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Introduction

Assume that g : N — N is some special injective mapping.
Let:

Dg(n) :==min{m € N: g(1),g(2),..., g(n) are distinct modulo m} (1)

The function D, is commonly called the discriminator of the function g.

Remark: By N we denote the set of positive integers.
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Introduction

Arnold, Benkoski, and McCabe [1] defined, for a natural number n, the smallest
natural number m such that 12,22, ... n? are all distinct modulo m.

In this case, the value Dg(n) for n > 4 is the smallest m > 2n such that m is a
prime or twice a prime.

[1] L.K. Arnold, S.J. Benkoski and B.J. McCabe, The discriminator (a simple application of Bertrand’s postulate),
Amer. Math. Monthly (1985), 92, 275-277.
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Introduction

Later authors tried to generalize it to the cyclic polynomials g(x) = x/, where j is
any natural number, see [2],

Moree and Mullen [8] give the asymptotic characterization of Dy (. ,)(n), where

g(x.a) = ;- = (j . ’)(—a)"xf” € Zlx]

" I
i=0

is the Dickson polynomial of degree j > 1 and parameter a € Z.

[2] P. S. Bremser, P.D. Schumer, L.C. Washington, A note on the incongruence of consecutive integers to a fixed
power, J. Number Theory (1990), 35, no. 1, 105-108.
[8] P. Moree and G. L. Mullen, Dickson polynomial discriminators, J. Number Theory 59 (1996), 88-105.
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Introduction

The characterization of the discriminator for permutation polynomials was made
in papers [6] and [11].

Let R be a finite commutative ring. A polynomial f € R[x] is said to be a permutation polynomial of R if it
permutes the elements of R under the evaluation mapping x — f(x).
In paper [6] author give conditions for f to have an asymptotic characterization of the form

D¢(n) = min{k > n: f permutesZ/kZ}.

[6] P. Moree, The incongruence of consecutive values of polynomials, Finite Fields Appl. 2 (1996), no. 3, 321-335.

[11] M.Zieve, A note on the discriminator, J. Number Theory 73 (1998), no. 1, 122-138.
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Introduction

Here we generalize the notion of discriminator and compute some of its values
using methods from the elementary number theory.

Browkin and Cao in the paper [3] stated (1) equivalently in terms of the following
cancellation algorithm.

For n > 2 define the set

An={g(s)—g(r):1<r<s<n}y={glk+1)—g(l): k+1<n; k,| € N}.

Cancel in N all numbers from the set {d € N : d|afor somea € A,},
then D,(n) is the least non-cancelled number.

[3] J. Browkin, H-Q. Cao, Modifications of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138:
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Introduction

More generally, we consider an arbitrary function f : N™ — N, m > 1 and the set
Vo ={f(n,na,....,nm): m+n+...4+n, <n}
Definition
We define br(n) as the least number in the set
N\ {d € N: d|aforsomea € V,},

being called the set of all non-cancelled numbers.
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Introduction

Example

If D, ={d € N: 35, neN, m+m<n d|(m + n2)> — ny?} and
br(n) is the least number in the set N\ D, then

Vi =0

Dy =10 be(1) =1,
V2 = {3}

Dy = {1,3} be(2) =2,
V3 = {3,5,8}

D3 ={1,2,3,4,5,8} be(3) = 6,
Va=13,5,7,8,12, 15}

Da = {1,2,3,4,5,6,7,8,12,15} be(4) =9,
Vs —{3.5.7.8,9,12, 15, 16, 21, 24]

Ds — {1.2,3,4.5,6,7,8,9,12, 15, 16, 21, 24} b(5) = 10,
Ve = {3,5,7,8,9,11,12, 15, 16, 20, 21, 24, 25, 27, 32, 35}

D = {1,2,3,4,5,6,7,8,9,10,11,12, 15, 16, 20, 21, 24, 27, 32, 35} be(6) = 13,
Vz = {3,5,7,8,9, 11, 12, 13, 15, 16, 20, 21, 24, 25, 27, 32, 33, 35, 45, 48}

D7 = {1,2.3,4,5.6,7,8,9,10, 11, 12, 13, 15, 16, 20, 21, 24, 25, 27, 32, 33, 35, 45,48} | be(7) — 14,

Note that V, = {g(s) — g(r) : 1§r<s§n},whereg:N3r—>r2ENA
In this case f(n1, n2) = (n1 + n2)? — "21’ and b¢(n) is equal to the discriminator D 2 (n).

