On some cancellation algorithms

Maciej Zakarczemny

Cracow University of Technology, Poland

Conference on Rings and Polynomials

Graz

July 05, 2016

Assume that $g:\mathbb{N} \to \mathbb{N}$ is some special $\underline{\mathsf{injective}}$ mapping. Let:

$$D_g(n) := \min\{m \in \mathbb{N} : g(1), g(2), \dots, g(n) \text{ are distinct modulo } m\}$$
 (1)

The function D_g is commonly called the discriminator of the function g.

Arnold, Benkoski, and McCabe [1] defined, for a natural number n, the smallest natural number m such that $1^2, 2^2, \ldots, n^2$ are all distinct modulo m.

In this case, the value $D_g(n)$ for n > 4 is the smallest $m \ge 2n$ such that m is a prime or twice a prime.

[1] L.K. Arnold, S.J. Benkoski and B.J. McCabe, The discriminator (a simple application of Bertrand's postulate),

Amer. Math. Monthly (1985), 92, 275-277.

Later authors tried to generalize it to the cyclic polynomials $g(x) = x^j$, where j is any natural number, see [2],

Moree and Mullen [8] give the asymptotic characterization of $D_{g_i(x,a)}(n)$, where

$$g_j(x,a) = \sum_{i=0}^{\left\lfloor \frac{j}{2} \right\rfloor} \frac{j}{j-i} {j-i \choose i} (-a)^i x^{j-2i} \in \mathbb{Z}[x]$$

is the Dickson polynomial of degree $j \geq 1$ and parameter $a \in \mathbb{Z}$.

^[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a fixed power, J. Number Theory (1990), 35, no. 1, 105-108.

^[8] P. Moree and G. L. Mullen, Dickson polynomial discriminators, J. Number Theory 59 (1996), 88-105.

The characterization of the discriminator for permutation polynomials was made in papers [6] and [11].

Let R be a finite commutative ring. A polynomial $f \in R[x]$ is said to be a permutation polynomial of R if it permutes the elements of R under the evaluation mapping $x \mapsto f(x)$. In paper [6] author give conditions for f to have an asymptotic characterization of the form

$$D_f(n) = \min\{k \geq n : f \text{ permutes } \mathbb{Z}/k\mathbb{Z}\}.$$

[6] P. Moree, The incongruence of consecutive values of polynomials, Finite Fields Appl. 2 (1996), no. 3, 321-335.

[11] M.Zieve, A note on the discriminator, J. Number Theory 73 (1998), no. 1, 122-138.

Here we generalize the notion of discriminator and compute some of its values using methods from the elementary number theory.

Browkin and Cao in the paper [3] stated (1) equivalently in terms of the following cancellation algorithm.

For n > 2 define the set

$$A_n := \{g(s) - g(r) : 1 \le r < s \le n\} = \{g(k+l) - g(l) : k+l \le n; \ k, l \in \mathbb{N}\}.$$

Cancel in \mathbb{N} all numbers from the set $\{d \in \mathbb{N} : d \mid a \text{ for some } a \in A_n\}$, then $D_{\sigma}(n)$ is the least non-cancelled number.

More generally, we consider an arbitrary function $f: \mathbb{N}^m \to \mathbb{N}, \ m \geq 1$ and the set

$$V_n = \{f(n_1, n_2, \dots, n_m) : n_1 + n_2 + \dots + n_m \le n\}.$$

Definition

We define $b_f(n)$ as the least number in the set

$$\mathbb{N} \setminus \{d \in \mathbb{N} : d | a \text{ for some } a \in V_n\},$$

being called the set of all non-cancelled numbers.

Example

V- - 0

If
$$D_n = \{d \in \mathbb{N} : \exists_{n_1,n_2 \in \mathbb{N}, n_1 + n_2 \le n} \ d | (n_1 + n_2)^2 - n_2^2 \}$$
 and $b_f(n)$ is the least number in the set $\mathbb{N} \setminus D_n$ then

