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Abstract

We introduce an elegant probabilistic approach for solving electrical

network problems and use it to prove a basic, but apparently unknown,

fact concerning the reduction of electrical networks with multiple external

nodes.

1 Introduction

Based on the classical construction of random walks on graphs, we obtain elegant
proofs of the solvability of the Dirichlet problem for electrical networks with an
arbitrary number of ‘voltage’ or ’current’ sources. Using our approach we prove a
basic fact concerning the reduction of electrical networks with multiple external
nodes that has apparently escaped the attention of both mathematicians and
electrical engineers.

If a network N has only two external nodes , i.e. nodes attaching it to a power
source or a larger network, then it is well known that it can be replaced by an
equivalent network N ′ that consists of a unique edge between these two nodes
and electrically behaves in the same way as N . It is not hard to prove, using
elementary algebraic arguments, that a network with more than two external
nodes can also be reduced to an equivalent network, consisting of a complete
graph on the set of external nodes and having no internal nodes. A well-known
special case of this fact is the Y–∆ transformation.

In this paper we prove the existence of a reduced equivalent network, inde-
pendently of the number of external nodes, using our probabilistic arguments.
More importantly, we show that the conductances of the edges of the reduced
network admit a simple expression in terms of the behaviour of the correspond-
ing random walk. More precisely, if N is any network and B is its set of external
nodes, then for a, b ∈ B we let pa→b

†B denote the probability that random walk
in N (see Section 2 for its definition) starting at a will reach b before any other
external node (the random walk is killed upon reaching B). For a ∈ B we let
ca denote the sum of the conductances of the edges of N incident with a. Then
our main result can be summarised as follows.

Theorem 1.1. Let N be an electrical network1 and let B be the set of its

1In electrical engineers’ terminology, N is a passive, resistive network, as defined in Sec-

tion 2. Extending Theorem 1.1 to active networks, i.e. networks containing sources, is easily

achieved by adding the endpoints of any sources to the set of terminal vertices.
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external nodes. Then there is an equivalent network N/B with the same external
nodes B that has no internal nodes, and this network is essentially unique. For
every pair a, b ∈ B, this network N/B contains a single a-b edge of conductance

Cab := capa→b
†B = cbp

b→a
†B .

We stated Theorem 1.1 rather informally here. The precise statements are
given by Lemmas 4.1, 5.1 and 7.1 below. Some examples can be found at the
end of Section 4.

In the case where |B| = 2, i.e. when there is only one source a and one sink
z, we obtain that the effective conductance of the network equals ca times the
probability that random walk starting at a will visit z before returning to a;
this fact can also be found in [1, §19] and is equivalent to [5, Theorem 1].

2 Definitions

We will use the terminology of [2] for graph theoretical terms and [6] for prob-
abilistic ones.

A network is a tuple N = (G, c, B), where G = (V, E) is an (undirected)
(multi–) graph, c is a mapping assigning a conductance c(e) ∈ R+ to each edge
e of G, and B is a set of vertices of G, called the external vertices . The other
vertices, those in V (G)\B, will be called internal nodes . The reader will lose
nothing by assuming that every edge has unit conductance.

Given a network N and a function û : B → R, which we think of as an
assignment of voltages imposed by power sources to the external vertices, the
(discrete) Dirichlet problem consists in extending û into a function u : V (G) → R
so that u is harmonic on V (G)\B, that is, for every x ∈ V (G)\B it satisfies

cxu(x) =
∑

xy∈E

c(xy)u(y) (1)

where
cx :=

∑

{y|xy∈E}

c(xy). (2)

It is well-known that if G is finite then the Dirichlet problem always has a unique
solution.

Any function u : V (G) → R induces a function i : ~E → R on the directed

edges of G, i.e. the set ~E := {〈x, y〉 ∈ V (G)2 | x, y are joined by an edge of G}
by letting i(xy) = c(xy)(u(x) − u(y)), to be thought of as a flow from x to y,
where we use the notation i(xy) as shorthand for i(〈x, y〉). Using this function
i we can rewrite (1) as

∑

{y|xy∈E} i(xy) =
∑

{y|xy∈E} c(xy)(u(x) − u(y)) = 0 for x ∈ V (G)\B, (3)

which is known as Kirchhoff’s node law . The equation i(xy) = c(xy)(u(x) −
u(y)), which we used to define i, is known in physics as Ohm’s law .

The energy of a function f : V (G) → R is defined by

E(f) :=
∑

xy∈E

c(xy)(f(x) − f(y))2 =
∑

xy∈E

(f(x) − f(y))i(xy).
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(Mathematicians call E(f) the “energy” although physicist call it the “power”.)

