Polynomials Inducing the Zero Function on Local Rings

Mark Rogers Cameron Wickham

Department of Mathematics
Missouri State University
MarkRogers@MissouriState.edu CWickham@MissouriState.edu

Conference on Rings and Polynomials Graz, Austria
July 2016

The Zero Function Ideal

All rings are assumed to be commutative Noetherian local rings with identity; in particular, (R, \mathfrak{m}) is a local ring with maximal ideal \mathfrak{m}.

The Zero Function Ideal

All rings are assumed to be commutative Noetherian local rings with identity; in particular, (R, \mathfrak{m}) is a local ring with maximal ideal \mathfrak{m}.

Definition

For a subset S and ideal J of R, we denote by $\mathcal{Z}(S, J)$ the ideal of polynomials in $R[x]$ which map S into J. When $J=0$, we simply write $\mathcal{Z}(S)$. The focus of this talk is on the connection between $\mathcal{Z}(R)$, which we call the zero-function ideal of R, and $\mathcal{Z}(\mathfrak{m})$.

The Zero Function Ideal

All rings are assumed to be commutative Noetherian local rings with identity; in particular, (R, \mathfrak{m}) is a local ring with maximal ideal \mathfrak{m}.

Definition

For a subset S and ideal J of R, we denote by $\mathcal{Z}(S, J)$ the ideal of polynomials in $R[x]$ which map S into J. When $J=0$, we simply write $\mathcal{Z}(S)$. The focus of this talk is on the connection between $\mathcal{Z}(R)$, which we call the zero-function ideal of R, and $\mathcal{Z}(\mathfrak{m})$.
$\mathcal{Z}(R)$ is the kernel of the map

$$
R[x] \rightarrow\{\text { polynomial functions on } R\}
$$

Some Previous Results

K Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240-288.

Some Previous Results

K Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240-288.

$$
\mathcal{Z}\left(\mathbb{Z}_{9}\right)=(x(x-1)(x-2)(x-3)(x-4)(x-5), 3 x(x-1)(x-2))
$$

Some Previous Results

K Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240-288.

L Lewis, D. J., Ideals and Polynomial Functions, Amer. J. Math. 78 (1956), no. 1, 71-77.

Some Previous Results

K Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240-288.

L Lewis, D. J., Ideals and Polynomial Functions, Amer. J. Math. 78 (1956), no. 1, 71-77.

F Frisch, S., Polynomial Functions on Finite Commutative Rings, Lecture Notes in Pure and Appl. Mathematics 205, Dekker 1999, 323-336.

Some Previous Results

K Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240-288.

L Lewis, D. J., Ideals and Polynomial Functions, Amer. J. Math. 78 (1956), no. 1, 71-77.

F Frisch, S., Polynomial Functions on Finite Commutative Rings, Lecture Notes in Pure and Appl. Mathematics 205, Dekker 1999, 323-336.

W Werner, N. J., Polynomials that kill each element of a finite ring, J. Alg. and Its Appl. 13 (2014), no. 3, 1-12.

Main Idea

One can construct polynomials in $\mathcal{Z}(R)$ by composing a polynomial in $\mathcal{Z}(\mathfrak{m})$ with a polynomial in $\mathcal{Z}(R, \mathfrak{m})$.

Main Idea

One can construct polynomials in $\mathcal{Z}(R)$ by composing a polynomial in $\mathcal{Z}(\mathfrak{m})$ with a polynomial in $\mathcal{Z}(R, \mathfrak{m})$.

Notation: $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m}) \subseteq \mathcal{Z}(R)$

Main Idea

One can construct polynomials in $\mathcal{Z}(R)$ by composing a polynomial in $\mathcal{Z}(\mathfrak{m})$ with a polynomial in $\mathcal{Z}(R, \mathfrak{m})$.

Notation: $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m}) \subseteq \mathcal{Z}(R)$

Well-known generalization of Fermat's Little Theorem: If R is a local ring with residue field \bar{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m})=\left(x^{q}-x, \mathfrak{m}\right)$.

Main Idea

One can construct polynomials in $\mathcal{Z}(R)$ by composing a polynomial in $\mathcal{Z}(\mathfrak{m})$ with a polynomial in $\mathcal{Z}(R, \mathfrak{m})$.

