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Plan

e Computing syzygies over V[X4q,...,Xn] with
Grobner bases

e Computing syzygies over V[X1q,...,Xn] via
saturation, general case



ai,...,an € R. The syzygy module of
(a1,...,an) is

Syz(ai,...,an)

= {(bl,,bn)éRn | b]_a,l—l—...—I—bnan:O},

A ring V is called a valuation ring if all its
elements are comparable under division. A
valuation ring is coherent if the annihilator
Ann(x) = Syz(xz) of any element z € V is
finitely-generated.



Definitions 2. Let V be a coherent val-
uation ring, f,g € V[Xq,...,Xn] \ {0}, I =
(fi,...,fs) a nonzero finitely generated ideal of
V[Xq,...,Xy], and > a monomial order.

(i) If mdeg(f) = o« and mdeg(g) = B then let
~=(v1,...,v), Where v; = max(«y, B;) for each

1.

The S-polynomial of f and g is the combina-
tion:

. LC X7 :
S(fa g) LI\/I(f)f LCEQ LI\/I(g)g if LC(g)
divides LC(f).

S(f,g>=t§§§§L§Zf)f twiyg I LS

divides LC(g) and LC(g) does not divide
LC(f).

(ii)) The auto-S-polynomial of f is S(f,f) :=
d f, where d is a generator of the annihilator of
LC(f) (it is defined up to a unit).

(i) G = {f1,...,fs} is said to be a GroObner
basis for I if (LT(I)) = (LT(f1),...,LT(fs)).
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Theorem 2. Let V be a coherent valuation
ring, I = {g1,...,9s) an ideal of V[Xq,...,Xn],
and fix a monomial order >. Then, G =
{91,-..,9s} is a Grdbner basis for I if and only
if for all pairs 1 <1 < 3 <s, the remainder on
division of S(g;,g;) by G is zero.

Buchberger’s Algorithm for Coherent valu-
ation rings

Input: g1,...,9s € V[X1,...,X,], V a coherent
valuation ring, > a monomial order

Output: a Grobner basis G for (g1,...,9gs) with

{91,...,9s} CG

G :=191,...,9s} REPEAT

G =G
For each pair f,g in G’ DO
S :=5(f,9)¢

If S# 0 THEN G := G/ U {S}
UNTIL G =&



Example: Let V[X] = (Z/16Z)[X], and con-
sider the ideal I = (f1), where f; = 24+4X+48X2.

S(f1,f1) =2f1 =4+ 8X =: fo,

S(f1, f2) =2 =: f3,

S(fa, f2) = 2f> =8 23 0, S(f3, f3) =0,
fo ﬁ> 0.

Thus, G = {2} is a Grobner basis for I in V[X].



Theorem. Let V be a valuation ring. Then,
one can construct Grébner bases over V (for
the lexicographic monomial order) if and only
if V is both coherent and archimedean (i.e.,
Va,b € Rad(V)\ {0} dn € N | a divides b™), or
also, if and only if either

e dmV <1 and V is without zero-divisors
or

e dimV = 0 and the annihilator of any element
in V is finitely generated.
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It is a folklore that if V is valuation domain then
V[Xq,...,Xn] is coherent, i.e., Syzygy mod-
ules over V[Xq,...,Xn] are finitely generated.
T his follows from a deep and complicated paper:
Gruson L., Raynaud M. Critéres de platitude et
de projectivité. Invent. Math. (1971).

Our goal is to find an algorithm for computing
syzygies over V[X1,...,Xn], where V is a valu-
ation domain of any Krull dimension.

Let p1,...,pm € V[Xq,...,X], and consider n

vectors si,...,sn € V[X3,...,Xi]™ generating
the syzygy module of p1,...,pm over the quo-
tient field K of V as a V[Xi,...,X¢]-module
(s1,...,sn Can be computed using Grobner bases
techniques). Then, the syzygy module S of
p1,...,pm over V is nothing but the V-saturation
of S’ = <81, .. .,8n>, l.e.,

S:={seV[Xq1,...,X]™| ase S forsome

acV\{0}} = (S er K)NV[Xq,..., X.]™
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V = Zoy; S = [s1 = (5,4, -2X2 — 6X +
12),s0 = (2X—1,0,-2X2 46X — 4)]

reduction

U

So = [(5, 4, —2X2 — 6X + 12),(X, 2, -8x2 +
EX -2 6(So) =1

X So

reduction

Y
S1 = [(5X, 4X, —2X3 — 6X2 4+

12X),(0,2X -1, = X3+ 2)]; §(S1) =0
AS a conclusion
Sat(sq,s2)
2 6 4

12
= ((5, 4, —2X%-6X+12),(X, =, ——X?4+—X—),
(« +12), (X, 5, —2X2+2X—0)

(0,2X — 1, —X3 4+ 2)).
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Theorem: Let S = [s1,...,s,] be a finite list of
vectors in V[X]™ with degrees < d, where V is a
valuation domain and m > 1. Then the “prim-
itive triangulation algorithm” computes after
min(n—1,m)d+1 iterations a finite list G of vec-
tors in V[X]™ of degrees < (min(n—1,m) + 1)d
generating Sat((s1,...,sn)) as a V[X]-module.

