Integer-valued Polynomials on Algebras: New Results and New Questions

Nicholas J. Werner
SUNY College at Old Westbury

July 3, 2016

Outline

(1) Introduction
(2) Non-triviality
(3) Decomposition of $\operatorname{Int}(A)$
(4) Further Questions

Introduction

Background

When D is an integral domain with field of fractions K, the ring of integer-valued polynomials on D is defined to be

$$
\operatorname{lnt}(D)=\{f(x) \in K[x] \mid f(d) \in D \text { for all } d \in D\}
$$

Background

When D is an integral domain with field of fractions K, the ring of integer-valued polynomials on D is defined to be

$$
\operatorname{lnt}(D)=\{f(x) \in K[x] \mid f(d) \in D \text { for all } d \in D\}
$$

Over the past few years, attention has turned to a generalization of $\operatorname{Int}(D)$ where we allow the polynomials to act on elements of a D-algebra instead of just on D.

Background

When D is an integral domain with field of fractions K, the ring of integer-valued polynomials on D is defined to be

$$
\operatorname{lnt}(D)=\{f(x) \in K[x] \mid f(d) \in D \text { for all } d \in D\}
$$

Over the past few years, attention has turned to a generalization of $\operatorname{Int}(D)$ where we allow the polynomials to act on elements of a D-algebra instead of just on D.

Example

Let $n>1$ and consider polynomials in $K[x]$ that map matrices in $M_{n}(D)$ back to $M_{n}(D)$ under evaluation:

$$
\left\{f(x) \in K[x] \mid f(a) \in M_{n}(D) \text { for all } a \in M_{n}(D)\right\}
$$

This is the ring of integer-valued polynomials on $M_{n}(D)$ with coefficients in K.

Standard Assumptions

Throughout:

- D is an integral domain
- K is the field of fractions of D
- A denotes a torsion-free D-algebra such that $A \cap K=D$
- We say A is of finite type if A is finitely generated as a D-module

Two Ways to Generalize

One way to generalize $\operatorname{lnt}(D)$ is to replace D with A in the definition.

Definition

We define $\operatorname{Int}_{K}(A)=\{f(x) \in K[x] \mid f(a) \in A$ for all $a \in A\}$
Since we are assuming that $A \cap K=D$, we always have

$$
D[x] \subseteq \operatorname{lnt}_{K}(A) \subseteq \operatorname{lnt}(D)
$$

Two Ways to Generalize

One way to generalize $\operatorname{lnt}(D)$ is to replace D with A in the definition.

Definition

We define $\operatorname{Int}_{K}(A)=\{f(x) \in K[x] \mid f(a) \in A$ for all $a \in A\}$
Since we are assuming that $A \cap K=D$, we always have

$$
D[x] \subseteq \operatorname{lnt}_{K}(A) \subseteq \operatorname{lnt}(D)
$$

Another way to generalize $\operatorname{lnt}(D)$ is to replace D with A and replace K with a larger ring that contains A.

Definition

Let $B=K \otimes_{D} A$ be the extension of A to a K-algebra. We define

$$
\operatorname{lnt}(A)=\{f(x) \in B[x] \mid f(a) \in A \text { for all } a \in A\}
$$

With this notation, $\operatorname{lnt}_{K}(A)=\operatorname{Int}(A) \cap K[x]$

Is $\operatorname{lnt}(A)$ a ring?

$$
\begin{aligned}
\operatorname{lnt}_{K}(A) & =\{f(x) \in K[x] \mid f(a) \in A \text { for all } a \in A\} \\
\operatorname{lnt}(A) & =\{f(x) \in B[x] \mid f(a) \in A \text { for all } a \in A\}
\end{aligned}
$$

$\operatorname{Int}_{K}(A)$ is always a commutative ring.
If A is commutative, then $\operatorname{lnt}(A)$ is also a commutative ring.

Is $\operatorname{lnt}(A)$ a ring?

$$
\begin{aligned}
\operatorname{lnt}_{K}(A) & =\{f(x) \in K[x] \mid f(a) \in A \text { for all } a \in A\} \\
\operatorname{lnt}(A) & =\{f(x) \in B[x] \mid f(a) \in A \text { for all } a \in A\}
\end{aligned}
$$

$\operatorname{Int}_{K}(A)$ is always a commutative ring.
If A is commutative, then $\operatorname{lnt}(A)$ is also a commutative ring.
But, what if A is noncommutative?
For instance, what happens when $A=M_{n}(D)$, so that $B=M_{n}(K)$?
In cases like these, $B[x]$ (and hence $\operatorname{Int}(A)$) contains polynomials with coefficients from a noncommutative ring.

Polynomials over Noncommutative Rings

If B is a noncommutative ring, then we will add and multiply polynomials as we normally would: for all $a, b \in B$,

$$
a x^{n}+b x^{n}=(a+b) x^{n} \quad \text { and } \quad\left(a x^{n}\right)\left(b x^{m}\right)=(a b) x^{n+m}
$$

General conventions:

1. the indeterminate x commutes with everything
2. polynomials are evaluated with the indeterminate on the right

Evaluation can behave in unexpected ways. For example:
Let $a, b \in B$ be such that $a b \neq b a$.
Let $f(x)=x-a$ and $g(x)=x-b$ be elements of $B[x]$.
Let $h(x)=f(x) g(x)=x^{2}-(a+b) x+a b$.
Then, $f(a) g(a)=0$, but $h(a)=a b-b a \neq 0$.
Since $\operatorname{lnt}(A)$ is defined entirely in terms of evaluation, it is nontrivial to prove that it is closed under multiplication.

A Sufficient Condition for $\operatorname{lnt}(A)$ to be a Ring

$$
\operatorname{lnt}(A)=\{f(x) \in B[x] \mid f(a) \in A \text { for all } a \in A\}
$$

The set $\operatorname{lnt}(A)$ is always closed under addition (and in fact has a left $\operatorname{Int}_{K}(A)$-module structure).

A Sufficient Condition for $\operatorname{lnt}(A)$ to be a Ring

$$
\operatorname{lnt}(A)=\{f(x) \in B[x] \mid f(a) \in A \text { for all } a \in A\}
$$

The set $\operatorname{lnt}(A)$ is always closed under addition (and in fact has a left $\operatorname{Int}_{K}(A)$-module structure).
The following theorem gives a condition under which $\operatorname{Int}(A)$ is a ring.

A Sufficient Condition for $\operatorname{lnt}(A)$ to be a Ring

$$
\operatorname{lnt}(A)=\{f(x) \in B[x] \mid f(a) \in A \text { for all } a \in A\}
$$

The set $\operatorname{lnt}(A)$ is always closed under addition (and in fact has a left $\operatorname{Int}_{K}(A)$-module structure).
The following theorem gives a condition under which $\operatorname{Int}(A)$ is a ring.

Theorem

Assume each $a \in A$ can be written as a finite sum $a=\sum_{i} c_{i} u_{i}$, where $c_{i}, u_{i} \in A$, each u_{i} is a unit in A, and each c_{i} is central in B. Then, $\operatorname{Int}(A)$ is a ring.