Notation: $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m}) \subseteq \mathcal{Z}(R)$

Well-known generalization of Fermat's Little Theorem: If R is a local ring with residue field \bar{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m})=\left(x^{q}-x, \mathfrak{m}\right)$.
$\mathcal{Z}(\mathfrak{m})$ is often easier to work with than $\mathcal{Z}(R)$.

Some Examples

Some Examples

- Let $R=\mathbb{Z}_{9}$, so $\mathfrak{m}=(3)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}, 3 x\right)$

Some Examples

- Let $R=\mathbb{Z}_{9}$, so $\mathfrak{m}=(3)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}, 3 x\right)$, so

$$
\mathcal{Z}(R) \supseteq\left(\left(x^{3}-x\right)^{2}, 3\left(x^{3}-x\right)\right)
$$

Some Examples

- Let $R=\mathbb{Z}_{9}$, so $\mathfrak{m}=(3)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}, 3 x\right)$, so

$$
\mathcal{Z}(R)=\left(\left(x^{3}-x\right)^{2}, 3\left(x^{3}-x\right)\right)
$$

Some Examples

- Let $R=\mathbb{Z}_{9}$, so $\mathfrak{m}=(3)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}, 3 x\right)$, so

$$
\mathcal{Z}(R)=\left(\left(x^{3}-x\right)^{2}, 3\left(x^{3}-x\right)\right)
$$

- Let $R=\mathbb{Z}_{8}$, so $\mathfrak{m}=(2)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}-2 x, 4 x\right)$

Some Examples

- Let $R=\mathbb{Z}_{9}$, so $\mathfrak{m}=(3)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}, 3 x\right)$, so

$$
\mathcal{Z}(R)=\left(\left(x^{3}-x\right)^{2}, 3\left(x^{3}-x\right)\right)
$$

- Let $R=\mathbb{Z}_{8}$, so $\mathfrak{m}=(2)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}-2 x, 4 x\right)$, so

$$
\mathcal{Z}(R)=\left(\left(x^{2}-x\right)^{2}-2\left(x^{2}-x\right), 4\left(x^{2}-x\right)\right)
$$

Some Examples

- Let $R=\mathbb{Z}_{9}$, so $\mathfrak{m}=(3)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}, 3 x\right)$, so

$$
\mathcal{Z}(R)=\left(\left(x^{3}-x\right)^{2}, 3\left(x^{3}-x\right)\right)
$$

- Let $R=\mathbb{Z}_{8}$, so $\mathfrak{m}=(2)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}-2 x, 4 x\right)$, so

$$
\mathcal{Z}(R)=\left(\left(x^{2}-x\right)^{2}-2\left(x^{2}-x\right), 4\left(x^{2}-x\right)\right)
$$

- If R is an infinite domain, then $\mathcal{Z}(R)=0$.

Example. If $R=\mathbb{F}_{q}[[S, T]] /\left(S^{2}, S T\right)$, then $\mathcal{Z}(\mathfrak{m})=(s x)$, so $\mathcal{Z}(R) \supseteq\left(s\left(x^{q}-x\right)\right)$.

Example. If $R=\mathbb{F}_{q}[[S, T]] /\left(S^{2}, S T\right)$, then $\mathcal{Z}(\mathfrak{m})=(s x)$, so $\mathcal{Z}(R) \supseteq\left(s\left(x^{q}-x\right)\right)$.

Example. If $R=\mathbb{Q}[[S, T]] /\left(S^{2}, S T\right)$, then $\mathcal{Z}(\mathfrak{m})=(s x)$, but $\mathcal{Z}(R)=0$.

Example. If $R=\mathbb{F}_{q}[[S, T]] /\left(S^{2}, S T\right)$, then $\mathcal{Z}(\mathfrak{m})=(s x)$, so $\mathcal{Z}(R) \supseteq\left(s\left(x^{q}-x\right)\right)$.

Example. If $R=\mathbb{Q}[[S, T]] /\left(S^{2}, S T\right)$, then $\mathcal{Z}(\mathfrak{m})=(s x)$, but $\mathcal{Z}(R)=0$.

Theorem

Let (R, \mathfrak{m}) be a Noetherian local ring.
(1) $\mathcal{Z}(\mathfrak{m})$ contains nonzero polynomials if and only if depth $R=0$.
(2) $\mathcal{Z}(R)$ contains nonzero polynomials if and only if depth $R=0$ and \bar{R} is finite.

