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Abstract. The law of the iterated logarithm for discrepancies of lacu-
nary sequences is studies. An optimal bound is given under very mild
Diophantine type condition.

1. Introduction

The discrepancies of a sequence {ak} of real numbers are defined by

DN{ak} = sup
0≤a<b<1

∣∣∣∣ 1

N
#{k ≤ N | 〈ak〉 ∈ [ a, b)} − (b− a)

∣∣∣∣,
D∗
N{ak} = sup

0≤a<1

∣∣∣∣ 1

N
#{k ≤ N | 〈ak〉 ∈ [ 0, a)} − a

∣∣∣∣,
where 〈x〉 denotes the fractional part x − [x ] of x. It is used to measure
deviation of the distribution of the fractional parts of ak from the uniform
distribution. One can find detailed survey on the theory of uniform distri-
bution in [12].

The celebrated Chung-Smirnov Theorem [11, 28] asserts the law of the
iterated logarithm below for the uniformly distributed i.i.d. sequence {Uk}:

lim
N→∞

ND∗
N{Uk}√

2N log logN
= lim

N→∞

NDN{Uk}√
2N log logN

=
1

2
, a.s.

For a sequence {nk} of positive integers satisfying the Hadamard gap
condition

(1.1) nk+1/nk ≥ q > 1,

Philipp [26] proved the bounded law of the iterated logarithm below by
modifying the method due to Takahashi [30]: for almost every x,

1

4
√

2
≤ lim

N→∞

ND∗
N{nkx}√

2N log logN
≤ lim

N→∞

NDN{nkx}√
2N log logN

≤ 166√
2

+
664√

2(q1/2 − 1)
.

Aistleitner [1] improved the estimates and replaced the lower bound and
the upper bound by 1/2− 8/q1/4 and 1/2 + 6/q1/4 when q ≥ 2.

Recently, it is proved in [13] that these limsups with respect to the se-
quence {θkx} are equal to a constant for almost every x if θ > 1. The
constant is equal to the Chung-Smirnov constant 1/2 when θ is not a power
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root of rational number, and is greater than 1/2 otherwise (Cf. [16]). In the
latter case, the constant can be concretely evaluated under some arithmetic
condition. For example, when θ = q ≥ 3 is an odd integer the constant is

equal to 1
2

√
q+1
q−1

. Other sequences for which limsups are concretely calcu-

lated can be found in [17, 18, 19, 23, 24, 25].
Aistleitner [1] gave a nearly optimal Diophantine condition on the se-

quence {nk} to have Chung-Smirnov type result below. For positive integers
N and d, and for non-negative integer u, we denote the cardinality of{
(j, j′, k, k′) ∈ [ 1, d ]2× [ 1, N ]2

∣∣ jnk − j′nk′ = u
}
∩

{
(j, j, k, k)

∣∣ j, k ∈ N
}c

by LN,d,u, and we put L∗N,d = supu∈N LN,d,u.

Theorem 1 (Aistleitner [1]). Let {nk} be a sequence of positive integers
satisfying the Hadamard gap condition (1.1). For any d ∈ N, suppose that
there exists an ε > 0 such that

LN,d,0 ∨ L∗N,d = O
(
N/(logN)1+ε

)
.

Then lim
N→∞

ND∗
N{nkx}√

2N log logN
= lim

N→∞

NDN{nkx}√
2N log logN

=
1

2
, a.e.

As Aistleitner [2, 3] constructed lacunary sequences for which the limsups
are not constant a.e., and we can also find related examples in [15, 22], we are
interested in giving a condition to have constant limsups. Since all limsups so

far determined for lacunary sequences with (1.1) belong to Iq =
[

1
2
, 1

2

√
q+1
q−1

]
,

it is natual to expect the same bound for all lacunary sequences. Now we
state our result.

Theorem 2. Let {nk} be a sequence of positive integers satisfying the
Hadamard gap condition (1.1). For all d ∈ N, suppose that there exists
an ε ∈ (0, 1) such that

(1.2) L∗N,d = O
(
N/(logN)1+ε

)
.