Hence for n > 4 we get that bs(n) is the smallest m > 2n such that m is a prime or twice a prime.

Maciej Zakarczemny (Cracow University Discriminator July 05, 2016 8 /26



Introduction

Our aim is to describe the set {b¢(n) : n € N} of the least non-cancelled numbers
for some special cases of the function f.

Such modifications of the Eratosthenes sieve and the discriminator are of certain interest, since they develop a way
to characterize the primes or a numbers of some special kind, for example those squarefree numbers

which are the products of primes from some arithmetic progression.

The authors of [3] gave some details for the function f(k,/) = k* + /> and they
obtained that the set {bs(n) : n > 2} is equal to Q \ {1}, where Q is the set of
all squarefree positive integers, which are the products

of prime numbers = 3 (mod 4).

Q = {1,3,7,11,19,21,23,31,33,43,47,57,59, .. .}.

[3] J. Browkin, H-Q. Cao, Modifications of the Eratosthenes sieve, Colloq. Math. 135, (2014), pp. 127-138:
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f(n) = n* for some natural k > 2

Let (r5)22, be the increasing sequence of all positive squarefree numbers.
Theorem

Let f : N — N, f(n) = n*, where k > 2 is a natural number.
Ifs>1andrs_y < n<rsthen

be(n) = rs.

Hence, {b¢(n) : n € N} is the set of all squarefree numbers
with the exception of 1.
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|
Q:

Let t be a squarefree natural number.

We define Q; as the set of all natural numbers in the form ap,
where p is a prime number which does not divide t;

a is a positive squarefree number which divide t

and k is the non-negative integer.

Example

& =1{1,2,3,4,5,7,8,9,11,13,16,17,19, .. .},

@ =1{1,2,3,5,6,7,9,10,11,13,14,17,18,19, .. .},
@ =1{1,2,3,4,5,6,7,8,11,12,13,15,16,17,19, ...},
Qs ={1,2,3,4,5,7,8,9,10,11,13,15,16,17,19, ...},
Qs ={1,2,3,5,6,7,10,11,13,14,15,17,19, .. .}.

Maciej Zakarczemny (Cracow University Discriminator July 05, 2016 11 / 26



f(n) = n(n + t) for some positive squarefree number t

We fix t. Let (gs)22; be the increasing sequence of all elements of Q;.

Theorem

Let f : N —= N, f(n) = n(n+t).
For n € N, where n > t> — t we define s > 1 such that

gs—1 <n+t<gqgs—1. (2)
Then br(n) = qs and

{be(n):n>t*—t, neN} ={qs € Q : qs > max{t’, t + 1}, s > 1}.
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|
f(n)=n(n+1)or f(n)=n(n+2)

Remark
If we take t = 1, then @ = {p* : pisaprime number, k > 0} and
{be(n) : n € N} = {p* : pisaprime number, k > 0}\{1,2}

={3,4,5,7,8,9,11,13,16,17,19, .. .}.

Remark
If we take t = 2, then @, = {p*: k >0} U {2p*: k > 0} and
{be(n):n>2,neN}=({p": k>0u{2p": k>0})\{1,2,3}

={5,6,7,9,10,11,13,14,17,18,19, ...}

where p is an odd prime number.
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f(nb nz) = nin

Our aim in this theorem is to find an algorithm which gives
only prime numbers p;.

Theorem
Let f : N x N —= N, f(ny,ny) = niny. We have

br(1) = 1, br(2) = 2

and if n > 2 then bf(n) = ps, where s > 1 is chosen in the way that
Ps—1 < n < ps.

Remark
The set {bs(n) : n > 1, n € N} is the set of all prime numbers.

We give a short and simple proof of the above theorem.
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Proof.