Theorem

Let (R, \mathfrak{m}) be a Noetherian local ring.
(1) $\mathcal{Z}(\mathfrak{m})$ contains nonzero polynomials if and only if depth $R=0$.
(2) $\mathcal{Z}(R)$ contains nonzero polynomials if and only if depth $R=0$ and \bar{R} is finite.
(3) $\mathcal{Z}(\mathfrak{m})$ contains regular polynomials if and only if $\operatorname{dim} R=0$.
(9) $\mathcal{Z}(R)$ contains regular polynomials if and only if $\operatorname{dim} R=0$ and \bar{R} is finite.

π-polynomials

Definition

Suppose the local ring (R, \mathfrak{m}) has a finite residue field. If c_{1}, \ldots, c_{q} is any set of representatives of the residue classes of \mathfrak{m}, then we call the polynomial $\pi(x)=\prod_{i=1}^{q}\left(x-c_{i}\right)$ a π-polynomial for R.

π-polynomials

Definition

Suppose the local ring (R, \mathfrak{m}) has a finite residue field. If c_{1}, \ldots, c_{q} is any set of representatives of the residue classes of \mathfrak{m}, then we call the polynomial $\pi(x)=\prod_{i=1}^{q}\left(x-c_{i}\right)$ a π-polynomial for R.

If R is a local ring with residue field \bar{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m})=(\pi(x), \mathfrak{m})$ for any π-polynomial.

π-polynomials

Definition

Suppose the local ring (R, \mathfrak{m}) has a finite residue field. If c_{1}, \ldots, c_{q} is any set of representatives of the residue classes of \mathfrak{m}, then we call the polynomial $\pi(x)=\prod_{i=1}^{q}\left(x-c_{i}\right)$ a π-polynomial for R.

If R is a local ring with residue field \bar{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m})=(\pi(x), \mathfrak{m})$ for any π-polynomial.

When R is Henselian, $\pi(x)$ is a π-polynomial if and only if $\pi(x)$ is monic and maps to $x^{q}-x$ in $\bar{R}[x]$.

π-polynomials

Definition

Suppose the local ring (R, \mathfrak{m}) has a finite residue field. If c_{1}, \ldots, c_{q} is any set of representatives of the residue classes of \mathfrak{m}, then we call the polynomial $\pi(x)=\prod_{i=1}^{q}\left(x-c_{i}\right)$ a π-polynomial for R.

If R is a local ring with residue field \bar{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m})=(\pi(x), \mathfrak{m})$ for any π-polynomial.

When R is Henselian, $\pi(x)$ is a π-polynomial if and only if $\pi(x)$ is monic and maps to $x^{q}-x$ in $\bar{R}[x]$. In this case,

$$
\pi(R)=\pi(c+\mathfrak{m})=\mathfrak{m}
$$

for any $c \in R$. (Bandini (2002) showed $x^{p}-x$ maps $\mathbb{Z}_{p^{n}}$ onto $p \mathbb{Z}_{p^{n}}$).

Main Result

(Roughly, $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m})=\mathcal{Z}(R))$
Theorem
Suppose (R, \mathfrak{m}) is a Henselian local ring with finite residue field \bar{R} of cardinality q and let $\pi(x)$ be an arbitrary π-polynomial. If $\mathcal{Z}(\mathfrak{m})=\left(F_{1}(x), \ldots, F_{n}(x)\right)$ then $\mathcal{Z}(R)=\left(F_{1}(\pi(x)), \ldots, F_{n}(\pi(x))\right)$.

Main Result

(Roughly, $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m})=\mathcal{Z}(R))$
Theorem
Suppose (R, \mathfrak{m}) is a Henselian local ring with finite residue field \bar{R} of cardinality q and let $\pi(x)$ be an arbitrary π-polynomial. If $\mathcal{Z}(\mathfrak{m})=\left(F_{1}(x), \ldots, F_{n}(x)\right)$ then $\mathcal{Z}(R)=\left(F_{1}(\pi(x)), \ldots, F_{n}(\pi(x))\right)$.

