On matrices with the dominant main diagonal

L. Suhocheva

Let \mathcal{H} be a Hilbert space with the scalar product (\cdot, \cdot). A bounded everywhere defined linear operator $A: \mathcal{H} \rightarrow \mathcal{H}$ is called an operator with the dominant main diagonal if for any orthonormal basis $\left\{e_{j}\right\}_{j=1}^{N}, N \leq \infty$, the following inequality hold:

$$
\left|\left(A e_{j}, e_{j}\right)\right| \geq \sum_{k=1, k \neq j}^{N}\left|\left(A e_{j}, e_{k}\right)\right|, \quad j=\overline{1, N}
$$

For a selfadjoint operator A a necessary and sufficient condition when this operator has the dominant main diagonal is given.

The research was supported by grant 12-01-00102-a of the RFBR.