Given an electrical network N as above, one associates to each vertex x ∈
V (G) a random walk as follows. A particle starts at x at time t = 0, and for
t = 1, 2, . . . it takes a random step from its current position y ∈ V (G) to one of
the vertices adjacent with y according to the following law: the probability
of going from y to w is c(yw)/cy, where cy :=

∑

yz∈E c(yz) (and so these
probabilities add up to 1).

3 Solution of the Dirichlet problem

Consider an instance of the discrete Dirichlet problem, i.e. a finite network
(G, c, B) and a ‘voltage’ function û : B → R imposed on the ‘boundary’ B. We
will find the solution u : V (G) → R to this Dirichlet problem using a probabilis-
tic method that will allow us to describe the equivalent network mentioned in
the introduction.

We define a random process consisting of a system of particles performing
random walk on N independently from each other: suppose that for every b ∈ B
we start a particle of charge û(b)/cb at b and let it perform random walk on N
as discribed in Section 2, killing it when it reaches B.

For every vertex v of N , let v(x) := D(x)/cx where D(x) the expected total
amount of charge departing from x in the whole process.

Similarly, for a directed edge ~e let j(~e) be the expectation of the net total
amount of charge flowing through e.

We now prove that the functions v, j we just defined give in fact the solution
to our network problem.

Lemma 3.1. The pair v, j satisfies Ohm’s law and v is the solution to the
Dirichlet problem with boundary values û(b), b ∈ B.

Proof. Consider any edge xy ∈ E. Recall that the expected amount of charge
leaving x is cxv(x). For each particles leaving x, the next step will go to y
with probability cxy/cx. Similarly, we expect a total charge cyv(y) to leave y,
going through xy with probability cxy/cy. By definition, j(xy) is the diference
of these two amount, so we have

j(xy) = cxv(x)cxy/cx − cyv(y)cxy/cy = cxy ((v(x) − v(y)) ,

in agreement with Ohm’s law.
For the second assertion, note that v(b) = û(b) for every b ∈ B by the defi-

nition of v(x). We claim that v is harmonic in V (G)\B. Indeed, by (3) v is har-
monic at a vertex x if and only if

∑

y∼x cxy ((v(x) − v(y)) = 0. Since we proved
that Ohm’s law applies to (v, j), this sum can be rewritten as

∑

y∼x j(xy). It
now easily follows from the definition of j that the sum equals zero: each tra-
jectory of a particle comes to x the same number of times as it leaves x, and so
its net contribution to the sum is zero. In other words, we have just remarked
that j satisfies Kirchhoff’s node law.

This means that v is the solution to the Dirichlet problem with boundary
values û(b), b ∈ B.
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Remark 1: we chose the amount of charge started at b to be a deterministic
quantity equal to û(b)/cb, but we could also have let it be a random variable
with that expectation. We could also let all particles have charge ±1 and start
a random number of particles with that expectation at b.

Remark 2: A similar approach for solving the Dirichlet problem is to start
a random walk at each vertex x, and let v(x) be the expectation of û(b) where
b is the first vertex of B it visits. This approach is well-known [3, 4]. It is a
consequence of the reversibility of our random walks that the two approaches
yield the same solution. Our approach has the advantage that it immeadiately
yields the equivalent network, and it is easy to adapt to the current sources
regime, see below.

Let us define j(b) :=
∑

bx∈E j(bx) to be the expected net amount of charge
flowing out of b in our random process. By Theorem 3.1 this coincides with the
actual net current flowing out of b when sources of voltage û(b) are applied to
the network.

4 The equivalent network

Let pa→b
†B denote the probability that our killed random walk starting at a with

exit B at b. It is not hard to prove that in the case when B = {a, b}, i.e.
when there is only one source and one sink, the effective conductance of the
network is Cab = capa→b

†B = cbp
b→a
†B . We will generalise this fact to networks

with arbitrarily many sources.
It follows easily from the reversibility (see [4]) of our random walk that

capa→b
†B = cbp

b→a
†B for every a, b ∈ B; our results will provide an indirect proof of

this fact. We define
Cab := capa→b

†B . (4)

Let N/B be the network with vertex set B in which each two vertices a, b

are joined by an edge of conductance Cab. Let N◦
/B be the auxiliary network

obtained from N/B by attaching, for every vertex b, a loop incident with b with

conductance Cbb = cbp
b→b
†B . We claim that N/B is equivalent to G in the sense

that given any assignment of ‘voltages’ to the elements of B the current flowing
out of each element of B coincide with the corresponding values for N/B.