A Sufficient Condition for $\operatorname{lnt}(A)$ to be a Ring

$$
\operatorname{lnt}(A)=\{f(x) \in B[x] \mid f(a) \in A \text { for all } a \in A\}
$$

The set $\operatorname{lnt}(A)$ is always closed under addition (and in fact has a left $\operatorname{Int}_{K}(A)$-module structure).
The following theorem gives a condition under which $\operatorname{Int}(A)$ is a ring.

Theorem

Assume each $a \in A$ can be written as a finite sum $a=\sum_{i} c_{i} u_{i}$, where $c_{i}, u_{i} \in A$, each u_{i} is a unit in A, and each c_{i} is central in B. Then, $\operatorname{Int}(A)$ is a ring.

In particular, $\operatorname{Int}(A)$ is a ring in the following cases:

- Matrix rings: $A=M_{n}(D)$
- Group rings: $A=D G$
- Lipschitz quaternions: $A=\mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \mathbf{j} \oplus \mathbb{Z} \mathbf{k}$, where $\mathbf{i}^{2}=\mathbf{j}^{2}=-1$ and $\mathbf{i j}=\mathbf{k}=-\mathbf{j i}$
- Hurwitz quaternions:

$$
A=\left\{a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in \mathbb{Z} \text { or } a, b, c, d \in \mathbb{Z}+\frac{1}{2}\right\}
$$

Necessary and Sufficient Conditions?

The theorem stated on the previous slide is sufficient, but is not necessary.
Theorem (S. Frisch)
Let $n>1$. Let A be the set of upper triangular matrices in $M_{n}(D)$. Then, $\operatorname{Int}(A)$ is a ring.

Necessary and Sufficient Conditions?

The theorem stated on the previous slide is sufficient, but is not necessary.
Theorem (S. Frisch)
Let $n>1$. Let A be the set of upper triangular matrices in $M_{n}(D)$. Then, $\operatorname{Int}(A)$ is a ring.

Open Problems

- If possible, find an example of a D-algebra A such that $\operatorname{lnt}(A)$ is not a ring.
- Give necessary and sufficient conditions on A so that $\operatorname{lnt}(A)$ is a ring.

Conjecture

Assume that A is of finite type. Then, $\operatorname{lnt}(A)$ is a ring.

Non-triviality of $\operatorname{Int}_{K}(A)$

Back to $\operatorname{Int}_{\kappa}(A)$

Recall that

$$
\begin{aligned}
\operatorname{lnt}_{K}(A) & =\{f(x) \in K[x] \mid f(a) \in A \text { for all } a \in A\} \\
& =\operatorname{Int}(A) \cap K[x]
\end{aligned}
$$

Also recall that we are assuming $A \cap K=D$. This condition is equivalent to having

$$
D[x] \subseteq \operatorname{lnt}_{K}(A) \subseteq \operatorname{lnt}(D)
$$

Back to $\operatorname{Int}_{K}(A)$

Recall that

$$
\begin{aligned}
\operatorname{lnt}_{K}(A) & =\{f(x) \in K[x] \mid f(a) \in A \text { for all } a \in A\} \\
& =\operatorname{Int}(A) \cap K[x]
\end{aligned}
$$

Also recall that we are assuming $A \cap K=D$. This condition is equivalent to having

$$
D[x] \subseteq \operatorname{lnt}_{K}(A) \subseteq \operatorname{lnt}(D)
$$

It is natural to consider when these containments are proper. That is:

- When is $D[x] \varsubsetneqq \operatorname{lnt}_{K}(A)$?
- When is $\operatorname{lnt}_{K}(A) \varsubsetneqq \operatorname{lnt}(D)$?

We will investigate the first question now, and come back to the second question later.

Non-triviality for $\operatorname{lnt}(D)$

In the traditional setting, we say that $\operatorname{lnt}(D)$ is nontrivial if $D[x] \varsubsetneqq \operatorname{lnt}(D)$. We adopt the same terminology for $\operatorname{Int}_{K}(A)$.

Definition

$\operatorname{Int}_{K}(A)$ is nontrivial if $D[x] \varsubsetneqq \operatorname{lnt}_{K}(A)$.

Non-triviality for $\operatorname{lnt}(D)$

In the traditional setting, we say that $\operatorname{lnt}(D)$ is nontrivial if $D[x] \varsubsetneqq \operatorname{lnt}(D)$. We adopt the same terminology for $\operatorname{lnt}_{K}(A)$.

Definition
 $\operatorname{lnt}_{K}(A)$ is nontrivial if $D[x] \varsubsetneqq \operatorname{Int}_{K}(A)$.

There are known characterizations of when $\operatorname{Int}(D)$ is nontrivial.

- For a Noetherian domain $D, \operatorname{Int}(D)$ is nontrivial if and only if there is a prime conductor ideal of D with finite residue field.
- D. Rush gave a double-boundedness condition on D that is necessary and sufficient for $\operatorname{lnt}(D)$ to be nontrivial, and which holds for any domain D.

Non-triviality for $\operatorname{lnt}_{\kappa}(A)$

The first of these non-triviality conditions carries over directly to $\operatorname{Int}_{K}(A)$.

Theorem (S. Frisch)

Let D be Noetherian and let A be of finite type. Then, $\operatorname{lnt}_{K}(A)$ is nontrivial if and only if there is a prime conductor ideal of D with finite residue field.

By using Rush's criterion, we can drop the Noetherian condition on D and weaken the assumption that A is finitely generated.

Algebraic and Integral Algebras

Definition

Let R be a commutative and A an R-algebra.
We say that A is an algebraic algebra over R if every element of A satisfies a polynomial with coefficients in R.

We say that A is an integral algebra over R if every element of A satisfies a monic polynomial with coefficients in R.

We say that A is of bounded degree if there is a uniform bound on the degrees of the minimal polynomials of elements of A.

Algebraic and Integral Algebras

Definition

Let R be a commutative and A an R-algebra.
We say that A is an algebraic algebra over R if every element of A satisfies a polynomial with coefficients in R.

We say that A is an integral algebra over R if every element of A satisfies a monic polynomial with coefficients in R.

We say that A is of bounded degree if there is a uniform bound on the degrees of the minimal polynomials of elements of A.

Theorem

Let A be an integral D-algebra of bounded degree. Then, $\operatorname{lnt}_{K}(A)$ is nontrivial if and only if $\operatorname{lnt}(D)$ is nontrivial.

In particular, this theorem applies when A is finitely generated as a D-module.

Sketch of the proof

Theorem

Let A be an integral D-algebra of bounded degree. Then, $\operatorname{lnt}_{K}(A)$ is nontrivial if and only if $\operatorname{lnt}(D)$ is nontrivial.

Here is the idea of the proof:

- Assuming A is an integral D-algebra of bounded degree n, show that $\operatorname{Int}_{K}\left(M_{n}(D)\right) \subseteq \operatorname{Int}_{K}(A)$. Thus, we have the following containments:

$$
D[x] \subseteq \operatorname{lnt}_{K}\left(M_{n}(D)\right) \subseteq \operatorname{lnt}_{K}(A) \subseteq \operatorname{lnt}(D)
$$

- Use Rush's double-boundedness criteria to prove that if $\operatorname{Int}(D)$ is nontrivial, then $\operatorname{Int}_{K}\left(M_{n}(D)\right)$ is nontrivial.

General Case

What if A is not finitely generated? It turns out that $\operatorname{lnt}_{K}(A)$ can still be nontrivial.

