Polynomials Inducing the Zero Function on Local Rings

Mark Rogers Cameron Wickham

Department of Mathematics Missouri State University

MarkRogers@MissouriState.edu CWickham@MissouriState.edu

Conference on Rings and Polynomials Graz, Austria July 2016

Cameron Wickham (Missouri State Univ.)

The Zero Function Ideal

All rings are assumed to be commutative Noetherian local rings with identity; in particular, (R, \mathfrak{m}) is a local ring with maximal ideal \mathfrak{m} .

The Zero Function Ideal

All rings are assumed to be commutative Noetherian local rings with identity; in particular, (R, \mathfrak{m}) is a local ring with maximal ideal \mathfrak{m} .

Definition

For a subset S and ideal J of R, we denote by $\mathcal{Z}(S, J)$ the ideal of polynomials in R[x] which map S into J. When J = 0, we simply write $\mathcal{Z}(S)$. The focus of this talk is on the connection between $\mathcal{Z}(R)$, which we call the *zero-function ideal* of R, and $\mathcal{Z}(\mathfrak{m})$.

The Zero Function Ideal

All rings are assumed to be commutative Noetherian local rings with identity; in particular, (R, \mathfrak{m}) is a local ring with maximal ideal \mathfrak{m} .

Definition

For a subset S and ideal J of R, we denote by $\mathcal{Z}(S, J)$ the ideal of polynomials in R[x] which map S into J. When J = 0, we simply write $\mathcal{Z}(S)$. The focus of this talk is on the connection between $\mathcal{Z}(R)$, which we call the *zero-function ideal* of R, and $\mathcal{Z}(\mathfrak{m})$.

 $\mathcal{Z}\left(R
ight)$ is the kernel of the map

$$R[x] \rightarrow \{\text{polynomial functions on } R\}$$

K Kempner, A., *Polynomials and their Residual Systems*, Trans. Amer. Math. Soc. **22** (1921), 240–288.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

K Kempner, A., *Polynomials and their Residual Systems*, Trans. Amer. Math. Soc. **22** (1921), 240–288.

$$\mathcal{Z}(\mathbb{Z}_9) = (x(x-1)(x-2)(x-3)(x-4)(x-5), 3x(x-1)(x-2))$$

- K Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240–288.
- L Lewis, D. J., *Ideals and Polynomial Functions*, Amer. J. Math. **78** (1956), no. 1, 71–77.

A B A A B A

- K Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240–288.
- L Lewis, D. J., *Ideals and Polynomial Functions*, Amer. J. Math. **78** (1956), no. 1, 71–77.
- F Frisch, S., *Polynomial Functions on Finite Commutative Rings*, Lecture Notes in Pure and Appl. Mathematics 205, Dekker 1999, 323–336.

A B A A B A

- K Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240–288.
- L Lewis, D. J., *Ideals and Polynomial Functions*, Amer. J. Math. **78** (1956), no. 1, 71–77.
- F Frisch, S., *Polynomial Functions on Finite Commutative Rings*, Lecture Notes in Pure and Appl. Mathematics 205, Dekker 1999, 323–336.
- W Werner, N. J., *Polynomials that kill each element of a finite ring*, J. Alg. and Its Appl. **13** (2014), no. 3, 1–12.

イロト 不得下 イヨト イヨト 二日

One can construct polynomials in $\mathcal{Z}(R)$ by composing a polynomial in $\mathcal{Z}(\mathfrak{m})$ with a polynomial in $\mathcal{Z}(R,\mathfrak{m})$.

イロン イヨン イヨン イヨン

One can construct polynomials in $\mathcal{Z}(R)$ by composing a polynomial in $\mathcal{Z}(\mathfrak{m})$ with a polynomial in $\mathcal{Z}(R,\mathfrak{m})$.

Notation: $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m}) \subseteq \mathcal{Z}(R)$

One can construct polynomials in $\mathcal{Z}(R)$ by composing a polynomial in $\mathcal{Z}(\mathfrak{m})$ with a polynomial in $\mathcal{Z}(R,\mathfrak{m})$.

