Algorithms for computing syzygies over $V[X_1, \ldots, X_n]$

where ${\rm V}$ is a valuation ring

Ihsen Yengui

Department of Mathematics, University of Sfax, Tunisia

Graz, 07/07/2016

Plan

- Computing syzygies over $\mathbf{V}[X_1,\ldots,X_n]$ with Gröbner bases
- Computing syzygies over $\mathbf{V}[X_1, \ldots, X_n]$ via saturation, general case

 $a_1,\ldots,a_n\in {f R}.$ The **syzygy module** of (a_1,\ldots,a_n) is

$$Syz(a_1,\ldots,a_n)$$

 $:= \{ (b_1, \ldots, b_n) \in \mathbf{R}^n \mid b_1 a_1 + \cdots + b_n a_n = \mathbf{0} \}.$

A ring V is called a valuation ring if all its elements are comparable under division. A valuation ring is **coherent** if the annihilator Ann(x) = Syz(x) of any element $x \in V$ is finitely-generated. **Definitions 2.** Let V be a coherent valuation ring, $f,g \in V[X_1,...,X_n] \setminus \{0\}$, $I = \langle f_1,...,f_s \rangle$ a nonzero finitely generated ideal of $V[X_1,...,X_n]$, and > a monomial order.

(i) If $mdeg(f) = \alpha$ and $mdeg(g) = \beta$ then let $\gamma = (\gamma_1, \dots, \gamma_n)$, where $\gamma_i = max(\alpha_i, \beta_i)$ for each *i*.

The **S-polynomial** of f and g is the combination:

$$S(f,g) = \frac{X^{\gamma}}{\mathsf{LM}(f)}f - \frac{\mathsf{LC}(f)}{\mathsf{LC}(g)}\frac{X^{\gamma}}{\mathsf{LM}(g)}g \quad \text{if} \quad \mathsf{LC}(g)$$

divides $\mathsf{LC}(f)$.

$$\begin{split} S(f,g) &= \frac{\mathsf{LC}(g)}{\mathsf{LC}(f)} \frac{X^{\gamma}}{\mathsf{LM}(f)} f - \frac{X^{\gamma}}{\mathsf{LM}(g)} g & \text{if } \mathsf{LC}(f) \\ \text{divides } \mathsf{LC}(g) \text{ and } \mathsf{LC}(g) & \text{does not divide} \\ \mathsf{LC}(f). \end{split}$$

(ii) The **auto-S-polynomial** of f is S(f, f) := df, where d is a generator of the annihilator of LC(f) (it is defined up to a unit).

(iii) $G = \{f_1, \ldots, f_s\}$ is said to be a **Gröbner basis** for I if $\langle \mathsf{LT}(I) \rangle = \langle \mathsf{LT}(f_1), \ldots, \mathsf{LT}(f_s) \rangle$. **Theorem 2.** Let V be a coherent valuation ring, $I = \langle g_1, \ldots, g_s \rangle$ an ideal of $V[X_1, \ldots, X_n]$, and fix a monomial order >. Then, G = $\{g_1, \ldots, g_s\}$ is a Gröbner basis for I if and only if for all pairs $1 \le i \le j \le s$, the remainder on division of $S(g_i, g_j)$ by G is zero.

Buchberger's Algorithm for Coherent valuation rings

Input: $g_1, \ldots, g_s \in \mathbf{V}[X_1, \ldots, X_n]$, **V** a coherent valuation ring, > a monomial order

Output: a Gröbner basis G for $\langle g_1, \ldots, g_s \rangle$ with

$$\{g_1,\ldots,g_s\}\subseteq G$$

$$G := \{g_1, \dots, g_s\} \text{ REPEAT}$$
$$G' := G$$
For each pair f, g in G' DO
$$S := \overline{S(f,g)}^{G'}$$
If $S \neq 0$ THEN $G := G' \cup \{S\}$ UNTIL $G = G'$

