Algorithms for computing syzygies over $\mathrm{V}\left[X_{1}, \ldots, X_{n}\right]$

where V is a valuation ring

Insen Yengui

Department of Mathematics, University of Sfax, Tunisia

Graz, 07/07/2016

Plan

- Computing syzygies over $\mathrm{V}\left[X_{1}, \ldots, X_{n}\right]$ with Gröbner bases
- Computing syzygies over $\mathrm{V}\left[X_{1}, \ldots, X_{n}\right]$ via saturation, general case

$a_{1}, \ldots, a_{n} \in \mathbf{R}$. The syzygy module of $\left(a_{1}, \ldots, a_{n}\right)$ is

$\operatorname{Syz}\left(a_{1}, \ldots, a_{n}\right)$
$:=\left\{\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{R}^{n} \mid b_{1} a_{1}+\cdots+b_{n} a_{n}=0\right\}$.

A ring V is called a valuation ring if all its elements are comparable under division. A valuation ring is coherent if the annihilator $\operatorname{Ann}(x)=\operatorname{Syz}(x)$ of any element $x \in \mathbf{V}$ is finitely-generated.

Definitions 2. Let V be a coherent valuation ring, $f, g \in \mathbf{V}\left[X_{1}, \ldots, X_{n}\right] \backslash\{0\}, I=$ $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ a nonzero finitely generated ideal of $\mathrm{V}\left[X_{1}, \ldots, X_{n}\right]$, and $>$ a monomial order.
(i) If $\operatorname{mdeg}(f)=\alpha$ and $\operatorname{mdeg}(g)=\beta$ then let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$, where $\gamma_{i}=\max \left(\alpha_{i}, \beta_{i}\right)$ for each i.

The S-polynomial of f and g is the combination:
$S(f, g)=\frac{X^{\gamma}}{\mathrm{LM}(f)} f-\frac{\mathrm{LC}(f)}{\mathrm{LC}(g)} \frac{X^{\gamma}}{\mathrm{LM}(g)} g \quad$ if $\quad \mathrm{LC}(g)$ divides LC(f).
$S(f, g)=\frac{\mathrm{LC}(g)}{\mathrm{LC}(f)} \frac{X^{\gamma}}{\mathrm{LM}(f)} f-\frac{X^{\gamma}}{\mathrm{LM}(g)} g \quad$ if $\quad \mathrm{LC}(f)$ divides $\mathrm{LC}(g)$ and $\mathrm{LC}(g)$ does not divide LC (f).
(ii) The auto-S-polynomial of f is $S(f, f):=$ $d f$, where d is a generator of the annihilator of $L C(f)$ (it is defined up to a unit).
(iii) $G=\left\{f_{1}, \ldots, f_{s}\right\}$ is said to be a Gröbner basis for I if $\langle\mathrm{LT}(I)\rangle=\left\langle\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{s}\right)\right\rangle$.

Theorem 2. Let V be a coherent valuation ring, $I=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ an ideal of $\mathbf{V}\left[X_{1}, \ldots, X_{n}\right]$, and fix a monomial order $>$. Then, $G=$ $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I if and only if for all pairs $1 \leq i \leq j \leq s$, the remainder on division of $S\left(g_{i}, g_{j}\right)$ by G is zero.

Buchberger's Algorithm for Coherent valuation rings

Input: $g_{1}, \ldots, g_{s} \in \mathbf{V}\left[X_{1}, \ldots, X_{n}\right], \mathbf{V}$ a coherent valuation ring, $>$ a monomial order

Output: a Gröbner basis G for $\left\langle g_{1}, \ldots, g_{s}\right\rangle$ with
$\left\{g_{1}, \ldots, g_{s}\right\} \subseteq G$
$G:=\left\{g_{1}, \ldots, g_{s}\right\}$ REPEAT
$G^{\prime}:=G$
For each pair f, g in $G^{\prime} \mathrm{DO}$
$S:=\overline{S(f, g)}{ }^{G^{\prime}}$
If $S \neq 0$ THEN $G:=G^{\prime} \cup\{S\}$
UNTIL $G=G^{\prime}$

Example: Let $\mathrm{V}[X]=(\mathbb{Z} / 16 \mathbb{Z})[X]$, and consider the ideal $I=\left\langle f_{1}\right\rangle$, where $f_{1}=2+4 X+8 X^{2}$.
$S\left(f_{1}, f_{1}\right)=2 f_{1}=4+8 X=: f_{2}$,
$S\left(f_{1}, f_{2}\right)=2=: f_{3}$,
$S\left(f_{2}, f_{2}\right)=2 f_{2}=8 \xrightarrow{f_{3}} 0, S\left(f_{3}, f_{3}\right)=0$,
$f_{2} \xrightarrow{f_{3}} 0$.
Thus, $\mathcal{G}=\{2\}$ is a Gröbner basis for I in $\mathrm{V}[X]$.

