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Plan

• Computing syzygies over V[X1, . . . , Xn] with

Gröbner bases

• Computing syzygies over V[X1, . . . , Xn] via

saturation, general case
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a1, . . . , an ∈ R. The syzygy module of

(a1, . . . , an) is

Syz(a1, . . . , an)

:= {(b1, . . . , bn) ∈ Rn | b1a1 + · · ·+ bnan = 0}.

A ring V is called a valuation ring if all its

elements are comparable under division. A

valuation ring is coherent if the annihilator

Ann(x) = Syz(x) of any element x ∈ V is

finitely-generated.
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Definitions 2. Let V be a coherent val-

uation ring, f, g ∈ V[X1, . . . , Xn] \ {0}, I =

〈f1, . . . , fs〉 a nonzero finitely generated ideal of

V[X1, . . . , Xn], and > a monomial order.

(i) If mdeg(f) = α and mdeg(g) = β then let

γ = (γ1, . . . , γn), where γi = max(αi, βi) for each

i.

The S-polynomial of f and g is the combina-

tion:

S(f, g) = Xγ

LM(f)f −
LC(f)
LC(g)

Xγ

LM(g)g if LC(g)

divides LC(f).

S(f, g) = LC(g)
LC(f)

Xγ

LM(f)f −
Xγ

LM(g)g if LC(f)

divides LC(g) and LC(g) does not divide

LC(f).

(ii) The auto-S-polynomial of f is S(f, f) :=

d f , where d is a generator of the annihilator of

LC(f) (it is defined up to a unit).

(iii) G = {f1, . . . , fs} is said to be a Gröbner

basis for I if 〈LT(I)〉 = 〈LT(f1), . . . ,LT(fs)〉.
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Theorem 2. Let V be a coherent valuation

ring, I = 〈g1, . . . , gs〉 an ideal of V[X1, . . . , Xn],

and fix a monomial order >. Then, G =

{g1, . . . , gs} is a Gröbner basis for I if and only

if for all pairs 1 ≤ i ≤ j ≤ s, the remainder on

division of S(gi, gj) by G is zero.

Buchberger’s Algorithm for Coherent valu-

ation rings

Input: g1, . . . , gs ∈ V[X1, . . . , Xn], V a coherent

valuation ring, > a monomial order

Output: a Gröbner basis G for 〈g1, . . . , gs〉 with

{g1, . . . , gs} ⊆ G

G := {g1, . . . , gs} REPEAT

G′ := G

For each pair f, g in G′ DO

S := S(f, g)G
′

If S 6= 0 THEN G := G′ ∪ {S}
UNTIL G = G′
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Example: Let V[X] = (Z/16Z)[X], and con-

sider the ideal I = 〈f1〉, where f1 = 2+4X+8X2.

S(f1, f1) = 2f1 = 4 + 8X =: f2,

S(f1, f2) = 2 =: f3,

S(f2, f2) = 2f2 = 8
f3−→ 0, S(f3, f3) = 0,

f2
f3−→ 0.

Thus, G = {2} is a Gröbner basis for I in V[X].
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Theorem. Let V be a valuation ring. Then,

one can construct Gröbner bases over V (for

the lexicographic monomial order) if and only

if V is both coherent and archimedean (i.e.,

∀ a, b ∈ Rad(V) \ {0} ∃n ∈ N | a divides bn), or

also, if and only if either

• dimV ≤ 1 and V is without zero-divisors

or

• dimV = 0 and the annihilator of any element

in V is finitely generated.
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It is a folklore that if V is valuation domain then

V[X1, . . . , Xn] is coherent, i.e., Syzygy mod-

ules over V[X1, . . . , Xn] are finitely generated.

This follows from a deep and complicated paper:

Gruson L., Raynaud M. Critères de platitude et

de projectivité. Invent. Math. (1971).

Our goal is to find an algorithm for computing

syzygies over V[X1, . . . , Xn], where V is a valu-

ation domain of any Krull dimension.

Let p1, . . . , pm ∈ V[X1, . . . , Xk], and consider n

vectors s1, . . . , sn ∈ V[X1, . . . , Xk]m generating

the syzygy module of p1, . . . , pm over the quo-

tient field K of V as a V[X1, . . . , Xk]-module

(s1, . . . , sn can be computed using Gröbner bases

techniques). Then, the syzygy module S of

p1, . . . , pm over V is nothing but the V-saturation

of S ′ = 〈s1, . . . , sn〉, i.e.,

S := {s ∈ V[X1, . . . , Xk]m | α s ∈ S ′ for some

α ∈ V \ {0}} = (S ′ ⊗R K) ∩V[X1, . . . , Xk]m.
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V = Z2Z,

s1 = (5, 4, −2X2 − 6X + 12)
height−→ (0,1)

index

deg (PrimMon)0 1 2 3 4 5 6

1

2

3

4

5

6
n = 5 d = 4 d+ 1 = 5

[defect=2]
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V = Z2Z; S := [s1 = (5, 4, −2X2 − 6X +

12), s2 = (2X−1,0,−2X2 + 6X − 4)]

reduction
⇓

S0 = [(5, 4, −2X2 − 6X + 12), (X, 2
5, −

6
5X

2 +
12
5 X −

4
5)]; δ(S0) = 1

XS0

reduction
⇓

S1 = [(5X, 4X, −2X3 − 6X2 +

12X), (0, 2X−1, −X3 + 2)]; δ(S1) = 0

As a conclusion

Sat(s1, s2)