Then there exists a constant Σ{nk} such that

lim
N→∞

ND∗
N{nkx}√

2N log logN
= lim

N→∞

NDN{nkx}√
2N log logN

= Σ{nk} ∈ Iq, a.e.(1.3)

Moreover, if we assume

(1.4) LN,d,0 = o(N) (N →∞)

together with (1.2) for all d, then we have

(1.5) Σ{nk} =
1

2
.

The estimate Σ{nk} ∈ Iq in (1.3) is best possible when q ≥ 3 is odd, since
Σ{qk} attains its upper bound and Σ{qk(k+1)} attains its lower bound, (See
[13, 14]). It is also proved in [20] that the set of constants Σ{qm(k)} for all

subsequences {qm(k)} of {qk} coincides with Iq. Note that our condition to
have (1.5) is weaker than that in the previous theorem.
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At least LN,d,u = o(N) is necessary to have constant limsups, since limsup
for star discrepancy is not constant for {2k − 1} and we have N � LN,d,u
(See [22]). Our condition (1.2) is stronger than this, and it is open if it is
necessary or not.

The condition (1.4) is necessary to have (1.5), since we have Σ{qk} > 1/2
and LN,d,0 � N in this case.

Before closing introduction, we mention a result in [21]. Suppose that
{nk} is a sequence of non-zero real numbers and suppose that {|nk|} satisfies
the Hadamard gap condition (1.1). Then for any permutation $ of N (i.e.
bijection N → N.), we have the bounded law of the iterated logarithm

for the discrepancies of {n$(k)x} with upper bound constant 1
2

√
q−1+4/

√
3

q−1
,

a constant slightly greater than 1
2

√
q+1
q−1

. For other recent development and

studies on permuted sequences, see papers by Aistleitner, Berkes, and Tichy
[4, 5, 6, 7, 8, 9].

2. Proof

Let 1[a,b) be the indicator function of [ a, b), put 1̃[a,b)(x) = 1[a,b)(〈x〉) −
(b−a), and denote 1̃[a,b);d the d-th subsum of the Fourier series of 1̃[a,b). Put

ρ2
q,d = 4

d
(logq d + 2q−1

q−1
), τ 2

q,d = 1
4
q+1
q−1

+ 1
2
ρ2
q,d, and ζ2

q,d = 1
4
− 1

2
ρ2
q,d. We first

prove the following key inequalities.

∥∥∥∥ M+N∑
k=M+1

1̃[a,b);d(nk · )
∥∥∥∥2

2

≤
∥∥∥∥ M+N∑
k=M+1

1̃[0,b−a);d(nk · )
∥∥∥∥2

2

+ ρ2
q,dN,(2.1)

∥∥∥∥ M+N∑
k=M+1

1̃[a,b);d(nk · )
∥∥∥∥2

2

≤ τ 2
q,dN,

∥∥∥∥ M+N∑
k=M+1

1̃[0,1/2);d(nk · )
∥∥∥∥2

2

≥ ζ2
q,dN,(2.2) ∣∣∣∣∣

∥∥∥∥ M+N∑
k=M+1

1̃[a,b);d(nk · )
∥∥∥∥2

2

−N‖1̃[a,b);d‖2
2

∣∣∣∣∣ ≤ LM+N,d,0 − LM,d,0.(2.3)

For k ≤ k′, by putting P = nk/ gcd(nk, nk′) andQ = nk′/ gcd(nk, nk′), we

have
∫ 1

0
1̃[a,b)(nkx)1̃[a,b)(nk′x) dx =

∫ 1

0
1̃[a,b)(Px)1̃[a,b)(Qx) dx. For coprime

integers P and Q, we have (Lemma 1 of [13])

∫ 1

0

1̃[a,b)(Px)1̃[a,b)(Qx) dx =
Ṽ (〈Pa〉, 〈Pb〉, 〈Qa〉, 〈Qb〉)

