Polynomial constants of cyclic factorizable derivations

Janusz Zieliński

Nicolaus Copernicus University, Toruń, Poland

Conference on Rings and Polynomials July 3-8, 2016, Graz, Austria k - a field of characteristic zero \mathbb{N} - the set of nonnegative integers \mathbb{N}_+ - the set of positive integers \mathbb{Q}_+ - the set of positive rationals n - an integer ≥ 3 $k[X] = k[x_1, \dots, x_n]$ $k(X) = k(x_1, \dots, x_n)$ • applications in population biology, laser physics, plasma physics, hydrodynamics, chemistry, biochemistry, neural networks, economics

- applications in population biology, laser physics, plasma physics, hydrodynamics, chemistry, biochemistry, neural networks, economics
- Lagutinskii's procedure of association of the factorizable derivation with any given derivation

- applications in population biology, laser physics, plasma physics, hydrodynamics, chemistry, biochemistry, neural networks, economics
- Lagutinskii's procedure of association of the factorizable derivation with any given derivation
- link to the invariant theory (for every connected algebraic group $G \subseteq Gl_n(k)$ there exists a derivation d such that $k[x_1, \ldots, x_n]^G = k[x_1, \ldots, x_n]^d$)

If R is a commutative k-algebra, then a k-linear map $d : R \rightarrow R$ is called a *derivation* of R if for all $a, b \in R$

$$d(ab) = ad(b) + d(a)b.$$

We call $R^d = \ker d$ the ring of constants of the derivation d.

Then $k \subseteq R^d$ and a *nontrivial* constant of d is an element of the set $R^d \setminus k$.

If $f_1, \ldots, f_n \in k[X]$, then there exists exactly one derivation $d: k[X] \to k[X]$ such that $d(x_1) = f_1, \ldots, d(x_n) = f_n$.

- Example 1. Hilbert's fourteenth problem.
- Let L be a field such that $k \subseteq L \subseteq k(X)$.

Problem (1900, Hilbert): Is the ring $L \cap k[X]$ finitely generated over k?

- 1958, Nagata: no.
- 1993, Derksen: that counterexample is of the form $k[X]^d$ for n = 32.
- 1994, Roberts, Deveney, Finston: a counterexample for n = 7.
- 1998, Freudenburg: for n = 6.
- 1999, Daigle, Freudenburg: for n = 5.
- 2005, Kuroda: for n = 4.
- 1988, Nagata, Nowicki: $k[X]^d$ is finitely generated over k for $n \leq 3$.

• Example 2. Jouanolou derivations.

Let
$$s, n \in \mathbb{N}$$
, $s \ge 2$, $n \ge 3$
 $d : \mathbb{C}[x_1, \dots, x_n] \to \mathbb{C}[x_1, \dots, x_n]$
 $d(x_i) = x_{i+1}^s$
(in a cyclic sense, that is, $x_{n+1} = x_1$).

1979, Jouanolou: if n = 3, then $\mathbb{C}[x_1, \ldots, x_n]^d = \mathbb{C}$. 2000, Maciejewski, Moulin Ollagnier, Nowicki, Strelcyn: if n is a prime number ≥ 3 , then $\mathbb{C}[x_1, \ldots, x_n]^d = \mathbb{C}$. 2003, Żołądek: if $n \geq 3$, then $\mathbb{C}[x_1, \ldots, x_n]^d = \mathbb{C}$. A derivation $d : k[X] \rightarrow k[X]$ is called *factorizable* if $d(x_i) = x_i f_i$, where the polynomials f_i are of degree 1 for i = 1, ..., n.

A derivation $d : k[X] \rightarrow k[X]$ is said to be *cyclic factorizable* if $d(x_i) = x_i(A_ix_{i-1} + B_ix_{i+1})$, where $A_i, B_i \in k$ for i = 1, ..., n (we adhere to the convention that $x_{n+1} = x_1$ and $x_0 = x_n$).

The task: determine $k[X]^d$ (and then the field of constants).

