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Assume that H and Ĥ are finite dimensional Hilbert spaces, H = H⊕Ĥ⊕H,
[H] is the set of all bounded operators in H and J ∈ [H] is a signature operator
of the form

J =

 0 0 −IH
0 iIĤ 0
IH 0 0

 : H ⊕ Ĥ ⊕H → H ⊕ Ĥ ⊕H.

We will discuss first-order symmetric systems

Jy′(t)−B(t)y(t) = λ∆(t)y + ∆(t)f(t) (1)

with the [H]-valued coefficients B(t) = B∗(t) and ∆(t) ≥ 0 defined on an

interval I = [a, b〉 with the regular endpoint a. In the case Ĥ = {0} system
(1) turns into the Hamiltonian system. We assume the deficiency indices n±
of the corresponding minimal relation Tmin to be arbitrary (possibly unequal).

Our approach is based on the concept of a decomposing boundary triplet
for the maximal relation Tmax(= T ∗min) introduced in [4] (another construc-
tion of a boundary triplet for Tmax can be found in [1]). This enables us to
describe self-adjoint and λ-depending Nevanlinna boundary conditions which
are analogs of separated self-adjoint boundary conditions for Hamiltonian
systems (1). With a boundary value problem involving such conditions we

associate the m-function m(·) : C \ R→ [H ⊕ Ĥ]. In the case of the Hamil-
tonian system with equal deficiency indices n+ = n− of Tmin the m-function
m(·) coincides with the Titchmarsh-Weyl coefficient. In the simplest case
of minimal (unequal) deficiency indices n± the main part of the m-function
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m(·) coincides with the rectangular Titchmarsh-Weyl coefficient introduced
by Hinton and Schneider in [3].

It turns out that m(·) is a Nevanlinna function and its spectral func-

tion Σ(·) : R → [H ⊕ Ĥ]) is a spectral function of the Fourier transform

L2
∆(I) 3 f → gf ∈ L2(Σ, H ⊕ Ĥ) with the minimally possible dimension

d = dim(H ⊕ Ĥ). We parametrize all m-functions m(λ) (and, consequently,
all spectral functions Σ(t)) in terms of the Nevanlinna boundary parame-
ter at the singular endpoint b. Such a parameterization is given by formula
similar to the known Krein formula for resolvents.

Application of these results to differential expressions l[y] of an odd order
enables us to complete the results by Everitt and Krishna Kumar [2] on the
Titchmarsh-Weyl theory of l[y].

The talk is based on a joint work with S. Albeverio and M. Malamud.
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