To see this, suppose we perform our random experiment of Section 3 once
on N◦

/B and once on N , and in the latter case observe the particles only when
they are at the boundary B, then the two processes will follow the same law
since, by the definition of N◦

/B, the transition probabilities between vertices of
B as well as the parameters cb are the same in the two networks. Thus, the
values j(b), b ∈ B defined at the end of Section 3 will be identical for the two
networks. Note that the loops of N◦

/B have no effect on these values. We just
proved

Lemma 4.1. Given a network N and boundary conditions û : B → R, the flow
out of each vertex in the solution of the discrete Dirichlet problem has the same
value in N , N◦

/B and N/B.

In the next section we will check that N/B is equivalent to N in terms of
energy dissipation too.
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Examples

If N only has two vertices a, b, and several a-b edges, then the equivalent network
N/B consists of a single a-b edge with conductance equal to the sum of the

conductances of those edges, since pa→b
†B = 1 in this case. This agrees with the

well-known reduction rule for networks connected in parallel.
As a further example, consider a network N with several external nodes one

of which, called s, separates N into two pieces A, D. Then for every a in A and
d in D we have Cad = 0, since any particle trying to travel from a to d will have
to visit s and will be killed there.

5 Energy

In order to show that N/B also dissipates the same amount of energy as N we
will now recall that the energy is determined by the boundary conditions û(a)
and the values j(a) provided by (6): we claim that

E(v) =
∑

a∈B

û(a)j(a). (5)

Indeed, letting
(

V
2

)

denote the set of pairs of vertices of N , we have

E(v) =
∑

{x,y}∈(V

2
)

(v(x) − v(y)) j(xy) =
∑

x∈V

∑

y∼x

v(x)j(xy) =
∑

x∈V

v(x)j(x),

where we used the fact that j(xy) = −j(yx). Now note that j(x) = 0 for every
x 6∈ B by Kirchhoff’s node law, and so E(v) =

∑

a∈B û(a)j(a) as claimed.

Lemma 5.1. Given a network N and boundary conditions û : B → R, the en-
ergy dissipated by each of N and N/Bequals E(v) =

∑

{a,b}∈(B

2
) Cab (v(b) − v(a))

2
.

Proof. Combining (5) with Lemma 4.1 we obtain that the energy dissipated by
N equals that dissipated by N/B. The latter is given by the above formula by
definition.

Lemma 5.1 has the following interesting corollary that provides a purely
probabilistic formula for the energy dissipated by a network, and this formula
is, in a sense, linear.

Corollary 5.2. Let N be an electrical network and let B be the set of its external
nodes. Suppose that at each b ∈ B we start a random number of particles P (b),
with E{P (b)} = cbû(b), that perform random walk killed at B. Let P be the
(random) set of all these particles. If v is the solution to the Dirichlet problem
with boundary values û(b), then

E(v) = E{∑

p∈P

(

v(pin) − v(pter)
)

},

where pin ∈ B is the vertex at which p started its walk and pter ∈ B is the vertex
at which it was killed.
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Proof. Recall the definition of j(b) from the end of Section 3. We claim that

For every a ∈ B we have j(a) =
∑

b∈B Cab (v(a) − v(b)). (6)

To see this, note that the only particles that have an effect on j(a) are those
that start or finish their trajectory at a, and j(a) is by definition the diference
of the expected charge carried by the former minus the charge of the latter.
Decomposing j(a) according to the other endpoint b of such a trajectory, we
can write this difference as follows

j(a) =
∑

b∈B

v(a)capa→b
†B − v(b)cbp

b→a
†B .

Using (4) and factoring now yields the desired formula (6)
Combining (5) with (6) yields E(v) =

∑

a∈B v(a)
∑

b∈B Cab (v(a) − v(b)).

The claim now follows from the definition Cab := capa→b
†B and linearity of ex-

pectation.

6 Current sources at the boundary

In this section we adapt our approach to the case where the boundary conditions
are currents ı̂(b), b ∈ B rather than potentials. In this case the problem consists

in finding a flow i : ~E → R satisfying Kirchhoff’s node law (3) at every vertex
in V \B, Kirchhoff’s cycle law, as well as the boundary conditions. Kirchhoff’s

cycle law demands that for every directed cycle ~C we have
∑

~e∈E(~C) i(~e)/c(~e) =

0. We say that i satisfies the boundary conditions if, for every b ∈ B, we have
ı̂(b) =

∑

bx∈E i(bx).
It is well known that this problem has a solution if and only if

∑

ı̂(b) = 0,
and the solution is then unique. We provide a new proof using a method similar
to the one of the previous section, and show that we can replace N by N/B also
in this setting.