Theorem. Let V be a valuation ring. Then, one can construct Gröbner bases over V (for the lexicographic monomial order) if and only if V is both coherent and archimedean (i.e., $\forall a, b \in \operatorname{Rad}(\mathbf{V}) \backslash\{0\} \exists n \in \mathbb{N} \mid a$ divides $\left.b^{n}\right)$, or also, if and only if either

- $\operatorname{dim} \mathrm{V} \leq 1$ and V is without zero-divisors or
- $\operatorname{dim} \mathbf{V}=0$ and the annihilator of any element in V is finitely generated.

References:

- Yengui I. Dynamical Gröbner bases. J. Algebra 301 (2006) 447-458.
- Hadj Kacem A., Yengui I. Dynamical Gröbner bases over Dedekind rings. J. Algebra 324 (2010) 12-24.
- Lombardi H., Schuster P., Yengui I. The Gröbner ring conjecture in one variable. Math. Z. 270 (2012) 1181-1185.
- Yengui I. The Gröbner Ring Conjecture in the lexicographic order case. Math. Z. 276 (2014) 261-265.

It is a folklore that if \mathbf{V} is valuation domain then $\mathrm{V}\left[X_{1}, \ldots, X_{n}\right]$ is coherent, i.e., Syzygy modules over $\mathbf{V}\left[X_{1}, \ldots, X_{n}\right]$ are finitely generated. This follows from a deep and complicated paper: Gruson L., Raynaud M. Critères de platitude et de projectivité. Invent. Math. (1971).

Our goal is to find an algorithm for computing syzygies over $\mathbf{V}\left[X_{1}, \ldots, X_{n}\right]$, where V is a valuation domain of any Krull dimension.

Let $p_{1}, \ldots, p_{m} \in \mathbf{V}\left[X_{1}, \ldots, X_{k}\right]$, and consider n vectors $s_{1}, \ldots, s_{n} \in \mathbf{V}\left[X_{1}, \ldots, X_{k}\right]^{m}$ generating the syzygy module of p_{1}, \ldots, p_{m} over the quotient field \mathbf{K} of \mathbf{V} as a $\mathbf{V}\left[X_{1}, \ldots, X_{k}\right]$-module (s_{1}, \ldots, s_{n} can be computed using Gröbner bases techniques). Then, the syzygy module \mathcal{S} of p_{1}, \ldots, p_{m} over \mathbf{V} is nothing but the \mathbf{V}-saturation of $\mathcal{S}^{\prime}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$, i.e.,

$$
\begin{gathered}
\mathcal{S}:=\left\{s \in \mathbf{V}\left[X_{1}, \ldots, X_{k}\right]^{m} \mid \alpha s \in \mathcal{S}^{\prime}\right. \text { for some } \\
\alpha \in \mathbf{V} \backslash\{0\}\}=\left(\mathcal{S}^{\prime} \otimes_{\mathbf{R}} \mathbf{K}\right) \cap \mathbf{V}\left[X_{1}, \ldots, X_{k}\right]^{m} .
\end{gathered}
$$

$$
\mathrm{V}=\mathbb{Z}_{2 \mathbb{Z}}
$$

$$
s_{1}=\left(5,4,-2 X^{2}-6 X+12\right) \xrightarrow{\text { height }}(0,1)
$$

[defect=2]

$$
\begin{gathered}
\mathbf{V}=\mathbb{Z}_{2 \mathbb{Z}} ; S:=\left[s_{1}=\left(5,4,-2 X^{2}-6 X+\right.\right. \\
\left.12), s_{2}=\left(2 X-1,0,-2 X^{2}+6 X-4\right)\right] \\
\text { reduction } \\
\Downarrow \\
\begin{array}{c}
S_{0}=\left[\left(5,4,-2 X^{2}-6 X+12\right),\left(X, \frac{2}{5},-\frac{6}{5} X^{2}+\right.\right. \\
\left.\left.\frac{12}{5} X-\frac{4}{5}\right)\right] ; \delta\left(S_{0}\right)=1 \\
X S_{0} \\
\text { reduction } \\
\Downarrow
\end{array} \\
\begin{array}{c}
{\left[\left(5 X, 4 X,-2 X^{3}-6 X^{2}+\right.\right.} \\
\left.\left.S_{1} \quad 12 X\right),\left(0,2 X-1,-X^{3}+2\right)\right] ; \delta\left(S_{1}\right)=0
\end{array}
\end{gathered}
$$

