain D, Int(D) is nontrivial if and only if there is a prime
conductor ideal of D with finite residue field.

D. Rush gave a double-boundedness condition on D that is necessary and
sufficient for Int(D) to be nontrivial, and which holds for any domain D.
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Non-triviality for IntK (A)

The first of these non-triviality conditions carries over directly to IntK (A).

Theorem (S. Frisch)
Let D be Noetherian and let A be of finite type. Then, IntK (A) is nontrivial if and
only if there is a prime conductor ideal of D with finite residue field.

By using Rush’s criterion, we can drop the Noetherian condition on D and weaken
the assumption that A is finitely generated.
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Algebraic and Integral Algebras

Definition
Let R be a commutative and A an R-algebra.

We say that A is an algebraic algebra over R if every element of A satisfies a
polynomial with coefficients in R.

We say that A is an integral algebra over R if every element of A satisfies a
monic polynomial with coefficients in R.

We say that A is of bounded degree if there is a uniform bound on the degrees of
the minimal polynomials of elements of A.

Theorem
Let A be an integral D-algebra of bounded degree. Then, IntK (A) is nontrivial if
and only if Int(D) is nontrivial.

In particular, this theorem applies when A is finitely generated as a D-module.
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Sketch of the proof

Theorem
Let A be an integral D-algebra of bounded degree. Then, IntK (A) is nontrivial if
and only if Int(D) is nontrivial.

Here is the idea of the proof:
Assuming A is an integral D-algebra of bounded degree n, show that
IntK (Mn(D)) ⊆ IntK (A). Thus, we have the following containments:

D[x ] ⊆ IntK (Mn(D)) ⊆ IntK (A) ⊆ Int(D)

Use Rush’s double-boundedness criteria to prove that if Int(D) is nontrivial,
then IntK (Mn(D)) is nontrivial.
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General Case
What if A is not finitely generated? It turns out that IntK (A) can still be
nontrivial.

Example
Let A =

∏
i∈N

Z. Then, IntQ(A) = Int(Z ), so IntQ(A) is nontrivial.

In this example, A is not an algebraic Z-algebra (let alone integral or of bounded
degree).

However, for each prime p, every element of A/pA is killed by xp − x . So, A/pA
is an algebraic algebra of bounded degree over Z/pZ.

Theorem
Let D be a Dedekind domain. Then, IntK (A) is nontrivial if and only if there
exists a prime ideal P of D of finite index such that A/PA is a D/P-algebraic
algebra of bounded degree.
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Examples

1. Let D = Z and A = Z, the absolute integral closure of Z.
Then, for each prime p, A/pA is an algebraic Z/pZ-algebra of unbounded
degree.
Thus, IntQ(Z) = Z[x ].

2. Let D = Z(p) and A = Zp, the p-adic integers.
Then, A/pA ∼= D/pD ∼= Z/pZ, so Z(p)[x ] $ IntQ(A).
In fact, IntQ(A) = Int(D) in this case.

3. Let D be a DVR with maximal ideal P and finite residue field.
Let A be a D-algebra such that IntK (A) $ Int(D), and let Â be the P-adic
completion of A.
Then, we have

D[x ] $ IntK (Â) = IntK (A) $ Int(D)
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Decomposition of Int(A)
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Motivation: Matrix Rings
IntK (A) is commutative, so it should be easier to work with than Int(A).
Question: What can IntK (A) tell us about Int(A)?
Answer: In some cases, quite a bit!

Theorem (S. Frisch)
When A = Mn(D), Int(A) is itself a matrix ring. Explicitly,

Int(Mn(D)) ∼= Mn(IntK (Mn(D)))

The isomorphism in the theorem is achieved by associating a polynomial with
matrix coefficients to a matrix with polynomial entries.
For example, with M2(Z),(

1 0
0 0

)
x2(x − 1)2(x2 + x + 1)

2 +
(

0 1
−1 0

)
x2 + 3x

corresponds to (
x2(x−1)2(x2+x+1)

2 + 3x x2

−x2 3x

)
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Matrix Rings Redux

Theorem (S. Frisch)
When A = Mn(D), Int(A) is itself a matrix ring. Explicitly,

Int(Mn(D)) ∼= Mn(IntK (Mn(D)))

Question: Are there other algebras that exhibit this behavior?

