Spectral theory of Schrödinger operators with infinitely many point interactions and radial positive definite functions

M. Malamud

Schrödinger operators on the Hilbert space $L^2(\mathbb{R}^d)$, $1 \leq d \leq 3$, with potentials supported on a discrete (finite or countable) set $X = \{x_j\}_1^m$ of points in \mathbb{R}^d arise in different problems of quantum mechanics (see [1] and references therein). They are given by the formal differential expression

$$\mathfrak{L}_d := \mathfrak{L}_d(X, \alpha) := -\Delta + \sum_{j=1}^m \alpha_j \delta(\cdot - x_j), \qquad \alpha_j \in \mathbb{R}, \quad m \in \mathbb{N} \cup \{\infty\}.$$
(1)

where $\alpha = {\alpha_j}_1^m$ is a sequence of real numbers.

In the case d = 1 there are several natural ways to associate the selfadjoint operator (Hamiltonian) on $L^2(\mathbb{R}^1)$ with the differential expression (1). In the case d = 2, 3 there is no natural Hamiltonian associated with the differential expression (1) (see [1]).

F. Berezin and L. Faddeev proposed in their pioneering paper [2] to consider the expression (1) (with m = 1 and d = 3) in the framework of the extension theory of symmetric operators. Following F. Berezin and L. Faddeev one associates the minimal symmetric operator H with the expression (1) as the following restriction of the Laplacian $-\Delta$,

$$H_d := -\Delta \restriction \operatorname{dom} H, \quad \operatorname{dom}(H_d) = \{ f \in W^{2,2}(\mathbb{R}^d) : f(x_j) = 0, \ j \in \mathbb{N} \}$$
(2)

and studies the spectral properties of all its selfadjoint extensions.

The case of $m < \infty$ is well studied. We will discuss the case $m = \infty$. We investigate self-adjoint extensions of the operator $H = H_3$ (realizations of \mathfrak{L}_3) in the framework of boundary triplets approach. Namely, we construct a "good" boundary triplet for H_d^* (with d = 2, 3) assuming that

$$d_*(X) := \inf_{j \neq k} |x_k - x_j| > 0.$$
(3)

Using this boundary triplet Π we parameterize the set of self-adjoint extensions of $H = H_d$, compute the corresponding Weyl function $M(\cdot)$ and investigate various spectral properties of self-adjoint extensions (semi-boundedness, non-negativity, negative spectrum, resolvent comparability, etc.)

Our main result on spectral properties of Hamiltonians with point interactions concerns the absolutely continuous spectrum (ac-spectrum). For instance, if

$$C := \sum_{|j-k|>0} \frac{1}{|x_j - x_k|^2} < \infty, \tag{4}$$

we prove that the part $\tilde{H}E_{\tilde{H}}(C,\infty)$ of every self-adjoint extension \tilde{H} of His absolutely continuous. Moreover, under additional assumptions on X, we show that the singular part of $\tilde{H}_+ := \tilde{H}E_{\tilde{H}}(0,\infty)$ is trivial, i.e. $\tilde{H}_+ = \tilde{H}_+^{ac}$. In the proof we apply technique elaborated in [3] as well as some new results on the characterization of *ac*-spectrum in terms of the Weyl function.

An important feature of our approach is an appearently new connection between the spectral theory of operators (1) for d = 3 and the class Φ_3 of radial positive definite functions on \mathbb{R}^3 . We exploit this connection in both directions.

Namely, we investigate some properties of radial positive definite functions on \mathbb{R}^d that have been inspired by possible applications in the spectral theory of operators (1). If f is such a function and $X = \{x_n\}_1^\infty$ is a sequence of points of \mathbb{R}^d , we say that f is strongly X-positive definite if there exists a constant c > 0 such that for all $\xi_1, \ldots, \xi_m \in \mathbb{C}$,

$$\sum_{j,k=1}^{m} \xi_k \overline{\xi}_j f(x_k - x_j) \ge c \sum_{k=1}^{m} |\xi_k|^2, \qquad m \in \mathbb{N}.$$

Using Schoenberg's theorem we derive a number of results showing under certain assumptions on X that f is strongly X-positive definite and that the Gram matrix $Gr_X(f) := (f(|x_k - x_j|))_{k,j \in \mathbb{N}}$ defines a bounded operator on $l^2(\mathbb{N})$. The latter results correlate with the properties of the sequence $\{e^{i(\cdot,x_k)}\}_{k\in\mathbb{N}}$ of exponential functions to form a Riesz-Fischer sequence or a Bessel sequence, respectively, in $L^2(S_r^n; \sigma_n)$ for some r > 0.

In particular, using extension theory of the operator H we show that any completely monotone function (in the sense of S, Bernshtein) is X-positive definite provided that $X = \{x_n\}_{1}^{\infty}$ satisfy condition (3).

The talk is based on a joint work with Konrad Schmüdgen.

References

- S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Sec. Edition, (with an Appendix by P. Exner) AMS Chelsea Publ., 2005.
- [2] F. A. Berezin, L. D. Faddeev, Remark on the Schrödinger equation with singular potential, Dokl. Acad. Sci. USSR 137 (1961), pp. 1011–1014.
- [3] M.M. Malamud, H. Neidhardt, On the unitary equivalence of absolutely continuous parts of self-adjoint extensions, J. Funct. Anal., 260, No 3 (2011), pp. 613-638.