Notation: $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m}) \subseteq \mathcal{Z}(R)$

Well-known generalization of Fermat's Little Theorem: If R is a local ring with residue field \overline{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m}) = (x^q - x, \mathfrak{m})$.

イロト 不得下 イヨト イヨト 二日

One can construct polynomials in $\mathcal{Z}(R)$ by composing a polynomial in $\mathcal{Z}(\mathfrak{m})$ with a polynomial in $\mathcal{Z}(R,\mathfrak{m})$.

Notation: $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m}) \subseteq \mathcal{Z}(R)$

Well-known generalization of Fermat's Little Theorem: If R is a local ring with residue field \overline{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m}) = (x^q - x, \mathfrak{m})$.

 $\mathcal{Z}(\mathfrak{m})$ is often easier to work with than $\mathcal{Z}(R)$.

イロト (過) (ヨ) (ヨ) (ヨ) ヨー ののの

• Let
$$R = \mathbb{Z}_9$$
, so $\mathfrak{m} = (3)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2, 3x)$

• Let
$$R = \mathbb{Z}_9$$
, so $\mathfrak{m} = (3)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2, 3x)$, so
 $\mathcal{Z}(R) \supseteq ((x^3 - x)^2, 3(x^3 - x)).$

• Let
$$R = \mathbb{Z}_9$$
, so $\mathfrak{m} = (3)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2, 3x)$, so
 $\mathcal{Z}(R) = ((x^3 - x)^2, 3(x^3 - x)).$

• Let
$$R = \mathbb{Z}_9$$
, so $\mathfrak{m} = (3)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2, 3x)$, so
 $\mathcal{Z}(R) = ((x^3 - x)^2, 3(x^3 - x)).$

• Let $R = \mathbb{Z}_8$, so $\mathfrak{m} = (2)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2 - 2x, 4x)$

Cameron Wickham (Missouri State Univ.)

Zero Function Ideal

CRP, 2016 5 / 16

• Let
$$R = \mathbb{Z}_9$$
, so $\mathfrak{m} = (3)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2, 3x)$, so
 $\mathcal{Z}(R) = ((x^3 - x)^2, 3(x^3 - x)).$

• Let
$$R = \mathbb{Z}_8$$
, so $\mathfrak{m} = (2)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2 - 2x, 4x)$, so
 $\mathcal{Z}(R) = ((x^2 - x)^2 - 2(x^2 - x), 4(x^2 - x)).$

Cameron Wickham (Missouri State Univ.)

Zero Function Ideal

CRP, 2016 5 / 16

• Let
$$R = \mathbb{Z}_9$$
, so $\mathfrak{m} = (3)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2, 3x)$, so
 $\mathcal{Z}(R) = ((x^3 - x)^2, 3(x^3 - x)).$

• Let
$$R = \mathbb{Z}_8$$
, so $\mathfrak{m} = (2)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2 - 2x, 4x)$, so
 $\mathcal{Z}(R) = ((x^2 - x)^2 - 2(x^2 - x), 4(x^2 - x)).$

• If R is an infinite domain, then $\mathcal{Z}(R) = 0$.

Cameron Wickham (Missouri State Univ.)

 ▲ ■
 ■
 • ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●</

<ロ> (日) (日) (日) (日) (日)

Example. If $R = \mathbb{F}_q[[S,T]]/(S^2,ST)$, then $\mathcal{Z}(\mathfrak{m}) = (sx)$, so $\mathcal{Z}(R) \supseteq (s(x^q - x))$.

CRP, 2016 6 / 16

Example. If $R = \mathbb{F}_q[[S,T]]/(S^2,ST)$, then $\mathcal{Z}(\mathfrak{m}) = (sx)$, so $\mathcal{Z}(R) \supseteq (s(x^q - x))$.

Example. If $R = \mathbb{Q}[[S,T]]/(S^2,ST)$, then $\mathcal{Z}(\mathfrak{m}) = (sx)$, but $\mathcal{Z}(R) = 0$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … の々で

Example. If $R = \mathbb{F}_q[[S,T]]/(S^2,ST)$, then $\mathcal{Z}(\mathfrak{m}) = (sx)$, so $\mathcal{Z}(R) \supseteq (s(x^q - x))$.