Example

Let $A=\prod_{i \in \mathbb{N}} \mathbb{Z}$. Then, $\operatorname{lnt}_{\mathbb{Q}}(A)=\operatorname{lnt}(Z)$, so $\operatorname{Int}_{\mathbb{Q}}(A)$ is nontrivial.

In this example, A is not an algebraic \mathbb{Z}-algebra (let alone integral or of bounded degree).

General Case

What if A is not finitely generated? It turns out that $\operatorname{lnt}_{K}(A)$ can still be nontrivial.

Example

Let $A=\prod_{i \in \mathbb{N}} \mathbb{Z}$. Then, $\operatorname{lnt}_{\mathbb{Q}}(A)=\operatorname{Int}(Z)$, so $\operatorname{Int}_{\mathbb{Q}}(A)$ is nontrivial.

In this example, A is not an algebraic \mathbb{Z}-algebra (let alone integral or of bounded degree).

However, for each prime p, every element of $A / p A$ is killed by $x^{p}-x$. So, $A / p A$ is an algebraic algebra of bounded degree over $\mathbb{Z} / p \mathbb{Z}$.

General Case

What if A is not finitely generated? It turns out that $\operatorname{lnt}_{K}(A)$ can still be nontrivial.

Example

Let $A=\prod_{i \in \mathbb{N}} \mathbb{Z}$. Then, $\operatorname{lnt}_{\mathbb{Q}}(A)=\operatorname{Int}(Z)$, so $\operatorname{Int}_{\mathbb{Q}}(A)$ is nontrivial.

In this example, A is not an algebraic \mathbb{Z}-algebra (let alone integral or of bounded degree).

However, for each prime p, every element of $A / p A$ is killed by $x^{p}-x$. So, $A / p A$ is an algebraic algebra of bounded degree over $\mathbb{Z} / p \mathbb{Z}$.

Theorem

Let D be a Dedekind domain. Then, $\operatorname{lnt}_{K}(A)$ is nontrivial if and only if there exists a prime ideal P of D of finite index such that $A / P A$ is a D / P-algebraic algebra of bounded degree.

Examples

1. Let $D=\mathbb{Z}$ and $A=\overline{\mathbb{Z}}$, the absolute integral closure of \mathbb{Z}.

Then, for each prime $p, A / p A$ is an algebraic $\mathbb{Z} / p \mathbb{Z}$-algebra of unbounded degree.
Thus, $\operatorname{Int}_{\mathbb{Q}}(\overline{\mathbb{Z}})=\mathbb{Z}[x]$.
2. Let $D=\mathbb{Z}_{(p)}$ and $A=\mathbb{Z}_{p}$, the p-adic integers. Then, $A / p A \cong D / p D \cong \mathbb{Z} / p \mathbb{Z}$, so $\mathbb{Z}_{(p)}[x] \varsubsetneqq \operatorname{lnt}_{\mathbb{Q}}(A)$. In fact, $\operatorname{lnt}_{\mathbb{Q}}(A)=\operatorname{Int}(D)$ in this case.
3. Let D be a DVR with maximal ideal P and finite residue field. Let A be a D-algebra such that $\operatorname{Int}_{K}(A) \varsubsetneqq \operatorname{lnt}(D)$, and let \widehat{A} be the P-adic completion of A.
Then, we have

$$
D[x] \varsubsetneqq \operatorname{lnt}_{K}(\widehat{A})=\operatorname{lnt}_{K}(A) \varsubsetneqq \operatorname{lnt}(D)
$$

Decomposition of $\operatorname{Int}(A)$

Motivation: Matrix Rings

$\operatorname{Int}_{K}(A)$ is commutative, so it should be easier to work with than $\operatorname{Int}(A)$. Question: What can $\operatorname{Int}_{K}(A)$ tell us about $\operatorname{Int}(A)$? Answer: In some cases, quite a bit!

Motivation: Matrix Rings

$\operatorname{Int}_{K}(A)$ is commutative, so it should be easier to work with than $\operatorname{Int}(A)$.
Question: What can $\operatorname{Int}_{K}(A)$ tell us about $\operatorname{Int}(A)$? Answer: In some cases, quite a bit!

Theorem (S. Frisch)
When $A=M_{n}(D), \operatorname{Int}(A)$ is itself a matrix ring. Explicitly,

$$
\operatorname{lnt}\left(M_{n}(D)\right) \cong M_{n}\left(\operatorname{lnt}_{K}\left(M_{n}(D)\right)\right)
$$

Motivation: Matrix Rings

$\operatorname{Int}_{K}(A)$ is commutative, so it should be easier to work with than $\operatorname{Int}(A)$.
Question: What can $\operatorname{Int}_{K}(A)$ tell us about $\operatorname{Int}(A)$?
Answer: In some cases, quite a bit!

Theorem (S. Frisch)

When $A=M_{n}(D), \operatorname{lnt}(A)$ is itself a matrix ring. Explicitly,

$$
\operatorname{lnt}\left(M_{n}(D)\right) \cong M_{n}\left(\operatorname{lnt}_{K}\left(M_{n}(D)\right)\right)
$$

The isomorphism in the theorem is achieved by associating a polynomial with matrix coefficients to a matrix with polynomial entries.
For example, with $M_{2}(\mathbb{Z})$,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \frac{x^{2}(x-1)^{2}\left(x^{2}+x+1\right)}{2}+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) x^{2}+3 x
$$

corresponds to

$$
\left(\begin{array}{cc}
\frac{x^{2}(x-1)^{2}\left(x^{2}+x+1\right)}{2}-3 x & x^{2} \\
-x^{2} & 3 x
\end{array}\right)
$$

Matrix Rings Redux

Theorem (S. Frisch)
When $A=M_{n}(D), \operatorname{lnt}(A)$ is itself a matrix ring. Explicitly,

$$
\operatorname{lnt}\left(M_{n}(D)\right) \cong M_{n}\left(\operatorname{lnt}_{K}\left(M_{n}(D)\right)\right)
$$

Question: Are there other algebras that exhibit this behavior?
To find out, we will rephrase the theorem.

Matrix Rings Redux

Theorem (S. Frisch)

When $A=M_{n}(D), \operatorname{lnt}(A)$ is itself a matrix ring. Explicitly,

$$
\operatorname{lnt}\left(M_{n}(D)\right) \cong M_{n}\left(\operatorname{lnt}_{K}\left(M_{n}(D)\right)\right)
$$

Question: Are there other algebras that exhibit this behavior?
To find out, we will rephrase the theorem.
For $1 \leq i, j \leq n$, let $E_{i j}$ be the matrix with 1 in the (i, j)-entry and 0 elsewhere.
Then, $M_{n}(D)=\bigoplus_{i, j} D E_{i j}$ (direct sum as a D-module).

Matrix Rings Redux

Theorem (S. Frisch)

When $A=M_{n}(D), \operatorname{lnt}(A)$ is itself a matrix ring. Explicitly,

$$
\operatorname{lnt}\left(M_{n}(D)\right) \cong M_{n}\left(\operatorname{lnt}_{K}\left(M_{n}(D)\right)\right)
$$

Question: Are there other algebras that exhibit this behavior?
To find out, we will rephrase the theorem.
For $1 \leq i, j \leq n$, let $E_{i j}$ be the matrix with 1 in the (i, j)-entry and 0 elsewhere.
Then, $M_{n}(D)=\bigoplus_{i, j} D E_{i j}$ (direct sum as a D-module).

