Komplexe Analysis Übungen

3. Übungsblatt

- 1. Zeigen Sie dass der Wert eines komplexen Kurvenintegrals nicht von der Parametrisierung abhängt.
- 2. Sei f holomorph auf $\{z \in \mathbb{C} : |z z_0| < r\}$. Weiters gelte $f(z_0) = 0$ und $f'(z_0) \neq 0$. Folgern Sie daraus dass für hinreichend kleines $\varepsilon > 0$ gilt:

$$\int_{|z-z_0|=\varepsilon} \frac{1}{f(z)} dz = \frac{2\pi i}{f'(z_0)}.$$

- 3. Sei f eine ganze nicht-konstante Funktion. Zeigen Sie dass die Bildmenge von f dicht in \mathbb{C} liegt. (Hinweis: Das ist eine stärkere Aussage als im Satz von Liouville dort wird nur behauptet dass die Bildmenge von f nicht beschränkt ist.)
- 4. Sei $n \in \mathbb{N}$ und seien r und c zwei positive reelle Zahlen. Sei f eine ganze Funktion, und es gelte die Ungleichung $|f(z)| \leq c|z|^n$ für alle $z \in \mathbb{C}$ mit $|z| \geq r$. Zeigen Sie, dass f ein Polynom ist, und zwar ein Polynom von Grad höchstens n.