We call a derivation $d : k[X] \rightarrow k[X]$ Lotka-Volterra with parameters $C_1, \ldots, C_n \in k$ if $d(x_i) = x_i(x_{i-1} - C_i x_{i+1})$ for $i = 1, \ldots, n$ (in a cyclic sense).

- J. Moulin Ollagnier, A. Nowicki (1999): for *n* = 3 and arbitrary parameters *C_i*
- P. Hegedűs (2012): for an arbitrary *n* but all C_i equal to 1
- J. Z. (2013): for n = 4 and parameters C_i
- P. Hegedűs, J. Z. (2016): for an arbitrary n and arbitrary parameters

If $C_i = 1$ for all *i*, then we call *d* a Volterra derivation.

Theorem (Hegedűs)

The ring of constants of Volterra derivation in n variables is finitely generated over k with [(n+2)/2] generators. In each case it is a polynomial ring.

Theorem (Hegedűs and Z.)

The ring of constants of Lotka-Volterra derivation in $n \ge 4$ variables is finitely generated over k with at most three generators if there exists i such that $C_i \ne 1$. In each case it is a polynomial ring.

- - E + - E +

Let $f = \sum_{i=1}^{n} (\prod_{j=1}^{i-1} C_j) x_i = x_1 + C_1 x_2 + C_1 C_2 x_3 + \ldots + C_1 C_2 \cdots C_{n-1} x_n.$

Consider nonempty subsets $\mathcal{A} \subseteq \mathbb{Z}_n$ of integers mod n closed under $i \mapsto i+2$. If n is odd, then $\mathcal{A} = \mathbb{Z}_n$. If n is even, then we also have subsets $\mathcal{E} = \{2i; i \leq n/2\}$ and $\mathcal{O} = \{2i-1; i \leq n/2\}$. For a given \mathcal{A} we define a polynomial $g_{\mathcal{A}}$ if $C_i \in \mathbb{Q}_+$ for all $i \in \mathcal{A}$ and $\prod_{i \in \mathcal{A}} C_i = 1$. Then there exist unique coprime $\theta_i \in \mathbb{N}_+$ for $i \in \mathcal{A}$ such that $\theta_{i+2} = C_i \theta_i$. Let then $g_{\mathcal{A}} = \prod_{i \in \mathcal{A}} x_i^{\theta_i}$.

Theorem (Hegedűs and Z.)

Let n > 4 and there exists i such that $C_i \neq 1$. Then the number of generators of the Lotka-Volterra derivation with respect to the parameters C_1, \ldots, C_n is equal to:

- 0, if $\prod C_i \neq 1$ and no g_A is defined,
- 3, if n is even with both $g_{\mathcal{E}}$ and $g_{\mathcal{O}}$ are defined,
- 2, if n is odd and g_{Zn} is defined, or n is even and ∏ C_i = 1 but only one of g_E and g_O is defined,
- 1 in every other case.

In each case the generators are those polynomials g_A that are defined together with f if $\prod C_i = 1$.

イロト イポト イヨト イヨト

Let n = 4 and let $C_1 C_2 C_3 C_4 = -1$.

If there are two consecutive indices *i* such that $C_i = 1$, then there is a constant f_4 . We define it for $C_1 = C_2 = 1$ and $C_4 = -1/C_3$, for the other possibilities one has to rotate the indices appropriately.

 $f_4 = x_1^2 + x_2^2 + x_3^2 + C_3^2 x_4^2 + 2x_1 x_2 - 2x_1 x_3 - 2C_3 x_1 x_4 + 2x_2 x_3 - 2C_3 x_2 x_4 + 2C_3 x_3 x_4.$

Theorem (Hegedűs and Z.)

Let n = 4 and there exists *i* such that $C_i \neq 1$. Then the number of generators of the Lotka-Volterra derivation with respect to the parameters C_1, \ldots, C_n equals:

- 0, if $\prod C_i \neq 1$ and none of $g_{\mathcal{O}}$, $g_{\mathcal{E}}$, f_4 is defined,
- 3, if both $g_{\mathcal{E}}$ and $g_{\mathcal{O}}$ are defined,
- 2, if ∏ C_i = 1 but only one of g_E and g_O is defined, or one of the parameters is −1 and the other three are 1,
- 1 in every other case.