As a conclusion
$\operatorname{Sat}\left(s_{1}, s_{2}\right)$

$$
\begin{gathered}
=\left\langle\left(5,4,-2 X^{2}-6 X+12\right),\left(X, \frac{2}{5},-\frac{6}{5} X^{2}+\frac{12}{5} X-\frac{4}{5}\right)\right. \\
\left.\left(0,2 X-1,-X^{3}+2\right)\right\rangle
\end{gathered}
$$

Theorem: Let $S=\left[s_{1}, \ldots, s_{n}\right]$ be a finite list of vectors in $\mathbf{V}[X]^{m}$ with degrees $\leq d$, where \mathbf{V} is a valuation domain and $m \geq 1$. Then the "primitive triangulation algorithm" computes after $\min (n-1, m) d+1$ iterations a finite list G of vectors in $\mathrm{V}[X]^{m}$ of degrees $\leq(\min (n-1, m)+1) d$ generating $\operatorname{Sat}\left(\left\langle s_{1}, \ldots, s_{n}\right\rangle\right)$ as a $\mathrm{V}[X]$-module.

In other terms, computing $\operatorname{Sat}\left(\left\langle s_{1}, \ldots, s_{n}\right\rangle\right)$ amounts to performing gaussian elimination on a matrix of size $n(\min (n-1, m) d+1) \times m$ and with entries in $\mathbf{V}[X]$ of degrees $\leq(\min (n-1, m)+1) d$.

Proof. We denote by S_{0} the list S put in an echelon form, and by induction $T_{j}=\left[S_{0}, \ldots, S_{j}\right]$ where S_{j+1} denotes $X S_{j}$ put in an echelon form with respect to T_{j} and then put in an echelon form, with the initialization $T_{0}=S_{0}$.

Then the sequence $\left(\delta\left(S_{j}\right)\right)_{j \geq 0}$ is non-increasing and becomes zero for $j \geq \min (n-1, m) d$.

Theorem: Let L be a finite list of vectors in $\mathbf{V}\left[X_{1}, \ldots, X_{k}\right]^{m}$, where \mathbf{V} is a valuation domain of quotient field \mathbf{K} and residue field \mathbf{k}. Then

- $\operatorname{dim}_{\mathbf{k}} L \leq \operatorname{dim}_{\mathbf{K}} L$,
- $\langle L\rangle_{\mathbf{V}}$ is \mathbf{V}-saturated if and only if $\operatorname{dim}_{\mathbf{K}} L=$ $\operatorname{dim}_{\mathrm{k}} L$.

When a matrix over the integers is \mathbb{Z} saturated ?
$A \in \mathbb{Z}^{m \times n} ; \mathrm{rk}_{0} A:=\mathrm{rk}_{\mathbb{Q}} A ; \mathrm{rk}_{p} A:=\mathrm{rk}_{\mathbb{F}_{p}} A ;$
$\mathbf{P}^{*}=$ the set of prime numbers; $\mathbf{P}:=\mathbf{P}^{*} \cup\{0\}$.

Denoe by p_{1}, \ldots, p_{t} the prime numbers dividing the denominators of the vectors obtained after putting the columns of A into an echelon form over \mathbb{Q}. Then the following assertions are equivalent:
(i) $\operatorname{Im}(A)$ is \mathbb{Z}-saturated.
(ii) $\mathrm{rk}_{0} A=\mathrm{rk}_{p_{1}} A=\cdots=\mathrm{rk}_{p_{t}} A$.
(iii) The map $\mathrm{rk}(A): \mathbf{P} \rightarrow \mathbb{N}$ defined by $\mathrm{rk}(A)(q):=\mathrm{rk}_{q} A$, is constant.
(iv) The map $\mathrm{P}^{*} \rightarrow \mathbb{N} ; p \mapsto \mathrm{rk}_{p} A$, is constant.

Let $L=\left[u_{1}, \ldots, u_{s}\right](s \geq 1)$ be a list of s polynomial vectors in $\mathbf{V}\left[X_{1}, \ldots, X_{k}\right]^{m}$, where \mathbf{V} is a valuation domain of quotient field \mathbf{K} and residue field \mathbf{k}. For $i \in \mathbb{N}$,

$$
\begin{gathered}
L_{i}:=\left\langle M u_{j} ; 1 \leq j \leq s, \operatorname{tdeg}(M) \leq i\right\rangle_{\mathbf{K}} \\
\bar{L}_{i}:=\left\langle M \bar{u}_{j} ; 1 \leq j \leq s, \operatorname{tdeg}(M) \leq i\right\rangle_{\mathbf{k}} \\
h_{L, \mathbf{K}}(t)=\sum_{i \geq 0}\left(\operatorname{dim}_{\mathbf{K}} L_{i}\right) t^{i} \\
h_{L, \mathbf{k}}(t)=\sum_{i \geq 0}\left(\operatorname{dim}_{\mathbf{k}} \bar{L}_{i}\right) t^{i} \leq h_{L, \mathbf{K}}(t) \\
\delta_{L}(t):=h_{L, \mathbf{K}}(t)-h_{L, \mathbf{k}}(t)
\end{gathered}
$$

called the saturation defect series of the list L.