$V_1 = \emptyset$	
$D_1 = \emptyset$	$b_f(1)=1,$
$V_2 = \{3\}$	
$D_2 = \{1, 3\}$	$b_f(2)=2,$
$V_3 = \{3, 5, 8\}$	
$D_{3} = \{1, 2, 3, 4, 5, 8\}$	$b_f(3) = 6,$
$V_4 = \{3, 5, 7, 8, 12, 15\}$	
$D_4 = \{1, 2, 3, 4, 5, 6, 7, 8, 12, 15\}$	$b_f(4)=9,$
$V_5 = \{3, 5, 7, 8, 9, 12, 15, 16, 21, 24\}$	
$D_5 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 21, 24\}$	$b_f(5) = 10,$
$V_6 = \{3, 5, 7, 8, 9, 11, 12, 15, 16, 20, 21, 24, 25, 27, 32, 35\}$	
$D_{6} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 20, 21, 24, 27, 32, 35\}$	$b_f(6) = 13,$
$V_7 = \{3, 5, 7, 8, 9, 11, 12, 13, 15, 16, 20, 21, 24, 25, 27, 32, 33, 35, 45, 48\}$	
$D_7 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20, 21, 24, 25, 27, 32, 33, 35, 45, 48\}$	$b_f(7) = 14,$

Note that $V_n=\{g(s)-g(r): 1\leq r< s\leq n\}$, where $g:\mathbb{N}\ni r\to r^2\in\mathbb{N}$. In this case $f(n_1,n_2)=(n_1+n_2)^2-n_1^2$ and $b_f(n)$ is equal to the discriminator $D_{r^2}(n)$.

Hence for n>4 we get that $b_f(n)$ is the smallest $m\geq 2n$ such that m is a prime or twice a prime.

Our aim is to describe the set $\{b_f(n): n \in \mathbb{N}\}$ of the least non-cancelled numbers for some special cases of the function f.

Such modifications of the Eratosthenes sieve and the discriminator are of certain interest, since they develop a way to characterize the primes or a numbers of some special kind, for example those squarefree numbers which are the products of primes from some arithmetic progression.

The authors of [3] gave some details for the function $f(k,l)=k^2+l^2$ and they obtained that the set $\{b_f(n):n\geq 2\}$ is equal to $Q\setminus\{1\}$, where Q is the set of all squarefree positive integers, which are the products of prime numbers $\equiv 3\pmod 4$.

$$Q = \{1, 3, 7, 11, 19, 21, 23, 31, 33, 43, 47, 57, 59, \ldots\}.$$

$f(n) = n^k$ for some natural $k \ge 2$

Let $(r_s)_{s=1}^{\infty}$ be the increasing sequence of all positive squarefree numbers.

Theorem

Let $f : \mathbb{N} \to \mathbb{N}$, $f(n) = n^k$, where $k \ge 2$ is a natural number. If s > 1 and $r_{s-1} \le n < r_s$ then

$$b_f(n) = r_s$$
.

Hence, $\{b_f(n): n \in \mathbb{N}\}$ is the set of all squarefree numbers with the exception of 1.

Maciej Zakarczemny (Cracow University

Let t be a squarefree natural number. We define Q_t as the set of all natural numbers in the form ap^k , where p is a prime number which does not divide t; a is a positive squarefree number which divide t and k is the non-negative integer.

Example

```
Q_1 = \{1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, \ldots\},\
Q_2 = \{1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, \ldots\},\
Q_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 19, \ldots\},\
Q_5 = \{1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, \ldots\},\
Q_6 = \{1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, \ldots\}.
```

f(n) = n(n+t) for some positive squarefree number t

We fix t. Let $(q_s)_{s=1}^{\infty}$ be the increasing sequence of all elements of Q_t .

Theorem

Let $f : \mathbb{N} \to \mathbb{N}$, f(n) = n(n+t).

For $n \in \mathbb{N}$, where $n \ge t^2 - t$ we define s > 1 such that

$$q_{s-1} \le n+t \le q_s-1. \tag{2}$$

Then $b_f(n) = q_s$ and

$${b_f(n): n \ge t^2 - t, \ n \in \mathbb{N}} = {q_s \in Q_t: \ q_s > \max\{t^2, t+1\}, \ s > 1}.$$

- (□) (□) (Ē) (Ē) (Ē) (P)

$$f(n) = n(n+1)$$
 or $f(n) = n(n+2)$

Remark

If we take t=1, then $Q_1=\{p^k: p \ \text{is a prime number}, \ k \geq 0\}$ and $\{b_f(n): n\in \mathbb{N}\}=\{p^k: p \ \text{is a prime number}, \ k\geq 0\}\backslash\{1,2\}$ $=\{3,4,5,7,8,9,11,13,16,17,19,\ldots\}.$