By a straightforward verification we get
be(1) =1, be(2) = 2.
Let n > 2. We assume that p;_3 < n < ps, s > 1.
We have to prove that ps is non-cancelled, but any natural number h < ps is cancelled.
First, let ps|ab for some a, b € N. Thus ps|a or ps|b and a+ b > ps > n. Therefore, a number ps is non-cancelled.
We assume now that h < ps. To show that h is cancelled, we need to consider two cases separately.

a) If h=pj, where j € N and j < s — 1, then we take a = 1, b = p; and get h|ab with
a+b=1+p; <1+ ps_1 < n, thus such his cancelled.

b) If h = kI, where k,| > 1, k,| € N, we have (k —2)(/ —2) > 0, hence k+ 1/ < %kl+2. We take a = k, b=/ and
get h|ab. From the Bertrand's Postulate (Chebyshev’s theorem) we have p; < 2p;_j for s > 1. Hence,

atb=k+/<3k+2=3h+2<3(ps—1)+2=3(ps+1)+1<p_1+1<n,

thus such h is cancelled.

To summarize, we have shown that every h < ps is cancelled. O
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f(n17 n2) - n% + ng

We denote by T the set of all squarefree positive integers being the products of
arbitrarily many prime numbers, which are not congruent to 1 modulo 6.

Let ()22, be the increasing sequence of all elements of T.
We notice that t; = 1, which corresponds to the empty product.

T ={1,2,3,5,6,10,11,15,17,22, .. .}.

(In another words t € T if t is squarefree positive integer and (3, p(t)) = 1.).

Furthermore (k) denotes Euler’s totient function and (a, b) denotes the greatest common divisor of a and b.

Theorem

Let f :Nx N — N, f(ny, no) = n3 + no3. We have
bf(]‘) = 17 bf(2) = 37 bf(3) = 47
br(n) = ts if n > 4 and s is chosen in the way that

ts—1 < n<ts.
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-
f(n17n2):njll+né

Theorem

Forj>1odd, let f : N x N — N, f(ny,ny) = m’ + ny/. Then

br(n) < min{k : k > n, kis squarefree, (j, p(k)) = 1}.

Remark

Let j > 1 be an odd number. We conjecture that for sufficiently large n > 4 we have

be(n) = min{k : k > n, kissquarefree, (j, p(k)) =1}
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_ 2 2 2
f(ni, m, n3) = m*+ m* + ns

Theorem

For the function f : N3 — N given by the formula

f(ny, n2,n3) = n1? + np? + n3?, we have br(1) = bs(2) = 1, bs(3) =2
and for any integer s > 1 we obtain:

1) If2-2° <n<3-2% then br(n) < 4°,
2) If3-25<n<2-25%1 then be(n) < 5-4571.

Remark
We conjecture that for any integer s > 1:

1) 1f2.2° < n < 3:2° then be(n) = 4%,

2) 1f3:2° < n<2-25 then be(n) =5 41
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Consider an arbitrary function f : N™ — N and the set
Vo ={f(n,na,....,nm): nmp+n+...4+n, <n}

Cancel in N all numbers d € N such that d? is a divisor of some number in V,
and define bgz)(n) as the least non-canceled number.
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f(ny, ) = ni? + ny?and b,(cz)

Denote by F the set of all positive integers which are the products of prime
numbers # 1 (mod 4).

Let (gs)S2, be the increasing sequence of all elements of F.

In particular, g; = 1, which corresponds to the empty product.

F={1,2,3,4,6,7,8,9,11,12, 14, 16, 18, 19, 21, 22, 23, 24,27, 28,31, .. .}.
Theorem
Let f: N x N = N, f(ny, m) = m2 + 2. We have b’ (1) = 1 and for n > 2
b)(‘2)(n) = gs, if 2gs—1 < n < 2q;,

where s > 2.
Hence, the set {bg)(n) :n €N} s equal to F.
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f(ny, n, m3) = ni? + mo? + n3?and b7(c2)