= 〈(5, 4, −2X2−6X+12), (X,
2

5
, −

6

5
X2+

12

5
X−

4

5
),

(0, 2X − 1, −X3 + 2)〉.
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Theorem: Let S = [s1, . . . , sn] be a finite list of

vectors in V[X]m with degrees ≤ d, where V is a

valuation domain and m ≥ 1. Then the “prim-

itive triangulation algorithm” computes after

min(n−1,m)d+1 iterations a finite list G of vec-

tors in V[X]m of degrees ≤ (min(n−1,m) + 1)d

generating Sat(〈s1, . . . , sn〉) as a V[X]-module.

In other terms, computing Sat(〈s1, . . . , sn〉)
amounts to performing gaussian elimination on

a matrix of size n(min(n−1,m)d+1)×m and with

entries in V[X] of degrees ≤ (min(n−1,m)+1)d.

Proof. We denote by S0 the list S put in an

echelon form, and by induction Tj = [S0, . . . , Sj]

where Sj+1 denotes XSj put in an echelon form

with respect to Tj and then put in an echelon

form, with the initialization T0 = S0.

Then the sequence (δ(Sj))j≥0 is non-increasing

and becomes zero for j ≥ min(n− 1,m)d.
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Theorem: Let L be a finite list of vectors in

V[X1, . . . , Xk]m, where V is a valuation domain

of quotient field K and residue field k. Then

• dimkL ≤ dimKL,

• 〈L〉V is V-saturated if and only if dimKL =

dimkL.
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When a matrix over the integers is Z-

saturated ?

A ∈ Zm×n; rk0A := rkQA; rkpA := rkFpA;

P∗ = the set of prime numbers; P := P∗ ∪ {0}.

Denoe by p1, . . . , pt the prime numbers dividing

the denominators of the vectors obtained after

putting the columns of A into an echelon form

over Q. Then the following assertions are equiv-

alent:

(i) Im(A) is Z-saturated.

(ii) rk0A = rkp1A = · · · = rkptA.

(iii) The map rk(A) : P → N defined by

rk(A)(q) := rkqA, is constant.

(iv) The map P∗ → N; p 7→ rkpA, is constant.
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Let L = [u1, . . . , us] (s ≥ 1) be a list of s poly-

nomial vectors in V[X1, . . . , Xk]m, where V is a

valuation domain of quotient field K and residue

field k. For i ∈ N,

Li := 〈Muj; 1 ≤ j ≤ s, tdeg(M) ≤ i〉K,

L̄i := 〈Mūj; 1 ≤ j ≤ s, tdeg(M) ≤ i〉k.

hL,K(t) =
∑
i≥0

(dimKLi) t
i,

hL,k(t) =
∑
i≥0

(dimk L̄i) t
i ≤ hL,K(t),

δL(t) := hL,K(t)− hL,k(t)

called the saturation defect series of the list

L.

Note that

hL,K(t) = HSSyzK(u1,...,us)
(t).
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Example: Consider the list U = [u1 = 1 +

2X,u2 = 1 + 2Y ] with ui ∈ Z2Z[X,Y ]. We have:

hU,Q(t) =
1

(1− t)3
+

1

(1− t)2
,

hU,Z/2Z(t) =
1

(1− t)3
,

and, thus, the defect series of U is

δU(t) =
1

(1− t)2
.
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Theorem: Let L be a finite list of vectors in

V[X1, . . . , Xk]m, where V is a valuation domain.

If δL = 0 then 〈L〉V[X1,...,Xk] is V-saturated.
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Saturation algorithm in the multivariate

case:

Input: A finite list S = [s1, . . . , sn] of vectors in

V[X1, . . . , Xk]m, where V is a valuation domain

and m ≥ 1.

Output: A finite list G of vectors in

V[X1, . . . , Xk]m generating Sat(〈s1, . . . , sn〉) as a

V[X1, . . . , Xk]-module.

We denote by S0 the list S put in an echelon

form, and by induction Tj = [S0, . . . , Sj] where

Sj+1 denotes [X1Sj, . . . , XkSj] put in an eche-

lon form with respect to Tj and then put in an

echelon form, with the initialization T0 = S0.

We begin by putting S in an echelon form (it

becomes S0) and then compute its defect series

δS0
(t). If δS0

(t) = 0 then stop; else compute S1.

If δS1
(t) = 0 then stop; else compute S2, and so

on.
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Example: U = [u1 = 1 + 2X,u2 = 1 + 2Y ] with

ui ∈ Z2Z[X,Y ]. As δU(t) = 1
(1−t)2 6= 0, one has

to put U in an echelon form. This can be done

as follows:

U = [u1 = 1 + 2X,u2 = 1 + 2Y ] →

U0 := [u1,
1

2
(u2 − u1)] = [1 + 2X,Y −X].

As hU0,Q(t) = hU0,Z/2Z(t) = 1
(1−t)3 + 1

(1−t)2, we

have δU0
(t) = 0. We conclude that

Sat(〈u1, u2〉) = 〈1 + 2X,Y −X〉.
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