Example: Let $V[X] = (\mathbb{Z}/16\mathbb{Z})[X]$, and consider the ideal $I = \langle f_1 \rangle$, where $f_1 = 2 + 4X + 8X^2$.

$$S(f_1, f_1) = 2f_1 = 4 + 8X =: f_2,$$

$$S(f_1, f_2) = 2 =: f_3,$$

$$S(f_2, f_2) = 2f_2 = 8 \xrightarrow{f_3} 0, \ S(f_3, f_3) = 0,$$

$$f_2 \xrightarrow{f_3} 0.$$

Thus, $\mathcal{G} = \{2\}$ is a Gröbner basis for *I* in $\mathbf{V}[X]$.

Theorem. Let V be a valuation ring. Then, one can construct Gröbner bases over V (for the lexicographic monomial order) if and only if V is both coherent and archimedean (i.e., $\forall a, b \in \text{Rad}(V) \setminus \{0\} \exists n \in \mathbb{N} \mid a \text{ divides } b^n$), or also, if and only if either

 \bullet dim $V \leq 1$ and V is without zero-divisors

or

• dim V = 0 and the annihilator of any element in V is finitely generated.

References:

Yengui I. *Dynamical Gröbner bases*. J. Algebra **301** (2006) 447–458.

 Hadj Kacem A., Yengui I. Dynamical Gröbner bases over Dedekind rings. J. Algebra 324 (2010) 12-24.

Lombardi H., Schuster P., Yengui I. The Gröbner ring conjecture in one variable. Math.
Z. 270 (2012) 1181-1185.

• Yengui I. *The Gröbner Ring Conjecture in the lexicographic order case*. Math. Z. **276** (2014) 261-265.

It is a folklore that if V is valuation domain then $V[X_1, \ldots, X_n]$ is **coherent**, i.e., Syzygy modules over $V[X_1, \ldots, X_n]$ are finitely generated. This follows from a deep and complicated paper: Gruson L., Raynaud M. Critères de platitude et de projectivité. Invent. Math. (1971).

Our goal is to find an algorithm for computing syzygies over $V[X_1, \ldots, X_n]$, where V is a valuation domain of any Krull dimension.

Let $p_1, \ldots, p_m \in \mathbf{V}[X_1, \ldots, X_k]$, and consider n vectors $s_1, \ldots, s_n \in \mathbf{V}[X_1, \ldots, X_k]^m$ generating the syzygy module of p_1, \ldots, p_m over the quotient field \mathbf{K} of \mathbf{V} as a $\mathbf{V}[X_1, \ldots, X_k]$ -module $(s_1, \ldots, s_n$ can be computed using Gröbner bases techniques). Then, the syzygy module S of p_1, \ldots, p_m over \mathbf{V} is nothing but the V-saturation of $S' = \langle s_1, \ldots, s_n \rangle$, i.e.,

 $\mathcal{S} := \{s \in \mathbf{V}[X_1, \dots, X_k]^m \mid \alpha s \in \mathcal{S}' \text{ for some }$

 $\alpha \in \mathbf{V} \setminus \{\mathbf{0}\}\} = (\mathcal{S}' \otimes_{\mathbf{R}} \mathbf{K}) \cap \mathbf{V}[X_1, \dots, X_k]^m.$

[defect=2]

 $V = Z_{2Z}; S := [s_1 = (5, 4, -2X^2 - 6X + 12), s_2 = (2X - 1, 0, -2X^2 + 6X - 4)]$ reduction ↓

 $S_0 = [(5, 4, -2X^2 - 6X + 12), (X, \frac{2}{5}, -\frac{6}{5}X^2 + \frac{12}{5}X - \frac{4}{5})]; \ \delta(S_0) = 1$