In each case the generators are those polynomials g_A that are defined together with f if $\prod C_i = 1$ or together with f_4 if $C_1C_2C_3C_4 = -1$ and two consecutive parameters equals 1.

Denote by $k[X]_{(m)}$ the homogeneous component of k[X] of degree m.

Let $k[X]_{(m)}^d = k[X]_{(m)} \cap k[X]^d$.

Since *d* is homogeneous, we have $k[X]^d = \bigoplus_{m=0}^{\infty} k[X]^d_{(m)}$.

Exemplary lemmas

Let $C_n \neq 1$. Consider the standard lexicographic ordering on the monomials of $k[X]_{(m)}$. Suppose that h has lexicographically the smallest leading monomial among all homogenous polynomials that are counterexamples to the theorem. Let $m_1 = \prod_{i=1}^n x_i^{\alpha_i}$ be the leading monomial of h. Let M(h) denote the set of monomials occurring in h with nonzero coefficient.

Lemma (Hegedűs and Z.)

Suppose $m = \prod_{i=1}^{n} x_i^{\gamma_i}$ is a monomial and r is a positive integer with the following properties:

•
$$\gamma_n = \alpha_n$$
,
• $\gamma_{2i-1} = \alpha_{2i-1}$ for $1 \le i \le r$,
• $\gamma_{2i} = C_{2i-2}\gamma_{2i-2}$ for $1 \le i \le r-1$,
• $\gamma_{2r} \ne C_{2r-2}\gamma_{2r-2}$.
Then $m \notin M(h)$.

Lemma (Hegedűs and Z.)

Suppose $m = \prod_{i=1}^{n} x_i^{\gamma_i} \in M(h)$ is a monomial and r < n/2 is a positive integer with the following properties:

$$\ \, \mathbf{0} \ \, \gamma_n = \alpha_n \ \, (or \ \, C_n = \mathbf{0}),$$

2)
$$\gamma_{2i-1} = \alpha_{2i-1}$$
 for $1 \leq i \leq r$,

3
$$\gamma_{2i} = \alpha_{2i}$$
 for $1 \leq i \leq r$.

Then there exists a nonnegative integer β_{2r-1} such that $C_{2r-1}(\gamma_{2r-1} - \beta_{2r-1}) = \gamma_{2r+1}$ and $m' = m(x_{2r}/x_{2r-1})^{\beta_{2r-1}} \in M(h)$. In particular, there exist nonnegative integers β'_{2i-1} such that $C_{2i-1}(\alpha_{2i-1} - \beta'_{2i-1}) = \alpha_{2i+1}$ for $1 \leq i < n/2$.

イロト イポト イヨト イヨト 二日

Lemma (Hegedűs and Z.)

Suppose $C_n \neq 0$ and $m = \prod x_i^{\gamma_i} \in M(h)$ is such that $\gamma_n = \alpha_n$, $\gamma_1 = \alpha_1$ and $\gamma_2 = \alpha_2 = C_n \alpha_n$. Then $l = \gamma_1 - C_{n-1} \gamma_{n-1}$ is a nonnegative integer and $m' = m(x_n/x_1)^l \in M(h)$. In particular, $\alpha_1 - C_{n-1}\alpha_{n-1}$ is a nonnegative integer.

Lemma (Hegedűs and Z.)

Let $h, g \in \mathbb{R}^d$, where g is a monomial. If the leading monomial of h is $m_1 = x_1^k g$ with k > 0 then $C_1 C_2 \cdots C_n$ is a k-th root of unity, in particular all $C_i \neq 0$. If further n > 4 then $C_1 C_2 \cdots C_n = 1$.

イロト 不得下 イヨト イヨト 二日

We call a polynomial $g \in k[X]$ strict if it is homogeneous and not divisible by the variables x_1, \ldots, x_n .