To find out, we will rephrase the theorem.

For 1 ≤ i , j ≤ n, let Eij be the matrix with 1 in the (i , j)-entry and 0 elsewhere.

Then, Mn(D) =
⊕

i,j DEij (direct sum as a D-module).

Theorem (S. Frisch)

Int(Mn(D)) =
⊕
i,j

IntK (Mn(D))Eij (direct sum as an IntK (Mn(D))-module)
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Int-decomposable Algebras

Definition
Let A =

⊕t
i=1 Dαi be a free D-algebra. We say that A is Int-decomposable (with

respect to {αi}t
i=1) if Int(A) =

⊕t
i=1 IntK (A)αi .

In other words, a (free) Int-decomposable algebra A is one with the following
property:

Let f ∈ Int(A)
Write f =

∑
i fiαi , where fi ∈ K [x ]

Then, each fi ∈ IntK (A)

Lemma
Being Int-decomposable is independent of the D-basis we choose for A.
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Examples and Non-examples
We know that matrix rings Mn(D) are Int-decomposable.
Are there any other examples?

It is actually easier to find examples of free D-algebras that are not
Int-decomposable.

Non-example: Gaussian Integers
Let D = Z and A = Z[i].

Then, (1 + i)(x2 − x)
2 ∈ Int(Z[i]), but x2 − x

2 /∈ IntQ(Z[i])

Non-example: Lipschitz Quaternions
Let A = Z⊕ Zi⊕ Zj⊕ k with i2 = j2 = −1.

Then, (1 + i + j + k)(x2 − x)
2 ∈ Int(A), but x2 − x

2 /∈ IntQ(A)
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A Characterization Theorem

Example
Let p be an odd prime and D = Z(p). Let A be the quaternion algebra
A = D ⊕ Di⊕ Dj⊕ Dk where i2 = j2 = −1.
Then, A is Int-decomposable.

The algebra in this example is not a matrix ring, but there is a connection to 2× 2
matrices: A/pA ∼= M2(Fp).

This turns out to be what we need to classify Int-decomposable algebras.

Theorem
Let D be a Dedekind domain with finite residue rings. Let A be a free D-algebra.
Then, A is Int-decomposable if and only if for each nonzero prime P of D, there
exist n, t > 0 and a finite field Fq such that A/PA ∼=

⊕t
i=1 Mn(Fq).
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Sketch of Proof

Theorem
Let D be a Dedekind domain with finite residue rings. Let A be a free D-algebra.
Then, A is Int-decomposable if and only if for each nonzero prime P of D, there
exist n, t > 0 and a finite field Fq such that A/PA ∼=

⊕t
i=1 Mn(Fq).

The proof is involved! But here are the major steps.

Localize at P. Thus, WLOG we can assume that D is a DVR with maximal
ideal πD.
There is a correspondence between polynomials in Int(A) and polynomials in
the null ideals

N(A/πkA) = {g(x) ∈ (A/πkA)[x ] | g(a) = 0 for all a ∈ A/πkA}
Explicitly, g(x)/πk ∈ Int(A) if and only if g(x) ∈ N(A/πkA).
Develop an analogous notion of “decomposability” for the null ideals
N(A/πkA).
Prove that N(A/πkA) is “decomposable” if and only if
A/πkA ∼=

⊕t
i=1 Mn(T ), where T is a commutative local rings of a certain

form.
Show that it is enough to check just A/πA.
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Extending the Definition

The definition of Int-decomposable relies on the presence of a D-basis for A.

Can we make this notion work when A is not free?

Key observation: Recall that B = K ⊗D A.
Then, A, Int(A), and IntK (A) are all contained in B[x ].
When Int(A) is Int-decomposable, Int(A) is equal to the subring of B[x ] generated
by IntK (A) and A.

Definition
We say that A (not necessarily free!) is Int-decomposable if

Int(A) ∼= IntK (A)⊗D A

Informally, Int(A) is Int-decomposable if Int(A) is equal to the subring of B[x ]
generated by IntK (A) and A.
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The Same Classification Theorem

Theorem
Let D be a Dedekind domain with finite residue rings. Assume that A is finitely
generated as a D-module. Then, the following are equivalent.