XS_0

As a conclusion

$$\mathsf{Sat}(s_1, s_2)$$

 $= \langle (5, 4, -2X^2 - 6X + 12), (X, \frac{2}{5}, -\frac{6}{5}X^2 + \frac{12}{5}X - \frac{4}{5}), \rangle$

$$(0, 2X - 1, -X^3 + 2)\rangle.$$

Theorem: Let $S = [s_1, \ldots, s_n]$ be a finite list of vectors in $V[X]^m$ with degrees $\leq d$, where V is a valuation domain and $m \geq 1$. Then the "primitive triangulation algorithm" computes after $\min(n-1,m)d+1$ iterations a finite list G of vectors in $V[X]^m$ of degrees $\leq (\min(n-1,m)+1)d$ generating $Sat(\langle s_1, \ldots, s_n \rangle)$ as a V[X]-module.

In other terms, computing $Sat(\langle s_1, \ldots, s_n \rangle)$ amounts to performing gaussian elimination on a matrix of size $n(\min(n-1,m)d+1) \times m$ and with entries in V[X] of degrees $\leq (\min(n-1,m)+1)d$.

Proof. We denote by S_0 the list S put in an echelon form, and by induction $T_j = [S_0, \ldots, S_j]$ where S_{j+1} denotes XS_j put in an echelon form with respect to T_j and then put in an echelon form, with the initialization $T_0 = S_0$.

Then the sequence $(\delta(S_j))_{j\geq 0}$ is non-increasing and becomes zero for $j \geq \min(n-1,m)d$. **Theorem:** Let *L* be a finite list of vectors in $V[X_1, ..., X_k]^m$, where V is a valuation domain of quotient field K and residue field k. Then

• $\dim_{\mathbf{k}} L \leq \dim_{\mathbf{K}} L$,

• $\langle L \rangle_{V}$ is V-saturated if and only if dim_K $L = \dim_{k} L$.

When a matrix over the integers is \mathbb{Z} -saturated ?

$$A \in \mathbb{Z}^{m \times n}$$
; $\mathsf{rk}_0 A := \mathsf{rk}_{\mathbb{Q}} A$; $\mathsf{rk}_p A := \mathsf{rk}_{\mathbb{F}_p} A$;

 P^* = the set of prime numbers; $P := P^* \cup \{0\}$.

Denoe by p_1, \ldots, p_t the prime numbers dividing the denominators of the vectors obtained after putting the columns of A into an echelon form over \mathbb{Q} . Then the following assertions are equivalent:

(i)
$$Im(A)$$
 is \mathbb{Z} -saturated.

(ii)
$$\mathsf{rk}_0 A = \mathsf{rk}_{p_1} A = \cdots = \mathsf{rk}_{p_t} A$$
.

(iii) The map $rk(A) : \mathbf{P} \to \mathbb{N}$ defined by $rk(A)(q) := rk_q A$, is constant.

(iv) The map $\mathbf{P}^* \to \mathbb{N}$; $p \mapsto \mathsf{rk}_p A$, is constant.

Let $L = [u_1, \ldots, u_s]$ $(s \ge 1)$ be a list of s polynomial vectors in $\mathbf{V}[X_1, \ldots, X_k]^m$, where \mathbf{V} is a valuation domain of quotient field \mathbf{K} and residue field \mathbf{k} . For $i \in \mathbb{N}$,

$$L_i := \langle Mu_j; \ 1 \leq j \leq s, \ \mathsf{tdeg}(M) \leq i \rangle_{\mathbf{K}},$$

$$\overline{L}_i := \langle M \overline{u}_j; 1 \leq j \leq s, \operatorname{tdeg}(M) \leq i \rangle_{\mathbf{k}}.$$

$$h_{L,\mathbf{K}}(t) = \sum_{i \ge 0} (\dim_{\mathbf{K}} L_i) t^i,$$

$$h_{L,\mathbf{k}}(t) = \sum_{i \ge 0} (\dim_{\mathbf{k}} \overline{L}_i) t^i \le h_{L,\mathbf{K}}(t),$$

$$\delta_L(t) := h_{L,\mathbf{K}}(t) - h_{L,\mathbf{k}}(t)$$

called the **saturation defect series** of the list *L*.