Theorem (S. Frisch)

$$
\operatorname{lnt}\left(M_{n}(D)\right)=\bigoplus_{i, j} \operatorname{lnt}_{K}\left(M_{n}(D)\right) E_{i j} \text { (direct sum as an } \operatorname{lnt}_{K}\left(M_{n}(D)\right) \text {-module) }
$$

Int-decomposable Algebras

Definition

Let $A=\bigoplus_{i=1}^{t} D \alpha_{i}$ be a free D-algebra. We say that A is Int-decomposable (with respect to $\left.\left\{\alpha_{i}\right\}_{i=1}^{t}\right)$ if $\operatorname{Int}(A)=\bigoplus_{i=1}^{t} \operatorname{lnt}_{K}(A) \alpha_{i}$.

In other words, a (free) Int-decomposable algebra A is one with the following property:

Let $f \in \operatorname{Int}(A)$
Write $f=\sum_{i} f_{i} \alpha_{i}$, where $f_{i} \in K[x]$
Then, each $f_{i} \in \operatorname{Int}_{K}(A)$

Int-decomposable Algebras

Definition

Let $A=\bigoplus_{i=1}^{t} D \alpha_{i}$ be a free D-algebra. We say that A is Int-decomposable (with respect to $\left.\left\{\alpha_{i}\right\}_{i=1}^{t}\right)$ if $\operatorname{Int}(A)=\bigoplus_{i=1}^{t} \operatorname{lnt}_{K}(A) \alpha_{i}$.

In other words, a (free) Int-decomposable algebra A is one with the following property:

Let $f \in \operatorname{Int}(A)$
Write $f=\sum_{i} f_{i} \alpha_{i}$, where $f_{i} \in K[x]$
Then, each $f_{i} \in \operatorname{Int}_{K}(A)$

Lemma

Being Int-decomposable is independent of the D-basis we choose for A.

Examples and Non-examples

We know that matrix rings $M_{n}(D)$ are Int-decomposable.
Are there any other examples?

Examples and Non-examples

We know that matrix rings $M_{n}(D)$ are Int-decomposable.
Are there any other examples?
It is actually easier to find examples of free D-algebras that are not Int-decomposable.

Examples and Non-examples

We know that matrix rings $M_{n}(D)$ are Int-decomposable.
Are there any other examples?
It is actually easier to find examples of free D-algebras that are not Int-decomposable.

Non-example: Gaussian Integers
Let $D=\mathbb{Z}$ and $A=\mathbb{Z}[\mathbf{i}]$.
Then, $\frac{(1+\mathbf{i})\left(x^{2}-x\right)}{2} \in \operatorname{lnt}(\mathbb{Z}[\mathbf{i}])$, but $\frac{x^{2}-x}{2} \notin \operatorname{lnt}_{\mathbb{Q}}(\mathbb{Z}[\mathbf{i}])$

Examples and Non-examples

We know that matrix rings $M_{n}(D)$ are Int-decomposable.
Are there any other examples?
It is actually easier to find examples of free D-algebras that are not Int-decomposable.

Non-example: Gaussian Integers
Let $D=\mathbb{Z}$ and $A=\mathbb{Z}[\mathbf{i}]$.
Then, $\frac{(1+\mathbf{i})\left(x^{2}-x\right)}{2} \in \operatorname{lnt}(\mathbb{Z}[\mathbf{i}])$, but $\frac{x^{2}-x}{2} \notin \operatorname{lnt}_{\mathbb{Q}}(\mathbb{Z}[\mathbf{i}])$

Non-example: Lipschitz Quaternions

Let $A=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \mathbf{j} \oplus \mathbf{k}$ with $\mathbf{i}^{2}=\mathbf{j}^{2}=-1$.
Then, $\frac{(1+\mathbf{i}+\mathbf{j}+\mathbf{k})\left(x^{2}-x\right)}{2} \in \operatorname{Int}(A)$, but $\frac{x^{2}-x}{2} \notin \operatorname{lnt}_{\mathbb{Q}}(A)$

A Characterization Theorem

Example

Let p be an odd prime and $D=\mathbb{Z}_{(p)}$. Let A be the quaternion algebra
$A=D \oplus D \mathbf{i} \oplus D \mathbf{j} \oplus D \mathbf{k}$ where $\mathbf{i}^{2}=\mathbf{j}^{2}=-1$.
Then, A is Int-decomposable.

The algebra in this example is not a matrix ring, but there is a connection to 2×2 matrices: $A / p A \cong M_{2}\left(\mathbb{F}_{p}\right)$.
This turns out to be what we need to classify Int-decomposable algebras.

A Characterization Theorem

Example

Let p be an odd prime and $D=\mathbb{Z}_{(p)}$. Let A be the quaternion algebra $A=D \oplus D \mathbf{i} \oplus D \mathbf{j} \oplus D \mathbf{k}$ where $\mathbf{i}^{2}=\mathbf{j}^{2}=-1$.
Then, A is Int-decomposable.

The algebra in this example is not a matrix ring, but there is a connection to 2×2 matrices: $A / p A \cong M_{2}\left(\mathbb{F}_{p}\right)$.
This turns out to be what we need to classify Int-decomposable algebras.

Theorem

Let D be a Dedekind domain with finite residue rings. Let A be a free D-algebra. Then, A is Int-decomposable if and only if for each nonzero prime P of D, there exist $n, t>0$ and a finite field \mathbb{F}_{q} such that $A / P A \cong \bigoplus_{i=1}^{t} M_{n}\left(\mathbb{F}_{q}\right)$.

Sketch of Proof

Theorem

Let D be a Dedekind domain with finite residue rings. Let A be a free D-algebra. Then, A is Int-decomposable if and only if for each nonzero prime P of D, there exist $n, t>0$ and a finite field \mathbb{F}_{q} such that $A / P A \cong \bigoplus_{i=1}^{t} M_{n}\left(\mathbb{F}_{q}\right)$.

The proof is involved! But here are the major steps.

Sketch of Proof

Theorem

Let D be a Dedekind domain with finite residue rings. Let A be a free D-algebra. Then, A is Int-decomposable if and only if for each nonzero prime P of D, there exist $n, t>0$ and a finite field \mathbb{F}_{q} such that $A / P A \cong \bigoplus_{i=1}^{t} M_{n}\left(\mathbb{F}_{q}\right)$.

The proof is involved! But here are the major steps.

- Localize at P. Thus, WLOG we can assume that D is a DVR with maximal ideal πD.

Sketch of Proof

Theorem

Let D be a Dedekind domain with finite residue rings. Let A be a free D-algebra. Then, A is Int-decomposable if and only if for each nonzero prime P of D, there exist $n, t>0$ and a finite field \mathbb{F}_{q} such that $A / P A \cong \bigoplus_{i=1}^{t} M_{n}\left(\mathbb{F}_{q}\right)$.

The proof is involved! But here are the major steps.