Example. If $R = \mathbb{Q}[[S,T]]/(S^2,ST)$, then $\mathcal{Z}(\mathfrak{m}) = (sx)$, but $\mathcal{Z}(R) = 0$.

Theorem

Let (R, \mathfrak{m}) be a Noetherian local ring.

- **(** $\mathcal{Z}(\mathfrak{m})$ contains nonzero polynomials if and only if depth R = 0.
- **2** (R) contains nonzero polynomials if and only if depth R = 0 and \overline{R} is finite.

Theorem

Let (R, \mathfrak{m}) be a Noetherian local ring.

- **(**) $\mathcal{Z}(\mathfrak{m})$ contains nonzero polynomials if and only if depth R = 0.
- **2** (R) contains nonzero polynomials if and only if depth R = 0 and \overline{R} is finite.
- **3** $\mathcal{Z}(\mathfrak{m})$ contains regular polynomials if and only if dim R = 0.
- **③** $\mathcal{Z}(R)$ contains regular polynomials if and only if dim R = 0 and \overline{R} is finite.

Definition

Suppose the local ring (R, \mathfrak{m}) has a finite residue field. If c_1, \ldots, c_q is any set of representatives of the residue classes of \mathfrak{m} , then we call the polynomial $\pi(x) = \prod_{i=1}^{q} (x - c_i)$ a π -polynomial for R.

→ 3 → 4 3

Definition

Suppose the local ring (R, \mathfrak{m}) has a finite residue field. If c_1, \ldots, c_q is any set of representatives of the residue classes of \mathfrak{m} , then we call the polynomial $\pi(x) = \prod_{i=1}^{q} (x - c_i)$ a π -polynomial for R.

If R is a local ring with residue field \overline{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m}) = (\pi(x), \mathfrak{m})$ for any π -polynomial.

< 回 ト < 三 ト < 三 ト

Definition

Suppose the local ring (R, \mathfrak{m}) has a finite residue field. If c_1, \ldots, c_q is any set of representatives of the residue classes of \mathfrak{m} , then we call the polynomial $\pi(x) = \prod_{i=1}^{q} (x - c_i)$ a π -polynomial for R.

If R is a local ring with residue field \overline{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m}) = (\pi(x), \mathfrak{m})$ for any π -polynomial.

When R is Henselian, $\pi(x)$ is a π -polynomial if and only if $\pi(x)$ is monic and maps to $x^q - x$ in $\overline{R}[x]$.

・ロト ・聞ト ・ ヨト ・ ヨト

Definition

Suppose the local ring (R, \mathfrak{m}) has a finite residue field. If c_1, \ldots, c_q is any set of representatives of the residue classes of \mathfrak{m} , then we call the polynomial $\pi(x) = \prod_{i=1}^{q} (x - c_i)$ a π -polynomial for R.

If R is a local ring with residue field \overline{R} of cardinality q, then $\mathcal{Z}(R, \mathfrak{m}) = (\pi(x), \mathfrak{m})$ for any π -polynomial.

When R is Henselian, $\pi(x)$ is a π -polynomial if and only if $\pi(x)$ is monic and maps to $x^q - x$ in $\overline{R}[x]$. In this case,

$$\pi(R) = \pi(c + \mathfrak{m}) = \mathfrak{m}$$

for any $c \in R$. (Bandini (2002) showed $x^p - x$ maps \mathbb{Z}_{p^n} onto $p\mathbb{Z}_{p^n}$).

イロト 不得下 イヨト イヨト 二日

Main Result

(Roughly, $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m}) = \mathcal{Z}(R)$)

Theorem

Suppose (R, \mathfrak{m}) is a Henselian local ring with finite residue field \overline{R} of cardinality q and let $\pi(x)$ be an arbitrary π -polynomial. If $\mathcal{Z}(\mathfrak{m}) = (F_1(x), \ldots, F_n(x))$ then $\mathcal{Z}(R) = (F_1(\pi(x)), \ldots, F_n(\pi(x)))$.