Let B+, B− be the subsets of B consisting of the elements b for which ı̂(b) is
positive and negative respectively. We define a random process as follows. For
every b ∈ B+, we start a particle of charge ı̂(b) at b and let it perform random
walk on N . This time, particles are not automatically killed once they reach
B. Instead, each time a particle p with charge ch(p) visits a vertex a ∈ B−,
each of ch(p), |̂ı(a)| is reduced by the amount min{ch(p),−ı̂(a)}, after which p
is left to continue its random walk unless we now have ch(p) = 0, in which case
p is killed. (To be more formal, we should have defined the values ch(p), ı̂(a)
as functions of time, with initial values set at the boundary conditions.) Note
that if several particles arrive a vertex in B− at the same time, then the order
in which we consider them for charge reduction is important to the particles,
but it will turn out not be important for us.

Note that all particles get killed after finite time with probability 1 since, as
∑

ı̂(b) = 0, the total initial ‘capacity’
∑

a∈B−
ı̂(a) of B− equals the total initial

charge of the particles, and random walk on a finite network visits all vertices
in finite time with probability 1. Moreover, after all particles are killed, each
ı̂(a), a ∈ B− has been set to zero.

Let us now define the function j as in the previous section, except that we
now have our new system of particles, and check that it satisfies Kirchhoff’s cycle
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law. Indeed, consider a directed cycle ~C, and suppose that a particle p lies at
some vertex x incident with edges yx, xz of ~C. Then the expected contribution of

p to the sum
∑

~e∈E(~C) j(~e)/c(~e) during the next step is c(yx)
cx

−ch(p)
c(yx) + c(xz)

cx

ch(p)
c(xz) =

0. Thus
∑

~e∈E(~C) j(~e)/c(~e) = 0 as desired, and j is the solution of our network

problem.
A different way to prove that j is the sought solution is to define the function

v as in the previous section and notice that the pair v, j satisfies Ohm’s law by
the proof of Lemma 3.1.

The arguments of Section 4 also imply the equivalence of the networks N
and N/B: if we perform our random experiment once on N◦

/B and once on N ,
and in the latter case observe the particles only when they are at the boundary
B, then the two processes will follow the same law by the definition of N◦

/B.

Thus the two solutions for v will be identical at B. Since, by (5), the energy is
determined by the boundary values, N/B yields the right expression for energy
in this setting too.

7 Uniqueness of the equivalent network

We now show that the equivalent network N/B we constructed is unique subject
to the requirement that it contains precisely one edge between each pair of
distinct external nodes (of course, one could obtain further equivalent networks
by replacing an edge with several parallel edges of the same total conductance,
or by removing edges of conductance 0).

Lemma 7.1. The constants Cab are the unique family of parameters satisfying
E(f) =

∑

a,b∈B Cab (f(b) − f(a))
2
for every boundary value assignment f : B →R.

Proof. Suppose there are two families of parameters {Cab | a, b ∈ B} and {Dab |
a, b ∈ B} satisfying E(f) =

∑

Cab(f(a) − f(b))2, E(f) =
∑

Dab(f(a) − f(b))2

for every potential f We claim that Cab = Dab for every i, j, that is, the two
representations are the same.

Consider dab := Cab − Dab. Then for every f we have
∑

a,b∈B dab(f(a) −

f(b))2 = 0. Moreover, for every subset Y of B we have
∑

i∈Y,j∈B\Y dij = 0 as

can be easily seen by letting f(i) = 1 for i in Y and f(j) = 0 for j in B\Y .
Letting Y = {a} we obtain

∑

ij∈E(a) dij = 0 where E(a) is the set of pairs

(“edges”) (a, i) for i ∈ B, and similarly
∑

ij∈E(b) dij = 0 for any other vertex

b ∈ B. Letting Y = {a, b} we obtain
∑

E(ab) dij = 0 where E(ab) is the set of

“edges” from a, b to B\{a, b}.
But E(ab) = E(a)∪E(b)\{ab}, thus

∑

ij∈E(ab) dij =
∑

ij∈E(a) dij+
∑

ij∈E(b) dij−
2dab. Since all terms except the last one have already been shown to be zero,
we obtain dab = 0. Thus we have Cab = Dab as claimed.

It is not hard to check that our constants Cab are the unique parameters
satisfying Lemma 4.1 too.
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