- Localize at P. Thus, WLOG we can assume that D is a DVR with maximal ideal πD.
- There is a correspondence between polynomials in $\operatorname{Int}(A)$ and polynomials in the null ideals

$$
N\left(A / \pi^{k} A\right)=\left\{g(x) \in\left(A / \pi^{k} A\right)[x] \mid g(a)=0 \text { for all } a \in A / \pi^{k} A\right\}
$$

Explicitly, $g(x) / \pi^{k} \in \operatorname{lnt}(A)$ if and only if $g(x) \in N\left(A / \pi^{k} A\right)$.

Sketch of Proof

Theorem

Let D be a Dedekind domain with finite residue rings. Let A be a free D-algebra. Then, A is Int-decomposable if and only if for each nonzero prime P of D, there exist $n, t>0$ and a finite field \mathbb{F}_{q} such that $A / P A \cong \bigoplus_{i=1}^{t} M_{n}\left(\mathbb{F}_{q}\right)$.

The proof is involved! But here are the major steps.

- Localize at P. Thus, WLOG we can assume that D is a DVR with maximal ideal πD.
- There is a correspondence between polynomials in $\operatorname{Int}(A)$ and polynomials in the null ideals

$$
N\left(A / \pi^{k} A\right)=\left\{g(x) \in\left(A / \pi^{k} A\right)[x] \mid g(a)=0 \text { for all } a \in A / \pi^{k} A\right\}
$$

Explicitly, $g(x) / \pi^{k} \in \operatorname{lnt}(A)$ if and only if $g(x) \in N\left(A / \pi^{k} A\right)$.

- Develop an analogous notion of "decomposability" for the null ideals $N\left(A / \pi^{k} A\right)$.

Sketch of Proof

Theorem

Let D be a Dedekind domain with finite residue rings. Let A be a free D-algebra. Then, A is Int-decomposable if and only if for each nonzero prime P of D, there exist $n, t>0$ and a finite field \mathbb{F}_{q} such that $A / P A \cong \bigoplus_{i=1}^{t} M_{n}\left(\mathbb{F}_{q}\right)$.

The proof is involved! But here are the major steps.

- Localize at P. Thus, WLOG we can assume that D is a DVR with maximal ideal πD.
- There is a correspondence between polynomials in $\operatorname{Int}(A)$ and polynomials in the null ideals

$$
N\left(A / \pi^{k} A\right)=\left\{g(x) \in\left(A / \pi^{k} A\right)[x] \mid g(a)=0 \text { for all } a \in A / \pi^{k} A\right\}
$$

Explicitly, $g(x) / \pi^{k} \in \operatorname{lnt}(A)$ if and only if $g(x) \in N\left(A / \pi^{k} A\right)$.

- Develop an analogous notion of "decomposability" for the null ideals $N\left(A / \pi^{k} A\right)$.
- Prove that $N\left(A / \pi^{k} A\right)$ is "decomposable" if and only if $A / \pi^{k} A \cong \bigoplus_{i=1}^{t} M_{n}(T)$, where T is a commutative local rings of a certain form.

Sketch of Proof

Theorem

Let D be a Dedekind domain with finite residue rings. Let A be a free D-algebra. Then, A is Int-decomposable if and only if for each nonzero prime P of D, there exist $n, t>0$ and a finite field \mathbb{F}_{q} such that $A / P A \cong \bigoplus_{i=1}^{t} M_{n}\left(\mathbb{F}_{q}\right)$.

The proof is involved! But here are the major steps.

- Localize at P. Thus, WLOG we can assume that D is a DVR with maximal ideal πD.
- There is a correspondence between polynomials in $\operatorname{Int}(A)$ and polynomials in the null ideals

$$
N\left(A / \pi^{k} A\right)=\left\{g(x) \in\left(A / \pi^{k} A\right)[x] \mid g(a)=0 \text { for all } a \in A / \pi^{k} A\right\}
$$

Explicitly, $g(x) / \pi^{k} \in \operatorname{lnt}(A)$ if and only if $g(x) \in N\left(A / \pi^{k} A\right)$.

- Develop an analogous notion of "decomposability" for the null ideals $N\left(A / \pi^{k} A\right)$.
- Prove that $N\left(A / \pi^{k} A\right)$ is "decomposable" if and only if $A / \pi^{k} A \cong \bigoplus_{i=1}^{t} M_{n}(T)$, where T is a commutative local rings of a certain form.
- Show that it is enough to check iust $A / \pi A$.

Extending the Definition

The definition of Int-decomposable relies on the presence of a D-basis for A.
Can we make this notion work when A is not free?

Extending the Definition

The definition of Int-decomposable relies on the presence of a D-basis for A.
Can we make this notion work when A is not free?
Key observation: Recall that $B=K \otimes_{D} A$.
Then, $A, \operatorname{Int}(A)$, and $\operatorname{lnt}_{K}(A)$ are all contained in $B[x]$.
When $\operatorname{Int}(A)$ is Int-decomposable, $\operatorname{Int}(A)$ is equal to the subring of $B[x]$ generated by $\operatorname{lnt}_{K}(A)$ and A.

Extending the Definition

The definition of Int-decomposable relies on the presence of a D-basis for A.
Can we make this notion work when A is not free?
Key observation: Recall that $B=K \otimes_{D} A$.
Then, $A, \operatorname{Int}(A)$, and $\operatorname{Int}_{K}(A)$ are all contained in $B[x]$.
When $\operatorname{Int}(A)$ is Int-decomposable, $\operatorname{Int}(A)$ is equal to the subring of $B[x]$ generated by $\operatorname{Int}_{K}(A)$ and A.

Definition

We say that A (not necessarily free!) is Int-decomposable if

$$
\operatorname{lnt}(A) \cong \operatorname{lnt}_{K}(A) \otimes_{D} A
$$

Informally, $\operatorname{Int}(A)$ is Int-decomposable if $\operatorname{Int}(A)$ is equal to the subring of $B[x]$ generated by $\operatorname{Int}_{K}(A)$ and A.

The Same Classification Theorem

Theorem

Let D be a Dedekind domain with finite residue rings. Assume that A is finitely generated as a D-module. Then, the following are equivalent.

1. A is Int-decomposable
2. For each nonzero prime P of D, there exist $n, t>0$ and a finite field \mathbb{F}_{q} such that $A / P A \cong \bigoplus_{i=1}^{t} M_{n}\left(\mathbb{F}_{q}\right)$

The Same Classification Theorem

Theorem

Let D be a Dedekind domain with finite residue rings. Assume that A is finitely generated as a D-module. Then, the following are equivalent.

1. A is Int-decomposable
2. For each nonzero prime P of D, there exist $n, t>0$ and a finite field \mathbb{F}_{q} such that $A / P A \cong \bigoplus_{i=1}^{t} M_{n}\left(\mathbb{F}_{q}\right)$
3. For each nonzero prime P of D, there exist $n, t>0$ such that the completion \widehat{A}_{P} satisfies $\widehat{A}_{P} \cong \bigoplus_{i=1}^{t} M_{n}\left(\widehat{T}_{P}\right)$, where \widehat{T}_{P} is a complete DVR with finite residue field and fraction field that is a finite unramified extension of \widehat{K}_{P}.

When $\operatorname{Int}_{K}(A)=\operatorname{lnt}(D)$

A slight variation on this theorem allows us to determine when $\operatorname{lnt}_{K}(A)=\operatorname{lnt}(D)$.