Main Result

(Roughly, $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m}) = \mathcal{Z}(R)$)

Theorem

Suppose (R, \mathfrak{m}) is a Henselian local ring with finite residue field \overline{R} of cardinality q and let $\pi(x)$ be an arbitrary π -polynomial. If $\mathcal{Z}(\mathfrak{m}) = (F_1(x), \ldots, F_n(x))$ then $\mathcal{Z}(R) = (F_1(\pi(x)), \ldots, F_n(\pi(x)))$.

• Let
$$R = \mathbb{Z}_{p^2}$$
, so $\mathfrak{m} = (p)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2, px)$, so

$$\mathcal{Z}(R) = ((x^p - x)^2, p(x^p - x)).$$

Main Result

(Roughly, $\mathcal{Z}(\mathfrak{m}) \circ \mathcal{Z}(R, \mathfrak{m}) = \mathcal{Z}(R)$)

Theorem

Suppose (R, \mathfrak{m}) is a Henselian local ring with finite residue field \overline{R} of cardinality q and let $\pi(x)$ be an arbitrary π -polynomial. If $\mathcal{Z}(\mathfrak{m}) = (F_1(x), \ldots, F_n(x))$ then $\mathcal{Z}(R) = (F_1(\pi(x)), \ldots, F_n(\pi(x)))$.

• Let
$$R = \mathbb{Z}_{p^2}$$
, so $\mathfrak{m} = (p)$. Then $\mathcal{Z}(\mathfrak{m}) = (x^2, px)$, so
 $\mathcal{Z}(R) = ((x^p - x)^2, p(x^p - x)).$

• If $R = \mathbb{F}_q[[S,T]]/(S^2,ST)$, then $\mathcal{Z}(\mathfrak{m}) = (sx)$, so

$$\mathcal{Z}(R) = (s(x^q - x)).$$

Proposition

Let (R, \mathfrak{m}) be a Henselian local ring with finite residue field \overline{R} and let $\pi(x)$ be an arbitrary π -polynomial. Any $f(x) \in \mathcal{Z}(R)$ may be written in the form

$$f(x) = p_0(\pi(x)) + xp_1(\pi(x)) + x^2p_2(\pi(x)) + \dots + x^{q-1}p_{q-1}(\pi(x))$$

with each $p_i(x) \in \mathcal{Z}(\mathfrak{m})$.

< ∃ > < ∃

Proposition

Let (R, \mathfrak{m}) be a Henselian local ring with finite residue field \overline{R} and let $\pi(x)$ be an arbitrary π -polynomial. Any $f(x) \in \mathcal{Z}(R)$ may be written in the form

$$f(x) = p_0(\pi(x)) + xp_1(\pi(x)) + x^2p_2(\pi(x)) + \dots + x^{q-1}p_{q-1}(\pi(x))$$

with each $p_i(x) \in \mathcal{Z}(\mathfrak{m})$.

Part of proof: Since $\pi(x)$ maps each coset of \mathfrak{m} onto \mathfrak{m} , for each $m \in \mathfrak{m}$ there exist a complete set of representatives $c_1, \ldots, c_q \in R$ of the residue field with $\pi(c_i) = m$.

A B F A B F

Proposition

Let (R, \mathfrak{m}) be a Henselian local ring with finite residue field \overline{R} and let $\pi(x)$ be an arbitrary π -polynomial. Any $f(x) \in \mathcal{Z}(R)$ may be written in the form

$$f(x) = p_0(\pi(x)) + xp_1(\pi(x)) + x^2p_2(\pi(x)) + \dots + x^{q-1}p_{q-1}(\pi(x))$$

with each $p_i(x) \in \mathcal{Z}(\mathfrak{m})$.

Part of proof: Since $\pi(x)$ maps each coset of \mathfrak{m} onto \mathfrak{m} , for each $m \in \mathfrak{m}$ there exist a complete set of representatives $c_1, \ldots, c_q \in R$ of the residue field with $\pi(c_i) = m$. This yields a system of equations

$$0 = f(m) = p_0(m) + c_i p_1(m) + c_i^2 p_2(m) + \dots + c_i^{q-1} p_{q-1}(m)$$

whose coefficient matrix is a Vandermonde matrix with unit determinant.