1. A is Int-decomposable
2. For each nonzero prime P of D, there exist n, t > 0 and a finite field Fq such

that A/PA ∼=
⊕t

i=1 Mn(Fq)

3. For each nonzero prime P of D, there exist n, t > 0 such that the completion
ÂP satisfies ÂP ∼=

⊕t
i=1 Mn(T̂P), where T̂P is a complete DVR with finite

residue field and fraction field that is a finite unramified extension of K̂P .
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When IntK (A) = Int(D)

A slight variation on this theorem allows us to determine when IntK (A) = Int(D).

Theorem
Let D be a Dedekind domain with finite residue rings. Assume that A is of finite
type. Then, the following are equivalent.

1. IntK (A) = Int(D)
2. For each nonzero prime P of D, A/PA ∼=

⊕t
i=1 D/P, for some t > 0.

3. For each nonzero prime P of D, ÂP ∼=
⊕t

i=1 D̂P , for some t > 0.
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⊕t

i=1 D̂P , for some t > 0.

Nicholas J. Werner (SUNY College at Old Westbury) IVP on Algebras July 3, 2016 28 / 39



A Crazy Theorem...

In the case where D is the ring of integers of a number field, we can also give a
global characterization of Int-decomposability.

Theorem
Let K be a number field with ring of integers D. As usual, let A be a D-algebra of
finite type and let B = K ⊗D A.
Then, A is Int-decomposable if and only if the following conditions hold:

1. A is a maximal order in B

2. B is a finite dimensional semisimple K -algebra with simple components
B1, . . . ,Br that satisfy the following:

(i) the Bi share a common center F
(ii) F is a finite unramified Galois field extension of K
(iii) each Bi is unramified at every finite place of F
(iv) the degree of Bi as an F -central simple algebra is the same for each i
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With Some Very Nice Corollaries

When both D and A are rings of integers, most of the conditions in the last
theorem simplify considerably.

Corollary
Let K ⊆ L be number fields with rings of integers OK and OL. Consider OL as an
OK -algebra. Then,

1. OL is Int-decomposable if and only of L/K is an unramified Galois extension
2. IntK (OL) = Int(OK ) if and only if L = K

Corollary
Let A be a Z-algebra that is finitely generated as a Z-module.

1. A is Int-decomposable if and only if A ∼=
⊕t

i=1 Mn(Z) for some n and t
2. IntQ(A) = Int(Z) if and only if A ∼=

⊕t
i=1 Z for some t
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Other Decompositions

We have classified the algebras such that Int(A) ∼= IntK (A)⊗D A

There are other ways to decompose Int(A) in terms of IntK (A).

Theorem (S. Frisch)
Let D be a domain. Let Tn(D) be the ring of upper triangular matrices with
entries in D. Then,

Int(Tn(D)) ∼=


IntK (Tn(D)) IntK (Tn−1(D)) · · · IntK (T2(D)) IntK (T1(D))

0 IntK (Tn−1(D)) · · · IntK (T2(D)) IntK (T1(D))
. . .

0 0 · · · IntK (T2(D)) IntK (T1(D))
0 0 · · · 0 IntK (T1(D))



Nicholas J. Werner (SUNY College at Old Westbury) IVP on Algebras July 3, 2016 31 / 39



Other Decompositions

We have classified the algebras such that Int(A) ∼= IntK (A)⊗D A

There are other ways to decompose Int(A) in terms of IntK (A).

Theorem (S. Frisch)
Let D be a domain. Let Tn(D) be the ring of upper triangular matrices with
entries in D. Then,

Int(Tn(D)) ∼=


IntK (Tn(D)) IntK (Tn−1(D)) · · · IntK (T2(D)) IntK (T1(D))

0 IntK (Tn−1(D)) · · · IntK (T2(D)) IntK (T1(D))
. . .

0 0 · · · IntK (T2(D)) IntK (T1(D))
0 0 · · · 0 IntK (T1(D))



Nicholas J. Werner (SUNY College at Old Westbury) IVP on Algebras July 3, 2016 31 / 39



Further Questions
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What about Nonassociative Algebras?

Throughout, A has always been an associative algebra.