When $\operatorname{Int}_{K}(A)=\operatorname{Int}(D)$

A slight variation on this theorem allows us to determine when $\operatorname{Int}_{K}(A)=\operatorname{Int}(D)$.

Theorem

Let D be a Dedekind domain with finite residue rings. Assume that A is of finite type. Then, the following are equivalent.

1. $\operatorname{Int}_{K}(A)=\operatorname{Int}(D)$
2. For each nonzero prime P of $D, A / P A \cong \bigoplus_{i=1}^{t} D / P$, for some $t>0$.
3. For each nonzero prime P of $D, \widehat{A}_{P} \cong \bigoplus_{i=1}^{t} \widehat{D}_{P}$, for some $t>0$.

A Crazy Theorem...

In the case where D is the ring of integers of a number field, we can also give a global characterization of Int-decomposability.

Theorem

Let K be a number field with ring of integers D. As usual, let A be a D-algebra of finite type and let $B=K \otimes_{D} A$.
Then, A is Int-decomposable if and only if the following conditions hold:

A Crazy Theorem...

In the case where D is the ring of integers of a number field, we can also give a global characterization of Int-decomposability.

Theorem

Let K be a number field with ring of integers D. As usual, let A be a D-algebra of finite type and let $B=K \otimes_{D} A$.
Then, A is Int-decomposable if and only if the following conditions hold:

1. A is a maximal order in B

A Crazy Theorem...

In the case where D is the ring of integers of a number field, we can also give a global characterization of Int-decomposability.

Theorem

Let K be a number field with ring of integers D. As usual, let A be a D-algebra of finite type and let $B=K \otimes_{D} A$.
Then, A is Int-decomposable if and only if the following conditions hold:

1. A is a maximal order in B
2. B is a finite dimensional semisimple K-algebra with simple components B_{1}, \ldots, B_{r} that satisfy the following:

A Crazy Theorem...

In the case where D is the ring of integers of a number field, we can also give a global characterization of Int-decomposability.

Theorem

Let K be a number field with ring of integers D. As usual, let A be a D-algebra of finite type and let $B=K \otimes_{D} A$.
Then, A is Int-decomposable if and only if the following conditions hold:

1. A is a maximal order in B
2. B is a finite dimensional semisimple K-algebra with simple components B_{1}, \ldots, B_{r} that satisfy the following:
(i) the B_{i} share a common center F

A Crazy Theorem...

In the case where D is the ring of integers of a number field, we can also give a global characterization of Int-decomposability.

Theorem

Let K be a number field with ring of integers D. As usual, let A be a D-algebra of finite type and let $B=K \otimes_{D} A$.
Then, A is Int-decomposable if and only if the following conditions hold:

1. A is a maximal order in B
2. B is a finite dimensional semisimple K-algebra with simple components B_{1}, \ldots, B_{r} that satisfy the following:
(i) the B_{i} share a common center F
(ii) F is a finite unramified Galois field extension of K

A Crazy Theorem...

In the case where D is the ring of integers of a number field, we can also give a global characterization of Int-decomposability.

Theorem

Let K be a number field with ring of integers D. As usual, let A be a D-algebra of finite type and let $B=K \otimes_{D} A$.
Then, A is Int-decomposable if and only if the following conditions hold:

1. A is a maximal order in B
2. B is a finite dimensional semisimple K-algebra with simple components B_{1}, \ldots, B_{r} that satisfy the following:
(i) the B_{i} share a common center F
(ii) F is a finite unramified Galois field extension of K
(iii) each B_{i} is unramified at every finite place of F

A Crazy Theorem...

In the case where D is the ring of integers of a number field, we can also give a global characterization of Int-decomposability.

Theorem

Let K be a number field with ring of integers D. As usual, let A be a D-algebra of finite type and let $B=K \otimes_{D} A$.
Then, A is Int-decomposable if and only if the following conditions hold:

1. A is a maximal order in B
2. B is a finite dimensional semisimple K-algebra with simple components B_{1}, \ldots, B_{r} that satisfy the following:
(i) the B_{i} share a common center F
(ii) F is a finite unramified Galois field extension of K
(iii) each B_{i} is unramified at every finite place of F
(iv) the degree of B_{i} as an F-central simple algebra is the same for each i

With Some Very Nice Corollaries

When both D and A are rings of integers, most of the conditions in the last theorem simplify considerably.

With Some Very Nice Corollaries

When both D and A are rings of integers, most of the conditions in the last theorem simplify considerably.

Corollary

Let $K \subseteq L$ be number fields with rings of integers O_{K} and O_{L}. Consider O_{L} as an O_{K}-algebra. Then,

1. O_{L} is Int-decomposable if and only of L / K is an unramified Galois extension
2. $\operatorname{lnt}_{K}\left(O_{L}\right)=\operatorname{lnt}\left(O_{K}\right)$ if and only if $L=K$

With Some Very Nice Corollaries

When both D and A are rings of integers, most of the conditions in the last theorem simplify considerably.

Corollary

Let $K \subseteq L$ be number fields with rings of integers O_{K} and O_{L}. Consider O_{L} as an O_{K}-algebra. Then,

1. O_{L} is Int-decomposable if and only of L / K is an unramified Galois extension
2. $\operatorname{Int}_{K}\left(O_{L}\right)=\operatorname{lnt}\left(O_{K}\right)$ if and only if $L=K$

Corollary

Let A be a \mathbb{Z}-algebra that is finitely generated as a \mathbb{Z}-module.

1. A is Int-decomposable if and only if $A \cong \bigoplus_{i=1}^{t} M_{n}(\mathbb{Z})$ for some n and t
2. $\operatorname{Int} \mathbb{Q}_{\mathbb{Q}}(A)=\operatorname{lnt}(\mathbb{Z})$ if and only if $A \cong \bigoplus_{i=1}^{t} \mathbb{Z}$ for some t

Other Decompositions

We have classified the algebras such that $\operatorname{Int}(A) \cong \operatorname{lnt}_{K}(A) \otimes_{D} A$
There are other ways to decompose $\operatorname{Int}(A)$ in terms of $\operatorname{Int}_{K}(A)$.

Other Decompositions

We have classified the algebras such that $\operatorname{Int}(A) \cong \operatorname{lnt}_{K}(A) \otimes_{D} A$
There are other ways to decompose $\operatorname{Int}(A)$ in terms of $\operatorname{Int}_{K}(A)$.

Theorem (S. Frisch)

Let D be a domain. Let $T_{n}(D)$ be the ring of upper triangular matrices with entries in D. Then,
$\operatorname{Int}\left(T_{n}(D)\right) \cong\left(\begin{array}{ccccc}\operatorname{lnt}_{K}\left(T_{n}(D)\right) & \operatorname{lnt}_{K}\left(T_{n-1}(D)\right) & \cdots & \operatorname{lnt}_{K}\left(T_{2}(D)\right) & \operatorname{lnt}_{K}\left(T_{1}(D)\right) \\ 0 & \operatorname{lnt}_{K}\left(T_{n-1}(D)\right) & \cdots & \operatorname{lnt}_{K}\left(T_{2}(D)\right) & \operatorname{lnt}_{K}\left(T_{1}(D)\right) \\ & & \ddots & & \\ 0 & 0 & \cdots & \operatorname{lnt}_{K}\left(T_{2}(D)\right) & \operatorname{lnt}_{K}\left(T_{1}(D)\right) \\ 0 & 0 & \cdots & 0 & \operatorname{lnt}_{K}\left(T_{1}(D)\right)\end{array}\right)$

Further Questions

What about Nonassociative Algebras?