- Let $R=\mathbb{Z}_{p^{2}}$, so $\mathfrak{m}=(p)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}, p x\right)$, so

$$
\mathcal{Z}(R)=\left(\left(x^{p}-x\right)^{2}, p\left(x^{p}-x\right)\right)
$$

Main Result

(Roughly, $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m})=\mathcal{Z}(R))$
Theorem
Suppose (R, \mathfrak{m}) is a Henselian local ring with finite residue field \bar{R} of cardinality q and let $\pi(x)$ be an arbitrary π-polynomial. If $\mathcal{Z}(\mathfrak{m})=\left(F_{1}(x), \ldots, F_{n}(x)\right)$ then $\mathcal{Z}(R)=\left(F_{1}(\pi(x)), \ldots, F_{n}(\pi(x))\right)$.

- Let $R=\mathbb{Z}_{p^{2}}$, so $\mathfrak{m}=(p)$. Then $\mathcal{Z}(\mathfrak{m})=\left(x^{2}, p x\right)$, so

$$
\mathcal{Z}(R)=\left(\left(x^{p}-x\right)^{2}, p\left(x^{p}-x\right)\right)
$$

- If $R=\mathbb{F}_{q}[[S, T]] /\left(S^{2}, S T\right)$, then $\mathcal{Z}(\mathfrak{m})=(s x)$, so

$$
\mathcal{Z}(R)=\left(s\left(x^{q}-x\right)\right) .
$$

The proof requires the following:

Proposition

Let (R, \mathfrak{m}) be a Henselian local ring with finite residue field \bar{R} and let $\pi(x)$ be an arbitrary π-polynomial. Any $f(x) \in \mathcal{Z}(R)$ may be written in the form

$$
f(x)=p_{0}(\pi(x))+x p_{1}(\pi(x))+x^{2} p_{2}(\pi(x))+\cdots+x^{q-1} p_{q-1}(\pi(x))
$$

with each $p_{i}(x) \in \mathcal{Z}(\mathfrak{m})$.

The proof requires the following:

Proposition

Let (R, \mathfrak{m}) be a Henselian local ring with finite residue field \bar{R} and let $\pi(x)$ be an arbitrary π-polynomial. Any $f(x) \in \mathcal{Z}(R)$ may be written in the form

$$
f(x)=p_{0}(\pi(x))+x p_{1}(\pi(x))+x^{2} p_{2}(\pi(x))+\cdots+x^{q-1} p_{q-1}(\pi(x))
$$

with each $p_{i}(x) \in \mathcal{Z}(\mathfrak{m})$.
Part of proof: Since $\pi(x)$ maps each coset of \mathfrak{m} onto \mathfrak{m}, for each $m \in \mathfrak{m}$ there exist a complete set of representatives $c_{1}, \ldots, c_{q} \in R$ of the residue field with $\pi\left(c_{i}\right)=m$.

The proof requires the following:

Proposition

Let (R, \mathfrak{m}) be a Henselian local ring with finite residue field \bar{R} and let $\pi(x)$ be an arbitrary π-polynomial. Any $f(x) \in \mathcal{Z}(R)$ may be written in the form

$$
f(x)=p_{0}(\pi(x))+x p_{1}(\pi(x))+x^{2} p_{2}(\pi(x))+\cdots+x^{q-1} p_{q-1}(\pi(x))
$$

with each $p_{i}(x) \in \mathcal{Z}(\mathfrak{m})$.
Part of proof: Since $\pi(x)$ maps each coset of \mathfrak{m} onto \mathfrak{m}, for each $m \in \mathfrak{m}$ there exist a complete set of representatives $c_{1}, \ldots, c_{q} \in R$ of the residue field with $\pi\left(c_{i}\right)=m$. This yields a system of equations

$$
0=f(m)=p_{0}(m)+c_{i} p_{1}(m)+c_{i}^{2} p_{2}(m)+\cdots+c_{i}^{q-1} p_{q-1}(m)
$$

whose coefficient matrix is a Vandermonde matrix with unit determinant.

