On matrices with the dominant main diagonal

L. Suhocheva

Let \mathcal{H} be a Hilbert space with the scalar product (\cdot, \cdot) . A bounded everywhere defined linear operator $A : \mathcal{H} \to \mathcal{H}$ is called an operator with the dominant main diagonal if for any orthonormal basis $\{e_j\}_{j=1}^N$, $N \leq \infty$, the following inequality hold:

$$|(Ae_j, e_j)| \ge \sum_{k=1, k \neq j}^N |(Ae_j, e_k)|, \quad j = \overline{1, N}.$$

For a selfadjoint operator A a necessary and sufficient condition when this operator has the dominant main diagonal is given.

The research was supported by grant 12-01-00102-a of the RFBR.