Throughout, A has always been an associative algebra.
But, to define $\operatorname{Int}_{k}(A)$, all we need is for A to be power associative, meaning that $a^{n} a^{m}=a^{n+m}$ for all $a \in A$.

What about Nonassociative Algebras?

Throughout, A has always been an associative algebra.
But, to define $\operatorname{Int}_{k}(A)$, all we need is for A to be power associative, meaning that $a^{n} a^{m}=a^{n+m}$ for all $a \in A$.

In particular, we could take $D=\mathbb{Z}$ and A could be the integral octonions $\mathbb{O}_{\mathbb{Z}}$, or some other (nonassociative) ring arising from the Cayley numbers.

What about Nonassociative Algebras?

Throughout, A has always been an associative algebra.
But, to define $\operatorname{Int}_{k}(A)$, all we need is for A to be power associative, meaning that $a^{n} a^{m}=a^{n+m}$ for all $a \in A$.

In particular, we could take $D=\mathbb{Z}$ and A could be the integral octonions $\mathbb{O}_{\mathbb{Z}}$, or some other (nonassociative) ring arising from the Cayley numbers.

Question: Does anything interesting happen with $\operatorname{Int}_{K}(A)$ if we allow A to be nonassociative?

What about Nonassociative Algebras?

Throughout, A has always been an associative algebra.
But, to define $\operatorname{Int}_{k}(A)$, all we need is for A to be power associative, meaning that $a^{n} a^{m}=a^{n+m}$ for all $a \in A$.

In particular, we could take $D=\mathbb{Z}$ and A could be the integral octonions $\mathbb{O}_{\mathbb{Z}}$, or some other (nonassociative) ring arising from the Cayley numbers.

Question: Does anything interesting happen with $\operatorname{Int}_{K}(A)$ if we allow A to be nonassociative?

Question: Let $\mathbb{O}_{\mathbb{Q}}$ be the rational octonions, and define

$$
\operatorname{lnt}\left(\mathbb{O}_{\mathbb{Z}}\right)=\left\{f(x) \in \mathbb{O}_{\mathbb{Q}}[x] \mid f(a) \in \mathbb{O}_{\mathbb{Z}} \text { for all } a \in \mathbb{O}_{\mathbb{Z}}\right\}
$$

Does $\operatorname{lnt}\left(\mathbb{O}_{\mathbb{Z}}\right)$ have a (nonassociative) ring structure? In other words, is $\operatorname{lnt}\left(\mathbb{O}_{\mathbb{Z}}\right)$ closed under multiplication?

Integer-valued Rational Functions

Another variation on $\operatorname{Int}(D)$ is to study integer-valued rational functions. We define $\operatorname{Int}^{\mathrm{R}}(D)=\{\phi(x) \in K(x) \mid \phi(d) \in D$ for all $d \in D\}$.

There is nothing stopping us from doing the same thing with algebras:

$$
\operatorname{lnt}_{K}^{R}(A)=\{\phi(x) \in K(x) \mid \phi(a) \in A \text { for all } a \in A\}
$$

Integer-valued Rational Functions

Another variation on $\operatorname{Int}(D)$ is to study integer-valued rational functions. We define $\operatorname{Int}^{\mathrm{R}}(D)=\{\phi(x) \in K(x) \mid \phi(d) \in D$ for all $d \in D\}$.

There is nothing stopping us from doing the same thing with algebras:

$$
\operatorname{lnt}_{K}^{\mathrm{R}}(A)=\{\phi(x) \in K(x) \mid \phi(a) \in A \text { for all } a \in A\}
$$

To get rational functions in $\operatorname{Int}_{K}^{R}(A)$, we need to find polynomials that are unit-valued on A.
If $u(x) \in D[x]$ is unit-valued on A and $f(x) \in D[x]$, then $\phi(x)=\frac{f(x)}{u(x)} \in \operatorname{ltt}_{K}^{\mathrm{R}}(A)$.

Integer-valued Rational Functions

Another variation on $\operatorname{Int}(D)$ is to study integer-valued rational functions. We define $\operatorname{Int}^{\mathrm{R}}(D)=\{\phi(x) \in K(x) \mid \phi(d) \in D$ for all $d \in D\}$.

There is nothing stopping us from doing the same thing with algebras:

$$
\operatorname{Int}_{K}^{R}(A)=\{\phi(x) \in K(x) \mid \phi(a) \in A \text { for all } a \in A\}
$$

To get rational functions in $\operatorname{Int}_{K}^{R}(A)$, we need to find polynomials that are unit-valued on A.
If $u(x) \in D[x]$ is unit-valued on A and $f(x) \in D[x]$, then $\phi(x)=\frac{f(x)}{u(x)} \in \operatorname{ltt}_{K}^{\mathrm{R}}(A)$.
Let $U=\{$ unit-valued polynomials in $D[x]\}$. Then $\operatorname{Int}_{k}^{R}(A)$ contains $U^{-1} D[x]$.

Integer-valued Rational Functions

Another variation on $\operatorname{Int}(D)$ is to study integer-valued rational functions. We define $\operatorname{Int}^{\mathrm{R}}(D)=\{\phi(x) \in K(x) \mid \phi(d) \in D$ for all $d \in D\}$.

There is nothing stopping us from doing the same thing with algebras:

$$
\operatorname{lnt}_{K}^{\mathrm{R}}(A)=\{\phi(x) \in K(x) \mid \phi(a) \in A \text { for all } a \in A\}
$$

To get rational functions in $\operatorname{Int}_{K}^{R}(A)$, we need to find polynomials that are unit-valued on A.
If $u(x) \in D[x]$ is unit-valued on A and $f(x) \in D[x]$, then $\phi(x)=\frac{f(x)}{u(x)} \in \operatorname{lnt}_{K}^{\mathrm{R}}(A)$.
Let $U=\{$ unit-valued polynomials in $D[x]\}$. Then $\operatorname{Int}_{k}^{R}(A)$ contains $U^{-1} D[x]$.
However, there are examples where $\operatorname{Int}_{K}^{R}(A)$ strictly contains $U^{-1} D[x]$.

Proposition

Let $D=\mathbb{Q}[t]_{(t)}$ and $A=M_{2}(D)$. Then, the polynomial $x^{4}+t$ is not unit-valued on A, but $t /\left(x^{4}+t\right) \in \operatorname{Int}_{K}^{R}(A)$.

Integer-valued Polynomials on Subsets

The traditional construction of $\operatorname{Int}(D)$,

$$
\operatorname{lnt}(D)=\{f \in k[x] \mid f(d) \in D \text { for all } d \in D\}
$$

can be extended to polynomials evaluated only on subsets of D. For a subset $S \subseteq D$, we define

$$
\operatorname{lnt}(S, D)=\{f \in k[x] \mid f(s) \in D \text { for all } s \in S\}
$$

The rings $\operatorname{lnt}(S, D)$ are well-studied, although in general they are harder to work with than $\operatorname{Int}(D)$.