Every nonzero homogeneous polynomial $f \in k[X]$ has the unique representation $f = X^{\alpha}g$, where X^{α} is a monomial and g is strict.

A nonzero polynomial f is said to be a *Darboux polynomial* of a derivation $\delta : k[X] \rightarrow k[X]$ if $\delta(f) = \Lambda f$ for some $\Lambda \in k[X]$. We will call Λ a *cofactor* of f.

Lemma (Ossowski and Z.)

Let n = 4. If $g \in k[X]$ is a strict Darboux polynomial, then its cofactor is a linear form with coefficients in \mathbb{N} .

Lemma (Ossowski and Z.)

Let n = 4. If d(f) = 0 and $f = X^{\alpha}g$, where g is strict, then $d(X^{\alpha}) = 0$ and d(g) = 0.

Restrictions of *n*-variable polynomials

Let $\varphi \in k[X]$. For every $A \subseteq \{1, \ldots, n\}$ we denote by φ^A the sum of terms of φ that depend on variables x_i for $i \in A$, that is, $\varphi^A = \varphi_{|_{x_i=0 \text{ for } j \notin A}}$.

Lemma (Ossowski and Z.)

If $A \subseteq \{1, ..., n\}$, then for every $\varphi \in k[X]^d_{(m)}$ we have $d(\varphi^A)^A = 0$.

Lemma (Ossowski and Z.)

Let $\varphi \in k[X]_{(m)}$ and $A = \{i, i+1\} \subset \{1, \ldots, n\}$. If $d(\varphi^A)^A = 0$, then $\varphi^A = a(x_i + C_i x_{i+1})^m$ for $a \in k$.

Lemma (Ossowski and Z.)

Let
$$n \ge 4$$
, $\varphi \in k[X]_{(m)}$ and $i \in \{1, \ldots, n\}$. Let $C_i \notin \mathbb{Q}_+$ and $A = \{i, i+1, i+2\}$. If $d(\varphi^A)^A = 0$, then $\varphi^A \in k[x_i + C_i x_{i+1} + C_i C_{i+1} x_{i+2}]$.

For any derivation $\delta : k[X] \to k[X]$ there exists exactly one derivation $\overline{\delta} : k(X) \to k(X)$ such that $\overline{\delta}_{|k[X]} = \delta$. By a *rational constant* of the derivation $\delta : k[X] \to k[X]$ we mean the constant of its corresponding derivation $\overline{\delta} : k(X) \to k(X)$. The rational constants of δ form a field.

Theorem

If d is the four-variable Volterra derivation, then

$$k(X)^d = k(x_1 + x_2 + x_3 + x_4, x_1x_3, x_2x_4).$$

Denote by D_0 the field of fractions of an integral domain D.

Corollary

If d is the four-variable Volterra derivation, then $k(X)^d = (k[X]^d)_0$.

(日) (周) (三) (三)

Theorem

If d is a four-variable Lotka-Volterra derivation, then $k(X)^d$ contains a nontrivial rational constant if and only if at least one of the following conditions is fulfilled:

(1)
$$C_1 C_2 C_3 C_4 = 1$$
,

- (2) $C_1C_2C_3C_4 = -1$ and $C_i = 1$ for two consecutive indices,
- (3) $C_1, C_3 \in \mathbb{Q}$ and $C_1C_3 = 1$,
- (4) $C_2, C_4 \in \mathbb{Q}$ and $C_2C_4 = 1$.

Theorem

Let $s_1, \ldots, s_4 \in \mathbb{N}_+$, where $(s_1, s_3) \neq (1, 1)$ and $(s_2, s_4) \neq (1, 1)$. Let $D: k(X) \rightarrow k(X)$ be a derivation of the form

$$D(x_i) = x_{i-1}^{s_{i-1}+1} x_i^{s_i+1} x_{i+2}^{s_{i+2}}$$

for i = 1, ..., 4 (in a cyclic sense). Then $k(X)^D = k$.

A B F A B F

Thank you very much :) Danke schön :)