PQ
,

Ṽ (〈Pa〉, 〈Pb〉, 〈Qa〉, 〈Qb〉) ≤ Ṽ (0, 〈P (a− b)〉, 0, 〈Q(a− b)〉),

0 ≤ Ṽ (0, 〈P/2〉, 0, 〈Q/2〉),
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where Ṽ (x, y, ξ, η) = V (x, ξ)+V (y, η)−V (x, η)−V (y, ξ) ≤ 1
4

and V (x, ξ) =
x ∧ ξ − xξ for 0 ≤ x, y, ξ, η < 1. Hence we have∫ 1

0

1̃[a,b)(nkx)1̃[a,b)(nk′x) dx ≤
1

4PQ
≤ P

4Q
=

nk
4nk′

≤ 1

4qk′−k
,(2.4) ∫ 1

0

1̃[a,b)(nkx)1̃[a,b)(nk′x) dx ≤
∫ 1

0

1̃[0,b−a)(nkx)1̃[0,b−a)(nk′x) dx,(2.5) ∫ 1

0

1̃[0,1/2)(nkx)1̃[0,1/2)(nk′x) dx ≥ 0,(2.6) ∫ 1

0

1̃[0,1/2)(nkx)1̃[0,1/2)(nkx) dx = Ṽ (0, 1/2, 0, 1/2) =
1

4
.(2.7)

Since
∥∥∑M+N

k=M+1 1̃[a,b)(nk · )
∥∥2

2
=

∑∗(2 − δk,k′)
∫ 1

0
1̃[a,b)(nkx)1̃[a,b)(nk′x) dx

where
∑∗ stands for the summation for k and k′ satisfying M + 1 ≤ k ≤

k′ ≤M +N , by applying (2.4) and
∑∗(2− δk,k′)/4qk

′−k ≤ N 1
4
q+1
q−1

, we have

the first inequality of

(2.8)

∥∥∥∥ M+N∑
k=M+1

1̃[a,b)(nk · )
∥∥∥∥2

2

≤ N
1

4

q + 1

q − 1
,

∥∥∥∥ M+N∑
k=M+1

1̃[0,1/2)(nk · )
∥∥∥∥2

2

≥ N

4
,

while the second inequality is proved by (2.6) and (2.7). By (2.5), we can
verify

(2.9)

∥∥∥∥ M+N∑
k=M+1

1̃[a,b)(nk · )
∥∥∥∥2

2

≤
∥∥∥∥ M+N∑
k=M+1

1̃[0,b−a)(nk · )
∥∥∥∥2

2

.

By
∫ 1

0
1̃[a,b);d(Px)1̃[a,b);d(Qx) dx =

∫ 1

0
1̃[a,b);d(Px)1̃[a,b)(Qx) dx, we have

hk,k′ :=

∣∣∣∣∫ 1

0

1̃[a,b)(nkx)1̃[a,b)(nk′x) dx−
∫ 1

0

1̃[a,b);d(nkx)1̃[a,b);d(nk′x) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

(1̃[a,b) − 1̃[a,b);d)(Px)1̃[a,b)(Qx) dx

∣∣∣∣ ≤ ∑
|λ|≥d/Q

∣∣∣̂̃1[a,b)(Qλ)
̂̃
1[a,b)(−Pλ)

∣∣∣
≤ 2

π2PQ

∑
λ≥d/Q

1

λ2
≤ 2

π2PQ

(
2 ∧ 2Q

d

)
≤ P

Q
∧ 1

d
=
nk
nk′

∧ 1

d
≤ 1

qk′−k
∧ 1

d
.