Integer-valued Polynomials on Subsets

The traditional construction of $\operatorname{lnt}(D)$,

$$
\operatorname{lnt}(D)=\{f \in k[x] \mid f(d) \in D \text { for all } d \in D\}
$$

can be extended to polynomials evaluated only on subsets of D. For a subset $S \subseteq D$, we define

$$
\operatorname{lnt}(S, D)=\{f \in k[x] \mid f(s) \in D \text { for all } s \in S\}
$$

The rings $\operatorname{lnt}(S, D)$ are well-studied, although in general they are harder to work with than $\operatorname{Int}(D)$.

Question: What happens if we attempt this with noncommutative rings? For a subset $S \subseteq A$, we can define

$$
\operatorname{lnt}(S, A)=\{f(x) \in B[x] \mid f(s) \in A \text { for all } s \in S\}
$$

Question: What can we prove about $\operatorname{lnt}(S, A)$? In particular, when is it a ring?

Example

Let A be a noncommutative \mathbb{Z}-algebra. Let $a, b \in A$ such that $a b \neq b a$.
Take $S=\{a\}$.
Then, $x-b \in \operatorname{lnt}(S, A)$ and $\frac{x-a}{n} \in \operatorname{lnt}(S, A)$ for all $n>0$.
Since $a b-b a \neq 0$, there exists $m \in \mathbb{Z}$ such that $a b-b a \notin m A$.
Let $f(x)=\frac{x-a}{m}(x-b)=\frac{x^{2}-(a+b) x+a b}{m}$.
Then, $f(a)=\frac{a b-b a}{m} \notin A$.
Thus, $\operatorname{Int}(S, A)$ is not closed under multiplication, and hence is not a ring.

A Sufficient Condition

Proposition

Assume that A is generated by a set of units U. If $u S u^{-1} \subseteq S$ for all $u \in U$, then $\operatorname{lnt}(S, A)$ is a ring.

A Sufficient Condition

Proposition

Assume that A is generated by a set of units U. If $u S u^{-1} \subseteq S$ for all $u \in U$, then $\operatorname{lnt}(S, A)$ is a ring.

Example

Let A be the Lipschitz quaternions: $A=\mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \mathbf{j} \oplus \mathbb{Z} \mathbf{k}$.
Let $S=\{\mathbf{i},-\mathbf{i}\}$.
Then, $u S u^{-1} \subseteq S$ for all $u \in\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$, so $\operatorname{lnt}(S, A)$ is a ring.

A Sufficient Condition

Proposition

Assume that A is generated by a set of units U. If $u S u^{-1} \subseteq S$ for all $u \in U$, then $\operatorname{lnt}(S, A)$ is a ring.

Example

Let A be the Lipschitz quaternions: $A=\mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \mathbf{j} \oplus \mathbb{Z} \mathbf{k}$.
Let $S=\{\mathbf{i},-\mathbf{i}\}$.
Then, $u S u^{-1} \subseteq S$ for all $u \in\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$, so $\operatorname{lnt}(S, A)$ is a ring.

The condition in the Proposition is sufficient for $\operatorname{lnt}(S, A)$ to be a ring, but it is not necessary.

A Sufficient Condition

Proposition

Assume that A is generated by a set of units U. If $u S u^{-1} \subseteq S$ for all $u \in U$, then $\operatorname{lnt}(S, A)$ is a ring.

Example

Let A be the Lipschitz quaternions: $A=\mathbb{Z} \oplus \mathbb{Z} \mathbf{i} \oplus \mathbb{Z} \mathbf{j} \oplus \mathbb{Z} \mathbf{k}$.
Let $S=\{\mathbf{i},-\mathbf{i}\}$.
Then, $u S u^{-1} \subseteq S$ for all $u \in\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$, so $\operatorname{lnt}(S, A)$ is a ring.

The condition in the Proposition is sufficient for $\operatorname{lnt}(S, A)$ to be a ring, but it is not necessary.

Example

Let A be the Lipschitz quaternions and let $S=\{\mathbf{i}, \mathbf{j}\}$.
Then, one can prove that $\operatorname{lnt}(S, A)$ is a ring.

Union and Intersections

Lemma

Let A be a D-algebra. Let $S, T \subseteq A$ be such that both $\operatorname{Int}(S, A)$ and $\operatorname{lnt}(T, A)$ are rings. Then, $\operatorname{lnt}(S \cup T, A)$ is a ring.

So, the collection of subsets S of A such that $\operatorname{Int}(S, A)$ is a ring is closed under unions.

Union and Intersections

Lemma

Let A be a D-algebra. Let $S, T \subseteq A$ be such that both $\operatorname{Int}(S, A)$ and $\operatorname{lnt}(T, A)$ are rings. Then, $\operatorname{lnt}(S \cup T, A)$ is a ring.

So, the collection of subsets S of A such that $\operatorname{Int}(S, A)$ is a ring is closed under unions.

However, it is not closed under intersections.

Example

Let A be the Lipschitz quaternions, $S=\{\mathbf{i},-\mathbf{i}\}$, and $T=\{\mathbf{i} \mathbf{i}\}$. Then, $S \cap T=\{\mathbf{i}\}$, and $\operatorname{lnt}(S \cap T, A)$ is not a ring.

So, it does not appear that topology can help us caterogize the sets for which $\operatorname{lnt}(S, A)$ is a ring.

Union and Intersections

Lemma

Let A be a D-algebra. Let $S, T \subseteq A$ be such that both $\operatorname{lnt}(S, A)$ and $\operatorname{lnt}(T, A)$ are rings. Then, $\operatorname{lnt}(S \cup T, A)$ is a ring.

So, the collection of subsets S of A such that $\operatorname{Int}(S, A)$ is a ring is closed under unions.

However, it is not closed under intersections.

Example

Let A be the Lipschitz quaternions, $S=\{\mathbf{i},-\mathbf{i}\}$, and $T=\{\mathbf{i} \mathbf{j}\}$. Then, $S \cap T=\{\mathbf{i}\}$, and $\operatorname{lnt}(S \cap T, A)$ is not a ring.

So, it does not appear that topology can help us caterogize the sets for which $\operatorname{lnt}(S, A)$ is a ring.
Question: What is going on?

Union and Intersections

Lemma

Let A be a D-algebra. Let $S, T \subseteq A$ be such that both $\operatorname{Int}(S, A)$ and $\operatorname{lnt}(T, A)$ are rings. Then, $\operatorname{lnt}(S \cup T, A)$ is a ring.

So, the collection of subsets S of A such that $\operatorname{Int}(S, A)$ is a ring is closed under unions.

However, it is not closed under intersections.

Example

Let A be the Lipschitz quaternions, $S=\{\mathbf{i},-\mathbf{i}\}$, and $T=\{\mathbf{i} \mathbf{j}\}$. Then, $S \cap T=\{\mathbf{i}\}$, and $\operatorname{lnt}(S \cap T, A)$ is not a ring.

So, it does not appear that topology can help us caterogize the sets for which $\operatorname{lnt}(S, A)$ is a ring.
Question: What is going on?
Problem to work on: Which finite subsets S of $M_{2}(\mathbb{Z})$ are such that $\operatorname{lnt}\left(S, M_{2}(\mathbb{Z})\right)$ is a ring?

Thank you!