But, to define IntK (A), all we need is for A to be power associative, meaning that
anam = an+m for all a ∈ A.

In particular, we could take D = Z and A could be the integral octonions OZ, or
some other (nonassociative) ring arising from the Cayley numbers.

Question: Does anything interesting happen with IntK (A) if we allow A to be
nonassociative?

Question: Let OQ be the rational octonions, and define

Int(OZ) = {f (x) ∈ OQ[x ] | f (a) ∈ OZ for all a ∈ OZ}

Does Int(OZ) have a (nonassociative) ring structure? In other words, is Int(OZ)
closed under multiplication?
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Integer-valued Rational Functions
Another variation on Int(D) is to study integer-valued rational functions.
We define IntR(D) = {φ(x) ∈ K (x) | φ(d) ∈ D for all d ∈ D}.

There is nothing stopping us from doing the same thing with algebras:

IntR
K (A) = {φ(x) ∈ K (x) | φ(a) ∈ A for all a ∈ A}

To get rational functions in IntR
K (A), we need to find polynomials that are

unit-valued on A.
If u(x) ∈ D[x ] is unit-valued on A and f (x) ∈ D[x ], then φ(x) = f (x)

u(x) ∈ IntR
K (A).

Let U = {unit-valued polynomials in D[x ]}. Then IntR
K (A) contains U−1D[x ].

However, there are examples where IntR
K (A) strictly contains U−1D[x ].

Proposition
Let D = Q[t](t) and A = M2(D). Then, the polynomial x4 + t is not unit-valued
on A, but t/(x4 + t) ∈ IntR

K (A).
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Integer-valued Polynomials on Subsets

The traditional construction of Int(D),

Int(D) = {f ∈ k[x ] | f (d) ∈ D for all d ∈ D}

can be extended to polynomials evaluated only on subsets of D.
For a subset S ⊆ D, we define

Int(S,D) = {f ∈ k[x ] | f (s) ∈ D for all s ∈ S}

The rings Int(S,D) are well-studied, although in general they are harder to work
with than Int(D).

Question: What happens if we attempt this with noncommutative rings?
For a subset S ⊆ A, we can define

Int(S,A) = {f (x) ∈ B[x ] | f (s) ∈ A for all s ∈ S}

Question: What can we prove about Int(S,A)? In particular, when is it a ring?
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Example

Let A be a noncommutative Z-algebra. Let a, b ∈ A such that ab 6= ba.

Take S = {a}.

Then, x − b ∈ Int(S,A) and x−a
n ∈ Int(S,A) for all n > 0.

Since ab − ba 6= 0, there exists m ∈ Z such that ab − ba /∈ mA.

Let f (x) = x−a
m (x − b) = x2−(a+b)x+ab

m .

Then, f (a) = ab−ba
m /∈ A.

Thus, Int(S,A) is not closed under multiplication, and hence is not a ring.
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A Sufficient Condition

Proposition
Assume that A is generated by a set of units U. If uSu−1 ⊆ S for all u ∈ U, then
Int(S,A) is a ring.

Example
Let A be the Lipschitz quaternions: A = Z⊕ Zi⊕ Zj⊕ Zk.

Let S = {i,−i}.

Then, uSu−1 ⊆ S for all u ∈ {1, i, j, k}, so Int(S,A) is a ring.

The condition in the Proposition is sufficient for Int(S,A) to be a ring, but it is
not necessary.

Example
Let A be the Lipschitz quaternions and let S = {i, j}.

Then, one can prove that Int(S,A) is a ring.
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Union and Intersections

Lemma
Let A be a D-algebra. Let S,T ⊆ A be such that both Int(S,A) and Int(T ,A) are
rings. Then, Int(S ∪ T ,A) is a ring.

So, the collection of subsets S of A such that Int(S,A) is a ring is closed under
unions.

However, it is not closed under intersections.

Example
Let A be the Lipschitz quaternions, S = {i,−i}, and T = {i, j}. Then,
S ∩ T = {i}, and Int(S ∩ T ,A) is not a ring.

So, it does not appear that topology can help us caterogize the sets for which
Int(S,A) is a ring.
Question: What is going on?
Problem to work on: Which finite subsets S of M2(Z) are such that
Int(S,M2(Z)) is a ring?
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Thank you!
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