Here we used |̂̃1[a,b)(j)| ≤ 1/π|j|. Hence we have∣∣∣∣∣
∥∥∥∥ M+N∑
k=M+1

1̃[a,b);d(nk · )
∥∥∥∥2

2

−
∥∥∥∥ M+N∑
k=M+1

1̃[a,b)(nk · )
∥∥∥∥2

2

∣∣∣∣∣ ≤ 2
∑∗

hk,k′

≤ 2
∑∗ 1

qk′−k
∧ 1

d
≤ 2N

∞∑
l=0

1

ql
∧ 1

d
= 2N

( l0 + 1

d
+ q−(l0+1) q

q − 1

)
≤ 2N

( logq d+ 1

d
+

1

d

q

q − 1

)
≤
ρ2
q,d

2
N,



DISCREPANCIES OF LACUNARY SEQUENCES 5

where l0 is the largest integer satisfying q−l0 ≥ 1
d
. By combining this with

(2.8), we have (2.2), and with (2.9), we obtain (2.1). By summing∣∣∣∣∫ 1

0

1̃[a,b);d(nkx)1̃[a,b);d(nk′x) dx

∣∣∣∣ ≤ ∑
0<|j|≤d

∑
0<|j′|≤d

∣∣̂̃1[a,b)(j)
̂̃
1[a,b)(j

′)
∣∣δjnk+j′nk,0

≤ 2

π2

d∑
j=1

d∑
j′=1

δjnk−j′nk,0

for M + 1 ≤ k′ < k ≤ M + N , we see that the left hand side of (2.3) is
bounded by #{(j, j′, k, k′) ∈ [ 1, d ]2× [M+1,M+N ]2 | jnk−j′nk′ = 0, k <
k′} ≤ LM+N,d,0 − LM,d,0.

Now we use a method of martingale approximation, which is a slight
modification of the proof given in [1] and originated in Berkes-Philipp [10].
We regard [ 0, 1) equipped with the Borel field and the Lebesgue measure
as a probability space. First we recall two lemmas. The proof can be found
in Berkes-Philipp [10] and [13].

Lemma 3. If g is a bounded measurable function with period 1 satisfying∫ 1

0
g = 0, then for all a < b and λ > 0, we have

∣∣∫ b

a
g(λx) dx

∣∣ ≤ ‖g‖∞/λ.
Lemma 4. Let g be a trigonometric polynomial with period 1 and degree
d satisfying

∫ 1

0
g = 0. There exists a constant Cq depending only on q such

that, for any sequence {nk} of positive integers satisfying the Hadamard gap

condition (1.1),
∫ 1

0

(∑M+N
k=M+1 g(nkx)

)4
dx ≤ Cq

(∑
|ν|≤d |ĝ(ν)|

)4
N2 holds.

Let us divide N into consecutive blocks ∆′
1,∆1,∆

′
2,∆2, . . . satisfying

#∆′
i = [ 1 + 9 logq i ] and #∆i = i. Denote i− = min ∆i, i

+ = max ∆i, and

lM = #∆1 + · · · + #∆M . We have M− ∼ M+ ∼ lM = M(M + 1)/2 �
M2 and ni−/n(i−1)+ ≥ q9 logq i = i9. Put µ(i) = [ log2 i

4ni+ ] + 1 and Fi =

σ{[ j2−µ(i), (j + 1)2−µ(i)) | j = 0, . . . , 2µ(i) − 1}. Note that i4ni+ ≤ 2µ(i) ≤
2i4ni+ . Denote 1̃[a,b);d by f and put

Ti(x) =
∑
k∈∆i

f(nkx), T ′i (x) =
∑
k∈∆′

i

f(nkx), Yi = E(Ti | Fi)− E(Ti | Fi−1).

We also denote Ti and Yi by T[a,b);d;i and Y[a,b);d;i to specify the parameters
[a, b) and d. Clearly {Yi,Fi} forms a martingale difference sequence. Here
let us prove

‖Yi − Ti‖∞ � 1/i3,(2.10)

‖Y 2
i − T 2

i ‖∞ � 1/i2,(2.11)

‖Y 4
i − T 4

i ‖∞ � 1.(2.12)

Here and later, the constant implied by � and O depend only on a, b, and
d.

Suppose that k ∈ ∆i and x ∈ I = [ j2−µ(i), (j + 1)2−µ(i)) ∈ Fi. In this
case we have |f(nkx)− E(f(nk · ) | Fi)| = |I|−1

∣∣∫
I
(f(nkx)− f(nky)) dy

∣∣ ≤
maxy∈I |f(nkx) − f(nky))| ≤ ‖f ′‖∞nk2−µ(i) ≤ ‖f ′‖∞nk/i4ni+ ≤ ‖f ′‖∞/i4.
Hence we obtain |Ti − E(Ti | Fi)| ≤ ‖f ′‖∞#∆i/i

4 = ‖f ′‖∞/i3. Take J =
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[ j2−µ(i−1), (j + 1)2−µ(i−1)) ∈ Fi−1. Then by applying Lemma 3, we have
|E(f(nk · ) | Fi−1)| = |J |−1

∣∣∫
J
f(nky) dy

∣∣ ≤ ‖f‖∞2µ(i−1)/nk ≤ ‖f‖∞2(i −
1)4n(i−1)+/ni− ≤ 2‖f‖∞/i5. Therefore |E(Ti | Fi−1)| ≤ 2‖f‖∞#∆i/i

5 =
2‖f‖∞/i4, and (2.10) is proved.

