On completeness of the root vector system of boundary value problem for first order system

A. Lunyov

We consider first order systems of ordinary differential equations

$$
\begin{equation*}
L y:=L(Q) y:=-i B \frac{d y}{d x}+Q(x) y=\lambda y, \quad y=\operatorname{col}\left(y_{1}, \ldots, y_{n}\right) \tag{1}
\end{equation*}
$$

subject to the following boundary conditions (BC)

$$
\begin{equation*}
C y(0)+D y(1)=0, \quad C=\left(c_{j k}\right), \quad D=\left(d_{j k}\right) \in \mathbb{C}^{n \times n} . \tag{2}
\end{equation*}
$$

Here B is a non-singular diagonal $n \times n$ matrix, and $Q(\cdot)$ is a L^{2}-potential matrix. We denote by $L_{C, D}:=L_{C, D}(Q)$ the operator associated in $L^{2}\left([0,1] ; \mathbb{C}^{n}\right)$ with the boundary value problem (BVP) (1)-(2).

BVP (1)-(2) has first been investigated by G. D. Birkhoff and R. E. Langer [1]. They introduced the concepts of regular and strictly regular boundary conditions (2) and investigated the asymptotic behavior of eigenvalues and eigenfunctions of the corresponding operator $L_{C, D}$. Moreover, they proved a pointwise convergence result on spectral decompositions of the operator $L_{C, D}$.

Recently [2] a wider class of boundary conditions, the so-called weakly B-regular BC, was introduced. Moreover, it was shown in [2] that the system of root vectors of BVP (1)-(2) subject to weakly B-regular BC is complete and minimal in $L^{2}\left([0,1] ; \mathbb{C}^{n}\right)$.

We obtain some results completing results from [2] for the case of $n \times n$ system. However, the most complete results are obtained for the case of 2×2 Dirac type system $\left(B=B^{*}\right)$. Below we present one of the typical result regarding this system.

Let

$$
B=\operatorname{diag}\left(b_{1}^{-1}, b_{2}^{-1}\right), \quad b_{1}<0<b_{2}, \quad \text { and } \quad Q=\left(\begin{array}{cc}
0 & Q_{12} \tag{3}\\
Q_{21} & 0
\end{array}\right)
$$

It is convenient for us to write $\mathrm{BC}(2)$ in the following form

$$
\begin{equation*}
U_{j}(y):=a_{j 1} y_{1}(0)+a_{j 2} y_{2}(0)+a_{j 3} y_{1}(1)+a_{j 4} y_{2}(1)=0, \quad j \in\{1,2\} . \tag{4}
\end{equation*}
$$

Put

$$
J_{j k}=\operatorname{det}\left(\begin{array}{cc}
a_{1 j} & a_{1 k} \\
a_{2 j} & a_{2 k}
\end{array}\right), j, k \in\{1, \ldots, 4\} .
$$

The following statement substantially generalizes Theorem 5.1 from [2].
Theorem. Let $Q_{12}(\cdot), Q_{21}(\cdot) \in W_{2}^{n+1}[0,1]$, and let $J_{32}=J_{14}=0$. Let also the following conditions be satisfied

$$
\begin{aligned}
& b_{1} J_{13} Q_{12}^{(k)}(0)+(-1)^{k} b_{2} J_{42} Q_{21}^{(k)}(1)=0, \quad k \in\{0,1, \ldots, n-1\}, \\
& b_{1} J_{13} Q_{12}^{(n)}(0)+(-1)^{n} b_{2} J_{42} Q_{21}^{(n)}(1) \neq 0,
\end{aligned}
$$

and

$$
\begin{aligned}
b_{1} J_{13} Q_{12}^{(k)}(1)+(-1)^{k} b_{2} J_{42} Q_{21}^{(k)}(0) & =0, \quad k \in\{0,1, \ldots, n-1\}, \\
b_{1} J_{13} Q_{12}^{(n)}(1)+(-1)^{n} b_{2} J_{42} Q_{21}^{(n)}(0) & \neq 0 .
\end{aligned}
$$

Then the system of root functions of the problem (1),(3),(4) is complete and minimal in $L^{2}\left([0,1] ; \mathbb{C}^{2}\right)$.

The talk is based on a joint paper with M. Malamud.

References

[1] G.D. Birkhoff and R.E. Langer, The boundary problems and developments associated with a system of ordinary differential equations of the first order, Proc. Am. Acad. Arts Sci. 58 (1923), pp. 49-128.
[2] M.M. Malamud and L.L. Oridoroga, On the completeness of the system of root vectors for first-order systems, arXiv, 1109.3683.