Remark

If we take
$$t=2$$
, then $Q_2=\{p^k:k\geq 0\}\cup\{2p^k:k\geq 0\}$ and
$$\{b_f(n):n\geq 2,\ n\in\mathbb{N}\}=(\{p^k:k\geq 0\}\cup\{2p^k:k\geq 0\})\backslash\{1,2,3\}$$

$$=\{5,6,7,9,10,11,13,14,17,18,19,\ldots\}.$$

where p is an odd prime number.

$$f(n_1,n_2)=n_1n_2$$

Our aim in this theorem is to find an algorithm which gives only prime numbers p_s .

Theorem

Let $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $f(n_1, n_2) = n_1 n_2$. We have

$$b_f(1) = 1, b_f(2) = 2$$

and if n > 2 then $b_f(n) = p_s$, where s > 1 is chosen in the way that $p_{s-1} < n \le p_s$.

Remark

The set $\{b_f(n): n > 1, n \in \mathbb{N}\}$ is the set of all prime numbers.

We give a short and simple proof of the above theorem.

4 D > 4 B > 4 B > 4 B > 9 Q P

Proof.

By a straightforward verification we get

$$b_f(1) = 1, b_f(2) = 2.$$

Let n > 2. We assume that $p_{s-1} < n < p_s$, s > 1.

We have to prove that p_s is non-cancelled, but any natural number $h < p_s$ is cancelled.

First, let $p_s|ab$ for some $a,b\in\mathbb{N}$. Thus $p_s|a$ or $p_s|b$ and $a+b>p_s\geq n$. Therefore, a number p_s is non-cancelled. We assume now that $h< p_s$. To show that h is cancelled, we need to consider two cases separately.

- a) If $h=p_j$, where $j\in\mathbb{N}$ and $j\leq s-1$, then we take a=1, $b=p_j$ and get h|ab with $a+b=1+p_j\leq 1+p_{s-1}\leq n$, thus such h is cancelled.
- b) If h=kl, where k,l>1, $k,l\in\mathbb{N}$, we have $(k-2)(l-2)\geq 0$, hence $k+l\leq \frac{1}{2}kl+2$. We take $a=k,\ b=l$ and get h|ab. From the Bertrand's Postulate (Chebyshev's theorem) we have $p_s<2p_{s-1}$ for s>1. Hence,

$$a+b=k+l\leq \tfrac{1}{2}kl+2=\tfrac{1}{2}h+2\leq \tfrac{1}{2}(p_s-1)+2=\tfrac{1}{2}(p_s+1)+1\leq p_{s-1}+1\leq n,$$

thus such h is cancelled.

To summarize, we have shown that every $h < p_s$ is cancelled.

$$f(n_1, n_2) = n_1^3 + n_2^3$$

We denote by T the set of all squarefree positive integers being the products of arbitrarily many prime numbers, which are not congruent to 1 modulo 6.

Let $(t_s)_{s=1}^{\infty}$ be the increasing sequence of all elements of T.

We notice that $t_1 = 1$, which corresponds to the empty product.

$$T = \{1, 2, 3, 5, 6, 10, 11, 15, 17, 22, \ldots\}.$$

(In another words $t \in \mathcal{T}$ if t is squarefree positive integer and $(\mathtt{3}, arphi(t)) = \mathtt{1}.)$.

Furthermore $\varphi(k)$ denotes Euler's totient function and (a,b) denotes the greatest common divisor of a and b.

Theorem

Let $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $f(n_1, n_2) = n_1^3 + n_2^3$. We have

$$b_f(1) = 1, b_f(2) = 3, b_f(3) = 4,$$

 $b_f(n) = t_s$ if n > 4 and s is chosen in the way that

$$t_{s-1} \le n < t_s. \tag{3}$$

$$f(n_1, n_2) = n_1^j + n_2^j$$

Theorem

For
$$j > 1$$
 odd, let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $f(n_1, n_2) = n_1^j + n_2^j$. Then

$$b_f(n) \le \min\{k : k > n, k \text{ is squarefree}, (j, \varphi(k)) = 1\}.$$

Remark

Let j>1 be an odd number. We conjecture that for sufficiently large $n\geq 4$ we have

$$b_f(n) = \min\{k : k > n, k \text{ is squarefree}, (j, \varphi(k)) = 1\}$$

$$f(n_1, n_2, n_3) = n_1^2 + n_2^2 + n_3^2$$

Theorem

For the function $f: \mathbb{N}^3 \to \mathbb{N}$ given by the formula $f(n_1, n_2, n_3) = n_1^2 + n_2^2 + n_3^2$, we have $b_f(1) = b_f(2) = 1$, $b_f(3) = 2$ and for any integer $s \ge 1$ we obtain:

- 1) If $2 \cdot 2^s \le n < 3 \cdot 2^s$, then $b_f(n) \le 4^s$,
- 2) If $3 \cdot 2^s \le n < 2 \cdot 2^{s+1}$, then $b_f(n) \le 5 \cdot 4^{s-1}$.

Remark

We conjecture that for any integer $s \geq 1$:

- 1) If $2 \cdot 2^s \le n < 3 \cdot 2^s$, then $b_f(n) = 4^s$,
- 2) If $3 \cdot 2^s < n < 2 \cdot 2^{s+1}$, then $b_f(n) = 5 \cdot 4^{s-1}$.

Maciej Zakarczemny (Cracow University

Discriminator

July 05, 2016

Consider an arbitrary function $f: \mathbb{N}^m \to \mathbb{N}$ and the set

$$V_n = \{f(n_1, n_2, \dots, n_m) : n_1 + n_2 + \dots + n_m \leq n\}.$$

Cancel in $\mathbb N$ all numbers $d\in\mathbb N$ such that d^2 is a divisor of some number in V_n and define $b_f^{(2)}(n)$ as the least non-canceled number.

$$f(n_1, n_2) = n_1^2 + n_2^2$$
 and $b_f^{(2)}$

Denote by F the set of all positive integers which are the products of prime numbers $\not\equiv 1 \pmod{4}$.

Let $(q_s)_{s=1}^{\infty}$ be the increasing sequence of all elements of F. In particular, $q_1 = 1$, which corresponds to the empty product.

$$F = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 23, 24, 27, 28, 31, \ldots\}.$$

Theorem

Let
$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ f(n_1, n_2) = {n_1}^2 + {n_2}^2.$$
 We have $b_f^{(2)}(1) = 1$ and for $n \geq 2$

$$b_f^{(2)}(n) = q_s$$
, if $2q_{s-1} \le n < 2q_s$,

where $s \geq 2$.

Hence, the set $\{b_f^{(2)}(n) : n \in \mathbb{N}\}$ is equal to F.

$$f(n_1, n_2, n_3) = n_1^2 + n_2^2 + n_3^2$$
 and $b_f^{(2)}$

Theorem

For the function
$$f: \mathbb{N}^3 \to \mathbb{N}$$
 given by the formula $f(n_1, n_2, n_3) = {n_1}^2 + {n_2}^2 + {n_3}^2$, we have $b_f^{(2)}(1) = 1$, $b_f^{(2)}(2) = 1$, and for $n \ge 3$ $b_f^{(2)}(n) \le 2^{\lceil \log_2 \frac{n}{3} \rceil}$.

Remark

We conjecture that for any $n \geq 3$ we have $b_f^{(2)}(n) = 2^{\left\lceil \log_2 \frac{n}{3} \right\rceil}$.

$$f(n_1, n_2, n_3) = n_1^3 + n_2^3 + n_3^3$$

For the function $f: \mathbb{N}^3 \to \mathbb{N}$ given by the formula $f(n_1, n_2, n_3) = n_1^3 + n_2^3 + n_3^3$. We have

n	1, 2	3	4,5	6, , 10	11, , 17	18, 19	20, , 24	25, 26	27, 28, 29	30, , 34
$b_f(n)$	1	2	4	7	13	52	65	117	156	169

n	35, 36, 37	38, , 41	42, , 48	49, , 57	58, 59	60, 61, 62	63, , 66	67, , 73
$b_f(n)$	241	260	301	481	802	903	973	1118

Find and prove an explicit formula for the above sequence.

First remark: Unfortunately, it is not always easy to come up with explicit formulas, when all you have is a list of the terms.