By ‖Ti‖∞ ≤ i‖f‖∞, we have ‖E(Ti | Fi)‖∞, ‖E(Ti | Fi−1)‖∞ ≤ i‖f‖∞.
Hence we have ‖Yi‖∞ ≤ 2i‖f‖∞, ‖Yi + Ti‖∞ ≤ 3i‖f‖∞, ‖Y 2

i + T 2
i ‖∞ ≤

5i2‖f‖2
∞. Because of ‖Y 2

i −T 2
i ‖∞ ≤ ‖Yi−Ti‖∞‖Yi+Ti‖∞ and ‖Y 4

i −T 4
i ‖∞ ≤

‖Y 2
i − T 2

i ‖∞‖Y 2
i + T 2

i ‖∞, we have (2.11) and (2.12).

Put 1̃[a,b);d =
∑d

j=1(aj cos 2πjx + bj sin 2πjx), vi = v[a,b);d;i =
∫ 1

0
T 2

[a,b);d;i,

βM = β[a,b);d;M = v[a,b);d;1 + · · ·+ v[a,b);d;M , and VM =
∑M

i=1E(Y 2
i | Fi−1). Set

Φi = {(k, k′, j, j′, ς) | k, k′ ∈ ∆i, j, j
′ = 1, . . . , d, ς = +1,−1},

Φv
i = {(k, k′, j, j′, ς) ∈ Φi | jnk + ςj′nk′ = 0}

ΦU
i = {(k, k′, j, j′, ς) ∈ Φi | 0 < |jnk + ςj′nk′| < n(i−1)+}

ΦW
i = {(k, k′, j, j′, ς) ∈ Φi | n(i−1)+ ≤ |jnk + ςj′nk′| < ni−}

ΦR
i = {(k, k′, j, j′, ς) ∈ Φi | ni− ≤ |jnk + ςj′nk′|}.

For Ψ ⊂ Φi, denote χ(Ψ) =
∑

(k,k′,j,j′,ς)∈ΨAk,k′,j,j′,ς , where 2Ak,k′,j,j′,ς(x) =

(ajaj′ − ςbjbj′) cos 2π(jnk + ςj′nk′)x+ (ςajbj′ + bjaj′) sin 2π(jnk + ςj′nk′)x.
We see T 2

[a,b);d;i(x) = χ(Φi) and v[a,b);d;i = χ(Φv
i ). Let Ui = χ(ΦU

i ), Wi =

χ(ΦW
i ), and Ri = χ(ΦR

i ). We can express Φi as a disjoint union Φv
i ∪ ΦU

i ∪
ΦW
i ∪ ΦR

i and hence T 2
i = vi + Ui +Wi +Ri. We prove

(2.13)

‖VM − βM‖2 ≤
∥∥∥∥ M∑
i=1

E(Y 2
i − T 2

i | Fi−1)

∥∥∥∥
2

+

∥∥∥∥ M∑
i=1

E(Ui | Fi−1)

∥∥∥∥
2

+

∥∥∥∥ M∑
i=1

E(Wi | Fi−1)

∥∥∥∥
2

+

∥∥∥∥ M∑
i=1

E(Ri | Fi−1)

∥∥∥∥
2

�M2(logM)−(1+ε)/2,

where the first inequality is due to Y 2
i − vi = (Y 2

i − T 2
i ) + Ui +Wi +Ri.

By (2.11) we see
∥∥∑M

i=1E(Y 2
i − T 2

i | Fi−1)
∥∥

2
= O(1).

