On an analogue of formulae Sohotski-Plemelj

E. Cheremnikh

Let $H=L^{2}(0, \infty)$ and $T=S+A^{*} B$ where $(S \varphi)(\tau) \equiv \tau \varphi(\tau), A, B: H \rightarrow$ G are integrals operators and G is auxiliary Hilbert space. Let

$$
D(\widetilde{S})=\left\{\varphi \in H: \exists c \equiv c(\varphi): \int_{0}^{\infty}|c(\varphi)+s \varphi(s)|^{2} \rho(s) d s<\infty\right\}
$$

and $\widetilde{S} \varphi(\underset{\sim}{s})=\widetilde{\sim}(\varphi)+s \varphi(s), \varphi \in D(\widetilde{S})$.
Let $\widetilde{T}=\widetilde{S}+A^{*} B, D(\widetilde{T})=D(\widetilde{S})$ and $T_{\xi}=(T-\xi)^{-1}, \widetilde{T}_{\xi}=(\widetilde{T}-\xi)^{-1}$. We discuss the relation

$$
\left(T_{\sigma} \varphi, \psi\right)_{ \pm}=\left(\varphi, b_{\sigma}\right)\left(a_{\sigma}^{ \pm} \psi\right)+\left(\widetilde{T}_{\sigma} \varphi, \psi\right)_{H}
$$

between the limit values $\left(T_{\sigma} \varphi, \psi\right)_{ \pm}=\lim _{\tau \rightarrow+0}\left(T_{\sigma \pm i \tau} \varphi, \psi\right)$ and bilinear form of the resolvent $\left(\widetilde{T}_{\sigma} \varphi, \psi\right)_{H}$ of maximal operator \widetilde{T}.

References

[1] Cheremnikh E.V. A remark about calculation of the jump of the resolvent in Friedrichs' model // Eastern European J. of Enteprise and Technol. - 2012. -V.55. -N.1/4. -P.37-40.