Theorem

For the function f : N3 — N given by the formula
F(ny, mp, n3) = m2 + m? + ng?, we have b2 (1) =1, b2 (2) = 1, and for n > 3

b () < ol 81,

Remark

logs 1
We conjecture that for any n > 3 we have b&.z)(n) = 2’-°52 3-‘ .
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Open problems

_ .3 g 3
f(ny, na,n3) = n® + my® + n3

Problem

For the function f : N3 — N given by the formula
f(n1,n2,n3) = n® + no® + n33. We have

[ n [1,2[3[45]6,...,10 | 11,...,17 | 18,19 | 20,...,24 | 25,26 | 27,28,29 | 30,...,34 |
[be(m [ 1 T2 & | 7 | 13 [ 52 ] 65 [ 117 | 156 | 169 i
[ n [3536,37 [ 38,...,41 [ 42,...,48 [ 49,...,57 | 58,59 | 60,61,62 | 63,...,66 | 67,...,73 |
[be(n) | 241 ] 260 | 301 | 481 [ 802 | 903 | 973 | 1118 |

Find and prove an explicit formula for the above sequence.

First remark: Unfortunately, it is not always easy to come up with explicit formulas, when all you have
is a list of the terms.

Second remark: Can you prove the formula you conjectured?
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Open problems

_ .2 2 2 2
f(ny, m, N3, ng) = m*+ m*+n3* +my

Problem

For the function f : N* — N given by the formula
f(ny, 2, n3,ng) = 2 + 2 + n3® + ny®. We have

n [1,2,3[45]6,7]8,9]10,11 [ 12,...,15 ] 16 | 17,...,23 |
[Be(m) | T [ 3 | 8 | 17 | 24 | 32 [ 89 ] 96 |
[ n J24,...,31[32,...,47 [ 48,...,63 |
[ B (n) | 128 | 384 | 512 |

We conjecture that for any integer s > 3:
1) If3-2° < n<4-2° then be(n) =2 - 4°,

2) Ifa.25 < n<3-2"1 then be(n) =6 - 4°.
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Open problems

_ .2 2 2 2 2
f(ny, m, n3, Na, ns) = M=+ ny® + n3* + Ny* + ns

Problem

For the function f : N® — N given by the formula
f(ny,n2,n3,nq,n5) = n1% + m? + n3? + ng? + ns®. We have

11 | 12,13,14,15 | 16 | 17 | 18,19,20 | 21 | 22 | 23,24 |

[6,7,
3 15 | 33 73790 | 105 | 132 | 153 |

5 8 |
[2]

l

9 [ 10 |
609 ]

193 |

[ n [ 25 [ 26 [ 27 | 28 | 29 | 30 | 31,32 | 33 | 34 | 35,36 | 37 | 38,39,40 | 41 | 42

|
I

353 513 585 | 732 | 793

[ br(n) | 210 | 225 | 288 | 297 | 318 | 321 |

[ 432 | 441 |

| 570 |

n | 43,44,45,46 | 47,48 | 49,50 [ 51

[ 52 | 53,54 [ 55,56 |

57 | 58 [ 59,60 |

61 | |

825

[
l

be(n) |

| 1065 | 1185 | 1212 | 1257 | 1425 | 1473 [ 1500 | 1617 | 1737 | 1860 | |

Find and prove an explicit formula for the above sequence.
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Open problems

f(ny,na, n3) = ”‘(”2‘“) + ”2("22+1) + "3("23“)., sum of three triangular numbers

Problem

For the function f : N3 — N given by the formula
f(n,np,n3) = "‘(";H) + "2(”22+1) + "3(”§+1). We have

[n [1,2[34]5]6,7,8]9,10 [ 11,...,14 | 15 [ 16 | 17 | 18,19 |
[Be(m | 1 | 2 [6] 11 | 20 | 29 |53 69 [ 76 | 81 |
[ n T 20 [ 21 [ 22 [ 23,24 | 25 | 26,27 | 28 | 29,30 | 31,32,33 | 34 |

| be(n) | 105 | 106 [ 110 | 119 | 146 | 179 | 188 | 218 |

254 [ 272 ]

Find and prove an explicit formula for the above sequence.
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