By #ΦR
i ≤ #Φi ≤ 2d2i2, |ajaj′ − ςbjbj′|/2 ≤ 1, and |ςajbj′ + bjaj′|/2 ≤

1, we see |E(Ri | Fi−1)| ≤ 4d2i22µ(i−1)/ni− ≤ 8d2/i3 and
∥∥∑M

i=1E(Ri |
Fi−1)

∥∥
2

= O(1).
Let k, k′ ∈ ∆i, j, j

′ = 1, . . . , d. By jnk + j′nk′ ≥ 2ni− , we have
(k, k′, j, j′,+1) /∈ ΦU

i ∪ΦW
i . If k ≤ k′ and nk′ > (d+1)nk, then jnk− j′nk′ ≤

dnk− (d+ 1)nk ≤ −ni− . Hence |jnk− j′nk′| < ni− implies qk
′−k ≤ nk′/nk ≤

d+1 or k′−k ≤ logq(d+1). Therefore, if we fix k, j and j′, then the number
of k′ such that k ≤ k′ and |jnk − j′nk′| < ni− is at most logq(d + 1) + 1.

Thereby we have #(ΦU
i ∪ ΦW

i ) ≤ 2d2(logq(d+ 1) + 1)i and

(2.14) ‖Ui‖∞ � i, ‖Wi‖∞ � i.

Hence we have |E(Wi | Fi−1)| ≤ ‖Wi‖∞ � i and ‖
∑M

i=1E(Wi | Fi−1)
2‖∞ �

M3. If i < i′, then E
(
E(Wi | Fi−1)E(Wi′ | Fi′−1)

∣∣ Fi−1

)
= E(Wi |
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Fi−1)E(Wi′ | Fi−1) = O(i)E(Wi′ | Fi−1) and
∣∣E(

E(Wi | Fi−1)E(Wi′ |
Fi′−1)

)∣∣ � iE
∣∣E(Wi′ | Fi−1)

∣∣.
Since we can write

Wi′(x) =

n(i′)−∑
u=n(i′−1)+

(cu cos 2πux+du sin 2πux) with

n(i′)−∑
u=n(i′−1)+

(|cu|+|du|) � i′,

by Lemma 3, we can verify
∣∣E(Wi′ | Fi−1)

∣∣ ≤ ∑
u(|cu| + |du|)2µ(i−1)/u �

i′i4n(i−1)+/n(i′−1)+ � i′5q(i−1)+−(i′−1)+ � i′5q−i
′
. Hence we have the estimate∑

i<i′

∣∣E(
E(Wi | Fi−1)E(Wi′ | Fi′−1)

)∣∣ � ∑
i<i′ ii

′5q−i
′ �

∑
i′ i

′7q−i
′ � 1.

These imply E
(∑M

i=1E(Wi | Fi−1)
)2 �M3.

Since we can write

Ui(x) =

n(i−1)+∑
u=1

(c′u cos 2πux+ d′u sin 2πux) with

n(i−1)+∑
u=1

(|c′u|+ |d′u|) � i,

by |E(cos 2πu· | Fi−1)−cos 2πux| ≤ 2πu2−µ(i−1) � n(i−1)+/i
4n(i−1)+ � 1/i4

and |E(sin 2πu · | Fi−1)− sin 2πux| � 1/i4, we have∣∣∣∣ M∑
i=1

E(Ui | Fi−1)−
M∑
i=1

Ui

∣∣∣∣ � M∑
i=1

n(i−1)+∑
u=1

(|c′u|+ |d′u|)/i4 �
M∑
i=1

1

i3
� 1.

We can write
M∑
i=1

Ui(x) =

n(M−1)+∑
u=1

(c′′u cos 2πux+d′′u sin 2πux) with

n(M−1)+∑
u=1

(|c′′u|+|d′′u|) �M2,

and by (1.2) we have |c′′u|, |d′′u| ≤ LM+,d,u ≤ L∗M+,d �M2/(logM)1+ε. Hence
we have∥∥∥∥ M∑

i=1

Ui

∥∥∥∥2

2

=

n(M−1)+∑
u=1

(c′′u)
2 + (d′′u)

2

2
� M2

(logM)1+ε

n(M−1)+∑
u=1

(|c′′u|+ |d′′u|)

� M4

(logM)1+ε
,

and
∥∥∑M

i=1E(Ui | Fi−1)
∥∥

2
�M2(logM)−(1+ε)/2. Hence we have (2.13).

