Inverse spectral problems for Dirac operators with summable matrix-valued potentials

D. Puyda

We solve the direct and inverse spectral problems for self-adjoint Dirac operators T_{q} generated by the differential expressions

$$
\mathfrak{t}_{q}:=\frac{1}{\mathrm{i}}\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) \frac{\mathrm{d}}{\mathrm{~d} x}+\left(\begin{array}{cc}
0 & q \\
q^{*} & 0
\end{array}\right)
$$

and the boundary conditions $y_{1}(0)=y_{2}(0), y_{1}(1)=y_{2}(1)$. Here q is an $r \times r$ matrix-valued function with entries belonging to $L_{p}(0,1), p \in[1, \infty)$, and I is the identity $r \times r$ matrix.

Namely, the spectrum of the operator T_{q} consists of countably many isolated real eigenvalues of finite multiplicity, accumulating only at $+\infty$ and $-\infty$. We denote by $\lambda_{j}(q), j \in \mathbb{Z}$, the pairwise distinct eigenvalues of the operator T_{q} labeled in increasing order so that $\lambda_{0}(q) \leq 0<\lambda_{1}(q)$. Further, let m_{q} stand for the Weyl-Titchmarsh function of the operator T_{q}. The function m_{q} is an $r \times r$ matrix-valued meromorphic Herglotz function and $\left\{\lambda_{j}(q)\right\}_{j \in \mathbb{Z}}$ is the set of its poles. We set

$$
\alpha_{j}(q):=-\underset{\lambda=\lambda_{j}(q)}{\operatorname{res}} m_{q}(\lambda), \quad j \in \mathbb{Z},
$$

and call $\alpha_{j}(q)$ the norming matrix of the operator T_{q} corresponding to the eigenvalue $\lambda_{j}(q)$.

The sequence $\mathfrak{a}_{q}:=\left(\left(\lambda_{j}(q), \alpha_{j}(q)\right)\right)_{j \in \mathbb{Z}}$ will be called the spectral data of the operator T_{q}, and the matrix-valued measure

$$
\mu_{q}:=\sum_{j=-\infty}^{\infty} \alpha_{j}(q) \delta_{\lambda_{j}(q)},
$$

where δ_{λ} is the Dirac delta-measure centered at the point λ, will be called its spectral measure. We give a complete description of the class of the spectral
data for the operators under consideration (which is equivalent to description of the class of the spectral measures), show that the spectral data determine the operator uniquely and suggest an efficient method for reconstructing the operator from the spectral data.

The talk is based on a joint work with Ya. Mykytyuk.