The proof requires the following:

Proposition

Let (R, \mathfrak{m}) be a Henselian local ring with finite residue field \bar{R} and let $\pi(x)$ be an arbitrary π-polynomial. Any $f(x) \in \mathcal{Z}(R)$ may be written in the form

$$
f(x)=p_{0}(\pi(x))+x p_{1}(\pi(x))+x^{2} p_{2}(\pi(x))+\cdots+x^{q-1} p_{q-1}(\pi(x))
$$

with each $p_{i}(x) \in \mathcal{Z}(\mathfrak{m})$.
Part of proof: Since $\pi(x)$ maps each coset of \mathfrak{m} onto \mathfrak{m}, for each $m \in \mathfrak{m}$ there exist a complete set of representatives $c_{1}, \ldots, c_{q} \in R$ of the residue field with $\pi\left(c_{i}\right)=m$. This yields a system of equations

$$
0=f(m)=p_{0}(m)+c_{i} p_{1}(m)+c_{i}^{2} p_{2}(m)+\cdots+c_{i}^{q-1} p_{q-1}(m)
$$

whose coefficient matrix is a Vandermonde matrix with unit determinant. Hence $p_{i}(m)=0$ for all i and $m \in \mathfrak{m}$.

Other Results

Other Results

The minimal number of generators of $\mathcal{Z}(R)$ is less than or equal to the minimal number of generators of $\mathcal{Z}(\mathfrak{m})$.

Other Results

The minimal number of generators of $\mathcal{Z}(R)$ is less than or equal to the minimal number of generators of $\mathcal{Z}(\mathfrak{m})$.

Theorem

Let (R, \mathfrak{m}) be a finite local ring with principal maximal ideal $\mathfrak{m}=(m)$; set $q=|R / \mathfrak{m}|$. Suppose e is the index of nilpotency of \mathfrak{m}. If $e \leqslant q$ then $\mathcal{Z}(\mathfrak{m})=(x, m)^{e}$; if $e=q+1$, then $\mathcal{Z}(\mathfrak{m})=(x, m)^{e}+\left(x^{q}-m^{q-1} x\right)$.

This is a version of results of Dickson (1929), Lewis (1956), and Bandini (2002), adapted for $\mathcal{Z}(\mathfrak{m})$ rather than $\mathcal{Z}(R)$, and for finite local rings rather than specific rings.

Other Results

Gilmer (2000) showed that if (R, \mathfrak{m}) is a zero-dimensional local ring, then $\mathcal{Z}(R)$ is principal if and only if either \bar{R} is infinite (when $\mathcal{Z}(R)=0$) or R is a finite field (when $\mathcal{Z}(R)$ is generated by $x^{q}-x$.)

Other Results

Gilmer (2000) showed that if (R, \mathfrak{m}) is a zero-dimensional local ring, then $\mathcal{Z}(R)$ is principal if and only if either \bar{R} is infinite (when $\mathcal{Z}(R)=0$) or R is a finite field (when $\mathcal{Z}(R)$ is generated by $x^{q}-x$.)

Theorem
Let (R, \mathfrak{m}) be a finite local ring and let $\pi(x)$ be any π-polynomial for R. The following statements are equivalent:
(1) R is a field.
(2) $\mathcal{Z}(R)$ is principal.
(3) $\mathcal{Z}(R)=(\pi(x))$.
(3) $\mathcal{Z}(\mathfrak{m})$ is principal.
(6) $\mathcal{Z}(\mathfrak{m})=(x)$.

Theorem
Let (R, \mathfrak{m}) be a Noetherian local ring.
(1) $\mathcal{Z}(\mathfrak{m})$ contains nonzero polynomials if and only if depth $R=0$.
(2) $\mathcal{Z}(R)$ contains nonzero polynomials if and only if depth $R=0$ and \bar{R} is finite.
(3) $\mathcal{Z}(\mathfrak{m})$ contains regular polynomials if and only if $\operatorname{dim} R=0$.
(9) $\mathcal{Z}(R)$ contains regular polynomials if and only if $\operatorname{dim} R=0$ and \bar{R} is finite.

Theorem

Let (R, \mathfrak{m}) be a Noetherian local ring.
(1) $\mathcal{Z}(\mathfrak{m})$ contains nonzero polynomials if and only if depth $R=0$.
(2) $\mathcal{Z}(R)$ contains nonzero polynomials if and only if depth $R=0$ and \bar{R} is finite.
(3) $\mathcal{Z}(\mathfrak{m})$ contains regular polynomials if and only if $\operatorname{dim} R=0$.
(9) $\mathcal{Z}(R)$ contains regular polynomials if and only if $\operatorname{dim} R=0$ and \bar{R} is finite.
(6) $\mathcal{Z}(\mathfrak{m})$ is generated by a regular polynomial if and only if $\operatorname{edim} R=0$.
(0) $\mathcal{Z}(R)$ is generated by a regular polynomial if and only if edim $R=0$ and \bar{R} is finite.