In other terms, computing Sat({si,...,sn))
amounts to performing gaussian elimination on
a matrix of size n(min(n—1,m)d-+1)xm and with
entries in V[X] of degrees < (min(n—1,m)-+41)d.

Proof. We denote by Sg the list § put in an
echelon form, and by induction T; = [Sp,...,S]
where Sj_|_1 denotes XS]- put in an echelon form
with respect to 7; and then put in an echelon
form, with the initialization Ty = Sp.

Then the sequence (6(S;))j>0 is non-increasing
and becomes zero for 7 > min(n — 1, m)d.

12



Theorem: Let L be a finite list of vectors in
V[X1,...,X]™, where V is a valuation domain
of quotient field K and residue field k. Then

[ dlka < dImK L,

e (L)y is V-saturated if and only if dimg L =
dika.
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When a matrix over the integers is Z-
saturated 7

A € 2™ rkoA 1= rkgd; rkpA = rkp, A;
P* = the set of prime numbers; P :=P*uU {0}.

Denoe by p1,...,p+ the prime numbers dividing
the denominators of the vectors obtained after
putting the columns of A into an echelon form
over Q. Then the following assertions are equiv-
alent:

(i) Im(A) is Z-saturated.
(i) rkpA =rkp; A =--- =rkyA.

(iii) The map rk(A) : P — N defined by
rk(A)(q) == rkqA, is constant.

(iv) The map P* — N; p+— rkpA, is constant.
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Let L = [uq,...,us] (s > 1) be a list of s poly-
nomial vectors in V[X1,...,Xt]™, where V is a
valuation domain of quotient field K and residue

field k. For 7 € N,

L;:= (Muj, 1 <j <s, tdeg(M) < i)k,
L; = (Mu;; 1<j<s, tdeg(M) < i)y.

hp k(@) = Y (dimg L;) ¢,
i>0

hp k() = Y (dim L) ¢ < hy g (1),
1>0

6r,(t) = hp k(t) — hr k(1)

called the saturation defect series of the list
L.

Note that
hrk(t) = HSSyZK(ul,...,uS)(t)°
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Example: Consider the list U = [u; = 1 4+
2X,up = 14 2Y] with u; € Zoy[X,Y]. We have:

1 1
CEDERNCE Y

hy (t) =

1
hy,z,/22(t) = EDER

and, thus, the defect series of U is

1
(1-1t)2

oy (t) =
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Theorem: Let L be a finite list of vectors in
V[X1,...,X]™, where V is a valuation domain.
If 6y, = 0 then (L)y[x,,. x,] is V-saturated.
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Saturation algorithm in the multivariate
case:

Input: A finite list S = [s1,...,sn] Of vectors in
V[X1,...,X]™, where V is a valuation domain
and m > 1.

Output: A finite Ilist G of vectors in
VI[Xq,...,X,]™ generating Sat({(s1,...,sn)) as a
V[X1,...,X¢]-module.

We denote by Sp the list S put in an echelon
form, and by induction T; = [Sp,...,S;] where
S;4+1 denotes [X1Sj,...,X;S;] put in an eche-
lon form with respect to Tj and then put in an

echelon form, with the initialization Tp = Sp.

We begin by putting S in an echelon form (it
becomes Spy) and then compute its defect series
65,(t). If 65,(t) = O then stop; else compute S;.
If g,(t) = O then stop; else compute S5, and so
on.
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Example: U = [u; = 14 2X,u> = 1+ 2Y] with
u; € Zoy|X,Y]. As éy(t) = ﬁ %= 0, one has
to put U in an echelon form. This can be done

as follows:

U=[u;=14+2X,us=142Y] —

1
Up := [Ulai(UQ —u1)] =[1+2X,Y — X].

1 1
As hy,,(t) = hUo,Z/QZ(t) = 1-03 + (1—1)2’ we
have éy,(t) = 0. We conclude that

Sat((uy,us)) = (1 4+ 2X,Y — X).
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