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The poster is devoted to the behavior of energy (generalized) solutions for a
wide class of semilinear parabolic equations. We investigate a model Cauchy-
Neumann problem for parabolic equations of non-stationary diffusion-semi-
linear absorption with a degenerate absorption potential. More precisely, the
following problem is considered:
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u(x, 0) = u0(x), x ∈ Ω. (3)

Here q > 1, 0 < λ < 1, and a0(x) ≥ 0 is an arbitrary continuous function.
The initial function u0(x) is from L2(Ω), where Ω ⊂ RN(N > 1) is a bounded
domain with C1 - boundary. The origin belongs to Ω (0 ∈ Ω).

The main focus of our study is the long-time extinction property for
solutions to the initial-boundary problem (1), (2), (3). We obtain a sharp
condition on the degeneration of the potential a0(x) that guarantees the
long-time extinction.

Let a0(x) be a potential satisfying the inequality

a0(x) ≥ c0 exp
(
− ω(|x|)
|x|q+1

)
, x ∈ Ω \ {0},

where c0 > 0 is a constant, and ω(·) is an arbitrary function such that

(A) ω(τ) > 0 ∀τ > 0, (B) ω(0) = 0, (C) ω(τ)→ 0 as τ → 0 monotone.
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Theorem. Let u0(x) ∈ L2(Ω). Let ω(·) be a continuous nondecreasing
function that satisfies assumptions (A), (B), (C) and the following main con-
dition:

c∫
0

ω(τ)

τ
dτ <∞.

Suppose also that ω(·) satisfies the technical condition

τ ω′(τ)

ω(τ)
≤ 1− δ ∀ τ ∈ (0, τ0), τ0 > 0, 0 < δ < 1.

Then an arbitrary energy solution u(x, t) of problem (1), (2), (3) vanishes on
Ω in a finite time T <∞.
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