Proposition

Let (R, \mathfrak{m}) be a Henselian local ring with finite residue field \overline{R} and let $\pi(x)$ be an arbitrary π -polynomial. Any $f(x) \in \mathcal{Z}(R)$ may be written in the form

$$f(x) = p_0(\pi(x)) + xp_1(\pi(x)) + x^2p_2(\pi(x)) + \dots + x^{q-1}p_{q-1}(\pi(x))$$

with each $p_i(x) \in \mathcal{Z}(\mathfrak{m})$.

Part of proof: Since $\pi(x)$ maps each coset of \mathfrak{m} onto \mathfrak{m} , for each $m \in \mathfrak{m}$ there exist a complete set of representatives $c_1, \ldots, c_q \in R$ of the residue field with $\pi(c_i) = m$. This yields a system of equations

$$0 = f(m) = p_0(m) + c_i p_1(m) + c_i^2 p_2(m) + \dots + c_i^{q-1} p_{q-1}(m)$$

whose coefficient matrix is a Vandermonde matrix with unit determinant. Hence $p_i(m) = 0$ for all i and $m \in \mathfrak{m}$.

Cameron Wickham (Missouri State Univ.)

CRP, 2016 10 / 16

E 996

・ロト ・四ト ・ヨト ・ヨト

The minimal number of generators of $\mathcal{Z}(R)$ is less than or equal to the minimal number of generators of $\mathcal{Z}(\mathfrak{m})$.

The minimal number of generators of $\mathcal{Z}(R)$ is less than or equal to the minimal number of generators of $\mathcal{Z}(\mathfrak{m})$.

Theorem

Let (R, \mathfrak{m}) be a finite local ring with principal maximal ideal $\mathfrak{m} = (m)$; set $q = |R/\mathfrak{m}|$. Suppose e is the index of nilpotency of \mathfrak{m} . If $e \leq q$ then $\mathcal{Z}(\mathfrak{m}) = (x,m)^e$; if e = q + 1, then $\mathcal{Z}(\mathfrak{m}) = (x,m)^e + (x^q - m^{q-1}x)$.

This is a version of results of Dickson (1929), Lewis (1956), and Bandini (2002), adapted for $\mathcal{Z}(\mathfrak{m})$ rather than $\mathcal{Z}(R)$, and for finite local rings rather than specific rings.

イロト 不得下 イヨト イヨト 二日

Gilmer (2000) showed that if (R, \mathfrak{m}) is a zero-dimensional local ring, then $\mathcal{Z}(R)$ is principal if and only if either \overline{R} is infinite (when $\mathcal{Z}(R) = 0$) or R is a finite field (when $\mathcal{Z}(R)$ is generated by $x^q - x$.)

Gilmer (2000) showed that if (R, \mathfrak{m}) is a zero-dimensional local ring, then $\mathcal{Z}(R)$ is principal if and only if either \overline{R} is infinite (when $\mathcal{Z}(R) = 0$) or R is a finite field (when $\mathcal{Z}(R)$ is generated by $x^q - x$.)

Theorem

Let (R, \mathfrak{m}) be a finite local ring and let $\pi(x)$ be any π -polynomial for R. The following statements are equivalent:

- R is a field.
- **2** $\mathcal{Z}(R)$ is principal.
- $\mathcal{Z}(\mathfrak{m})$ is principal.

Theorem

Let (R, \mathfrak{m}) be a Noetherian local ring.

- **(**) $\mathcal{Z}(\mathfrak{m})$ contains nonzero polynomials if and only if depth R = 0.
- **2** (R) contains nonzero polynomials if and only if depth R = 0 and \overline{R} is finite.
- **3** $\mathcal{Z}(\mathfrak{m})$ contains regular polynomials if and only if dim R = 0.
- $\mathcal{Z}(R)$ contains regular polynomials if and only if dim R = 0 and \overline{R} is finite.

Theorem

Let (R, \mathfrak{m}) be a Noetherian local ring.