Second remark: Can you prove the formula you conjectured?

$$f(n_1, n_2, n_3, n_4) = n_1^2 + n_2^2 + n_3^2 + n_4^2$$

For the function $f: \mathbb{N}^4 \to \mathbb{N}$ given by the formula $f(n_1, n_2, n_3, n_4) = n_1^2 + n_2^2 + n_3^2 + n_4^2$. We have

ſ	n	1, 2, 3	4,5	6,7	8, 9	10, 11	12, , 15	16	17, , 23
[$b_f(n)$	1	3	8	17	24	32	89	96

n	24, , 31	32, , 47	48, , 63
$b_f(n)$	128	384	512

We conjecture that for any integer $s \geq 3$:

- $1) \quad \textit{If} \ 3 \cdot 2^{s} \leq \textit{n} < 4 \cdot 2^{s}, \ \textit{then} \ \textit{b}_{\textit{f}}(\textit{n}) = 2 \cdot 4^{s},$
- 2) If $4 \cdot 2^s \le n < 3 \cdot 2^{s+1}$, then $b_f(n) = 6 \cdot 4^s$.

$$f(n_1, n_2, n_3, n_4, n_5) = n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_5^2$$

For the function $f: \mathbb{N}^5 \to \mathbb{N}$ given by the formula $f(n_1,n_2,n_3,n_4,n_5) = n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_5^2$. We have

n	1, 2, 3, 4	5	6, 7, 8	9	10	11	12, 13, 14, 15	16	17	18, 19, 20	21	22	23, 24
$b_f(n)$	1	2	3	6	9	15	33	73	90	105	132	153	193
				_									

$b_f(n)$ 210 225 288 297 318 321 353 432 441 513 570 585 732 79	ſ	n	25	26	27	28	29	30	31,32	33	34	35,36	37	38, 39, 40	41	42
	[$b_f(n)$	210	225	288	297	318	321	353	432		513	570	585	132	793

n	43, 44, 45, 46	47, 48	49, 50	51	52	53, 54	55, 56	57	58	59,60	61	Г
$b_f(n)$	825	1065	1185	1212	1257	1425	1473	1500	1617	1737	1860	

Find and prove an explicit formula for the above sequence.

$$f(n_1, n_2, n_3) = \frac{n_1(n_1+1)}{2} + \frac{n_2(n_2+1)}{2} + \frac{n_3(n_3+1)}{2}$$
, sum of three triangular numbers

For the function
$$f: \mathbb{N}^3 \to \mathbb{N}$$
 given by the formula $f(n_1, n_2, n_3) = \frac{n_1(n_1+1)}{2} + \frac{n_2(n_2+1)}{2} + \frac{n_3(n_3+1)}{2}$. We have

Γ	n	1, 2	3, 4	5	6, 7, 8	9,10	11, , 14	15	16	17	18, 19
	$b_f(n)$	1	2	6	11	20	29	53	69	76	81

n	20	21	22	23, 24	25	26, 27	28	29, 30	31, 32, 33	34
$b_f(n)$	105	106	110	119	146	179	188	218	254	272

Find and prove an explicit formula for the above sequence.

L.K. Arnold, S.J. Benkoski and B.J. McCabe, *The discriminator (a simple application of Bertrand's postulate)*, Amer. Math. Monthly (1985), 92, 275-277.

P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a fixed power, J. Number Theory (1990), 35, no. 1, 105-108.

J. Browkin, H-Q. Cao, Modifications of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138.

K. Molsen, Zur Verallgemeinerung des Bertrandschen Postulates, Deutsche Math. 6 (1941), 248-256.

P. Moree, Bertrand's postulate for primes in arithmetical progressions, Comput. Math. Appl. 26 (1993), 35-43.

P. Moree, The incongruence of consecutive values of polynomials, Finite Fields Appl. 2 (1996), no. 3, 321-335.

P. Moree and G. L. Mullen, Dickson polynomial discriminators, J. Number Theory 59 (1996), 88-105.

W. Sierpiński, Elementary Theory of numbers, Ed. by A. Schinzel, North-Holland (1988).

Z.W. Sun, On functions taking only prime values, J. Number Theory 133 (2013), pp. 2794-2812.

Z.W. Sun, On primes in arithmetic progressions (2013), available at arXiv:1304.5988v4.

M.Zieve, A note on the discriminator, J. Number Theory 73 (1998), no. 1, 122-138.