Note that

$$
h_{L, \mathbf{K}}(t)=\mathrm{HS}_{\mathrm{Syz}_{\mathbf{K}}\left(u_{1}, \ldots, u_{s}\right)}(t)
$$

Example: Consider the list $U=\left[u_{1}=1+\right.$ $\left.2 X, u_{2}=1+2 Y\right]$ with $u_{i} \in \mathbb{Z}_{2 \mathbb{Z}}[X, Y]$. We have:

$$
\begin{gathered}
h_{U, \mathbb{Q}}(t)=\frac{1}{(1-t)^{3}}+\frac{1}{(1-t)^{2}}, \\
h_{U, \mathbb{Z} / 2 \mathbb{Z}}(t)=\frac{1}{(1-t)^{3}},
\end{gathered}
$$

and, thus, the defect series of U is

$$
\delta_{U}(t)=\frac{1}{(1-t)^{2}} .
$$

Theorem: Let L be a finite list of vectors in $\mathbf{V}\left[X_{1}, \ldots, X_{k}\right]^{m}$, where \mathbf{V} is a valuation domain. If $\delta_{L}=0$ then $\langle L\rangle_{\mathbf{V}\left[X_{1}, \ldots, X_{k}\right]}$ is \mathbf{V}-saturated.

Saturation algorithm in the multivariate case:

Input: A finite list $S=\left[s_{1}, \ldots, s_{n}\right]$ of vectors in $\mathbf{V}\left[X_{1}, \ldots, X_{k}\right]^{m}$, where \mathbf{V} is a valuation domain and $m \geq 1$.

Output: A finite list G of vectors in $\mathbf{V}\left[X_{1}, \ldots, X_{k}\right]^{m}$ generating $\operatorname{Sat}\left(\left\langle s_{1}, \ldots, s_{n}\right\rangle\right)$ as a $\mathrm{V}\left[X_{1}, \ldots, X_{k}\right]$-module.

We denote by S_{0} the list S put in an echelon form, and by induction $T_{j}=\left[S_{0}, \ldots, S_{j}\right]$ where S_{j+1} denotes $\left[X_{1} S_{j}, \ldots, X_{k} S_{j}\right.$] put in an echeIon form with respect to T_{j} and then put in an echelon form, with the initialization $T_{0}=S_{0}$.

We begin by putting S in an echelon form (it becomes S_{0}) and then compute its defect series $\delta_{S_{0}}(t)$. If $\delta_{S_{0}}(t)=0$ then stop; else compute S_{1}. If $\delta_{S_{1}}(t)=0$ then stop; else compute S_{2}, and so on.

Example: $U=\left[u_{1}=1+2 X, u_{2}=1+2 Y\right]$ with $u_{i} \in \mathbb{Z}_{2 \mathbb{Z}}[X, Y]$. As $\delta_{U}(t)=\frac{1}{(1-t)^{2}} \neq 0$, one has to put U in an echelon form. This can be done as follows:

$$
U=\left[u_{1}=1+2 X, u_{2}=1+2 Y\right] \rightarrow
$$

$$
U_{0}:=\left[u_{1}, \frac{1}{2}\left(u_{2}-u_{1}\right)\right]=[1+2 X, Y-X] .
$$

As $h_{U_{0}, \mathbb{Q}}(t)=h_{U_{0}, \mathbb{Z} / 2 \mathbb{Z}}(t)=\frac{1}{(1-t)^{3}}+\frac{1}{(1-t)^{2}}$, we have $\delta_{U_{0}}(t)=0$. We conclude that

$$
\operatorname{Sat}\left(\left\langle u_{1}, u_{2}\right\rangle\right)=\langle 1+2 X, Y-X\rangle .
$$

References:

- Lombardi H., Quitté C., Yengui I. Un algorithme pour le calcul des syzygies sur $\mathrm{V}[X]$ dans le cas où V est un domaine de valuation. Communications in Algebra 42:9 (2014) 3768-3781.
- Ducos L., Monceur S., Yengui I. Computing the V -saturation of finitely-generated submodules of $\mathrm{V}[X]^{m}$ where \mathbf{V} is a valuation domain. J. Symb. Comput., in press.
- Ducos L., Valibouze A., Yengui I. Computing syzygies over $\mathrm{V}\left[X_{1}, \ldots, X_{k}\right], \mathrm{V}$ a valuation domain. J. Algebra 425 (2015) 133-145.
- Yengui I. Constructive Commutative Algebra. Lecture Notes in Mathematics, no 2138, Springer 2015.

DANKE