- **(**) $\mathcal{Z}(\mathfrak{m})$ contains nonzero polynomials if and only if depth R = 0.
- **2** (R) contains nonzero polynomials if and only if depth R = 0 and \overline{R} is finite.
- **3** $\mathcal{Z}(\mathfrak{m})$ contains regular polynomials if and only if dim R = 0.
- $\mathcal{Z}(R)$ contains regular polynomials if and only if dim R = 0 and \overline{R} is finite.
- **5** $\mathcal{Z}(\mathfrak{m})$ is generated by a regular polynomial if and only if edim R = 0.
- **3** $\mathcal{Z}(R)$ is generated by a regular polynomial if and only if edim R = 0 and \overline{R} is finite.

< ∃ > <

Note: For I and ideal of R and $c \in R$, it's clear that $f(x) \in \mathcal{Z}(I)$ if and only if $f(x-c) \in \mathcal{Z}(c+I)$.

イロト イヨト イヨト イヨト

Note: For I and ideal of R and $c \in R$, it's clear that $f(x) \in \mathcal{Z}(I)$ if and only if $f(x-c) \in \mathcal{Z}(c+I)$.

Proposition

Let (R, \mathfrak{m}) be a (finite) local ring with residue field \overline{R} of cardinality q. Let c_1, \ldots, c_q be a set of representatives of the residue classes of \mathfrak{m} . Then $\mathcal{Z}(R) = \bigcap_{i=1}^q \mathcal{Z}(c_i + \mathfrak{m})$ is a minimal primary decomposition of $\mathcal{Z}(R)$. For each i, the associated prime of $\mathcal{Z}(c_i + \mathfrak{m})$ is the maximal ideal $(x - c_i, \mathfrak{m})$.

(本間) (本語) (本語)

Note: For I and ideal of R and $c \in R$, it's clear that $f(x) \in \mathcal{Z}(I)$ if and only if $f(x-c) \in \mathcal{Z}(c+I)$.

Proposition

Let (R, \mathfrak{m}) be a (finite) local ring with residue field \overline{R} of cardinality q. Let c_1, \ldots, c_q be a set of representatives of the residue classes of \mathfrak{m} . Then $\mathcal{Z}(R) = \bigcap_{i=1}^q \mathcal{Z}(c_i + \mathfrak{m})$ is a minimal primary decomposition of $\mathcal{Z}(R)$. For each i, the associated prime of $\mathcal{Z}(c_i + \mathfrak{m})$ is the maximal ideal $(x - c_i, \mathfrak{m})$.

Peruginelli's paper (2014) gives this result for $R = \mathbb{Z}/p^n\mathbb{Z}$, p prime.

イロト イポト イヨト イヨト 二日

Final Remarks

Cameron Wickham (Missouri State Univ.)

CRP, 2016 14 / 16

A set of generators for Z (m) yields a set of generators for Z (R) by composing with any π-polynomial.

Final Remarks

- A set of generators for Z (m) yields a set of generators for Z (R) by composing with any π-polynomial.
- ② The elements of $\mathcal{Z}(\mathfrak{m})$ reflect the same properties of R as do the elements of $\mathcal{Z}(R)$.

Final Remarks

- A set of generators for Z (m) yields a set of generators for Z (R) by composing with any π-polynomial.
- ② The elements of $\mathcal{Z}(\mathfrak{m})$ reflect the same properties of R as do the elements of $\mathcal{Z}(R)$.
- Constructing $\mathcal{Z}(\mathfrak{m})$ constructs a minimal primary decomposition of $\mathcal{Z}(R)$.

Bibliography

- Bandini, A., Functions f: Z/pⁿZ → Z/pⁿZ induced by polynomials of Z[x], Annali di Matematica 181 (2002), 95–104.
- Frisch, S., Polynomial Functions on Finite Commutative Rings, Lecture Notes in Pure and Appl. Mathematics 205, Dekker 1999, 323–336.
- Kempner, A., Polynomials and their Residual Systems, Trans. Amer. Math. Soc. 22 (1921), 240–288.
- Lewis, D. J., Ideals and Polynomial Functions, Amer. J. Math. 78 (1956), no. 1, 71–77.
- Peruginelli, G., Primary decomposition of the ideal of polynomials whose fixed divisor is divisible by a prime power, J. Alg. 398 (2014), 227–242.
- Werner, N. J., Polynomials that kill each element of a finite ring, J. Alg. and Its Appl. 13 (2014), no. 3, 1–12.