Note that

$$h_{L,\mathbf{K}}(t) = \mathsf{HS}_{\mathsf{Syz}_{\mathbf{K}}(u_1,\ldots,u_s)}(t).$$

Example: Consider the list $U = [u_1 = 1 + 2X, u_2 = 1 + 2Y]$ with $u_i \in \mathbb{Z}_{2\mathbb{Z}}[X, Y]$. We have:

$$h_{U,\mathbb{Q}}(t) = \frac{1}{(1-t)^3} + \frac{1}{(1-t)^2},$$

$$h_{U,\mathbb{Z}/2\mathbb{Z}}(t) = \frac{1}{(1-t)^3},$$

and, thus, the defect series of \boldsymbol{U} is

$$\delta_U(t) = \frac{1}{(1-t)^2}.$$

Theorem: Let *L* be a finite list of vectors in $V[X_1, ..., X_k]^m$, where V is a valuation domain. If $\delta_L = 0$ then $\langle L \rangle_{V[X_1,...,X_k]}$ is V-saturated.

Saturation algorithm in the multivariate case:

Input: A finite list $S = [s_1, \ldots, s_n]$ of vectors in $V[X_1, \ldots, X_k]^m$, where V is a valuation domain and $m \ge 1$.

Output: A finite list G of vectors in $V[X_1, \ldots, X_k]^m$ generating $Sat(\langle s_1, \ldots, s_n \rangle)$ as a $V[X_1, \ldots, X_k]$ -module.

We denote by S_0 the list S put in an echelon form, and by induction $T_j = [S_0, \ldots, S_j]$ where S_{j+1} denotes $[X_1S_j, \ldots, X_kS_j]$ put in an echelon form with respect to T_j and then put in an echelon form, with the initialization $T_0 = S_0$.

We begin by putting S in an echelon form (it becomes S_0) and then compute its defect series $\delta_{S_0}(t)$. If $\delta_{S_0}(t) = 0$ then stop; else compute S_1 . If $\delta_{S_1}(t) = 0$ then stop; else compute S_2 , and so on.

Example: $U = [u_1 = 1 + 2X, u_2 = 1 + 2Y]$ with $u_i \in \mathbb{Z}_{2\mathbb{Z}}[X, Y]$. As $\delta_U(t) = \frac{1}{(1-t)^2} \neq 0$, one has to put U in an echelon form. This can be done as follows:

$$U = [u_1 = 1 + 2X, u_2 = 1 + 2Y] \to$$

$$U_0 := [u_1, \frac{1}{2}(u_2 - u_1)] = [1 + 2X, Y - X].$$

As $h_{U_0,\mathbb{Q}}(t) = h_{U_0,\mathbb{Z}/2\mathbb{Z}}(t) = \frac{1}{(1-t)^3} + \frac{1}{(1-t)^2}$, we have $\delta_{U_0}(t) = 0$. We conclude that

$$\mathsf{Sat}(\langle u_1, u_2 \rangle) = \langle 1 + 2X, Y - X \rangle.$$

References:

• Lombardi H., Quitté C., Yengui I. Un algorithme pour le calcul des syzygies sur V[X] dans le cas où V est un domaine de valuation. Communications in Algebra **42:9** (2014) 3768–3781.

 Ducos L., Monceur S., Yengui I. Computing the V-saturation of finitely-generated submodules of V[X]^m where V is a valuation domain.
 J. Symb. Comput., in press.

• Ducos L., Valibouze A., Yengui I. Computing syzygies over $V[X_1, \ldots, X_k]$, V a valuation domain. J. Algebra **425** (2015) 133–145.

• Yengui I. *Constructive Commutative Algebra*. Lecture Notes in Mathematics, no 2138, Springer 2015.

DANKE