Other Results

Note: For I and ideal of R and $c \in R$, it's clear that $f(x) \in \mathcal{Z}(I)$ if and only if $f(x-c) \in \mathcal{Z}(c+I)$.

Other Results

Note: For I and ideal of R and $c \in R$, it's clear that $f(x) \in \mathcal{Z}(I)$ if and only if $f(x-c) \in \mathcal{Z}(c+I)$.

Proposition

Let (R, \mathfrak{m}) be a (finite) local ring with residue field \bar{R} of cardinality q. Let c_{1}, \ldots, c_{q} be a set of representatives of the residue classes of \mathfrak{m}. Then $\mathcal{Z}(R)=\bigcap_{i=1}^{q} \mathcal{Z}\left(c_{i}+\mathfrak{m}\right)$ is a minimal primary decomposition of $\mathcal{Z}(R)$. For each i, the associated prime of $\mathcal{Z}\left(c_{i}+\mathfrak{m}\right)$ is the maximal ideal $\left(x-c_{i}, \mathfrak{m}\right)$.

Other Results

Note: For I and ideal of R and $c \in R$, it's clear that $f(x) \in \mathcal{Z}(I)$ if and only if $f(x-c) \in \mathcal{Z}(c+I)$.

Proposition

Let (R, \mathfrak{m}) be a (finite) local ring with residue field \bar{R} of cardinality q. Let c_{1}, \ldots, c_{q} be a set of representatives of the residue classes of \mathfrak{m}. Then $\mathcal{Z}(R)=\bigcap_{i=1}^{q} \mathcal{Z}\left(c_{i}+\mathfrak{m}\right)$ is a minimal primary decomposition of $\mathcal{Z}(R)$. For each i, the associated prime of $\mathcal{Z}\left(c_{i}+\mathfrak{m}\right)$ is the maximal ideal $\left(x-c_{i}, \mathfrak{m}\right)$.

Peruginelli's paper (2014) gives this result for $R=\mathbb{Z} / p^{n} \mathbb{Z}$, p prime.

Final Remarks

Final Remarks

(1) A set of generators for $\mathcal{Z}(\mathfrak{m})$ yields a set of generators for $\mathcal{Z}(R)$ by composing with any π-polynomial.

Final Remarks

(1) A set of generators for $\mathcal{Z}(\mathfrak{m})$ yields a set of generators for $\mathcal{Z}(R)$ by composing with any π-polynomial.
(2) The elements of $\mathcal{Z}(\mathfrak{m})$ reflect the same properties of R as do the elements of $\mathcal{Z}(R)$.

Final Remarks

(1) A set of generators for $\mathcal{Z}(\mathfrak{m})$ yields a set of generators for $\mathcal{Z}(R)$ by composing with any π-polynomial.
(2) The elements of $\mathcal{Z}(\mathfrak{m})$ reflect the same properties of R as do the elements of $\mathcal{Z}(R)$.
(3) Constructing $\mathcal{Z}(\mathfrak{m})$ constructs a minimal primary decomposition of $\mathcal{Z}(R)$.

Bibliography

(1) Bandini, A., Functions $f: \mathbb{Z} / p^{n} \mathbb{Z} \longrightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ induced by polynomials of $\mathbb{Z}[x]$, Annali di Matematica 181 (2002), 95-104.
(2) Frisch, S., Polynomial Functions on Finite Commutative Rings, Lecture Notes in Pure and Appl. Mathematics 205, Dekker 1999, 323-336.
(3) Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240-288.
(9) Lewis, D. J., Ideals and Polynomial Functions, Amer. J. Math. 78 (1956), no. 1, 71-77.
(6) Peruginelli, G., Primary decomposition of the ideal of polynomials whose fixed divisor is divisible by a prime power, J. Alg. 398 (2014), 227-242.
(0) Werner, N. J., Polynomials that kill each element of a finite ring, J. Alg. and Its Appl. 13 (2014), no. 3, 1-12.