We prepare another probability space on which a sequence {U, ξ1, ξ2, . . . }
of independent random variables satisfying P (ξk = 1) = P (ξk = −1) = 1/2
and P (U ∈ A) = |A ∩ [ 0, 1 ]| is defined. We make the product of [ 0, 1) on
which {Yi} is defined and this new probability space, and regard Yi, U , and
Ξi =

∑
k∈∆i

ξk as random variables on this product probability space. Take

m ∈ N arbitrarily and we define a martingale difference sequence {Ŷi, F̂i}
on this space by putting F̂i = Fi ⊗ σ{Ξ1, . . . ,Ξi},

Ŷi = Ŷ[a,b);d;m;i = Y[a,b);d;m;i+
1

m
Ξi, and β̂M = β̂[a,b);d;m;M = β[a,b);d;M+

1

m2
lM .

By Lemma 4 and (2.12), we have ‖Ŷi‖4 ≤ ‖Yi‖4+‖Ξi‖4 = ‖Ti‖4+‖Ξi‖4+

O(1) � i1/2 or EŶ 4
i � i2. We have E(Ŷ 2

i | F̂i−1) = E(Y 2
i | Fi−1) + 1

m2 i and
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hence V̂M :=
∑M

i=1E(Ŷ 2
i | F̂i−1) = VM + 1

m2 lM ≥ 1
m2 lM and ‖V̂M − β̂M‖2 �

M2(logM)−(1+ε)/2. We prove

(2.15) V̂M = β̂M + o
(
β̂M(log β̂M)−ε/4

)
, a.s.

Note that we have vi � i by (2.2), so βM � M2, and thereby M2 �
β̂M � M2. We also have βM ′ − βM =

∑M ′

i=M+1 vi � M ′(M ′ − M) and

β̂M ′ − β̂M � M ′(M ′ −M). Put α = 1 − ε/2 + ε2/4 < 1 and Ml = [ 2l
α

].
We have (1 + ε/2)α > 1, (α − 1)/α < α − 1 < −ε/4, and Ml+1/Ml ∼
2αl

α−1
= 1+O(lα−1) = 1+O((logMl)

(α−1)/α) = 1+o((logMl)
−ε/4) or Ml+1−

Ml = o(Ml(logMl)
−ε/4). Hence 0 ≤ β̂Ml+1

− β̂Ml
� Ml+1(Ml+1 − Ml) =

o(M2
l (logMl)

−ε/4) = o(β̂Ml
(log β̂Ml

)−ε/4) or β̂Ml+1
/β̂Ml

= 1+o((logMl)
−ε/4).

Therefore we have
∞∑
l=1

E

(
V̂Ml

− β̂Ml

β̂Ml
(log β̂Ml

)−ε/4

)2

�
∞∑
l=1

(logMl)
−1−ε/2 �

∞∑
l=1

l−α(1+ε/2) <∞.

By applying Beppo-Levi’s theorem, we have (V̂Ml
−β̂Ml

)/β̂Ml
(log β̂Ml

)−ε/4 →
0, a.s., or V̂Ml

− β̂Ml
= o(β̂Ml

(log β̂Ml
)−ε/4), a.s.

IfMl ≤M < Ml+1, then we have (V̂Ml
−β̂Ml

)+(β̂Ml
−β̂Ml+1

) ≤ V̂M−β̂M ≤
(V̂Ml+1

− β̂Ml+1
) + (β̂Ml+1

− β̂Ml
) and hence we have (2.15).

Now we use the following theorem by Monrad-Philipp [27] which is a
modification of Strassen’s theorem [29].

Theorem 5. Let {Ŷi, F̂i} be a square integrable martingale difference sat-
isfying

V̂M =
M∑
i=1

E(Ŷ 2
i | F̂i−1) →∞ a.s. and

∞∑
i=1

E
(
Ŷ 2
i 1{bY 2

i ≥ψ(bVi)}/ψ(V̂i)
)
<∞

for some non-decreasing ψ such that ψ(∞) = ∞ and ψ(x)(log x)α/x is non-
increasing for some α > 50. If there exists a uniformly distributed random

variable U which is independent of {Ŷn}, there exists a standard normal
i.i.d. {Zi} such that∑

i≥1

Ŷi1{bVi≤t} =
∑
i≤t

Zi + o
(
t1/2(ψ(t)/t)1/50

)
, (t→∞) a.s.

Put ψ(x) = x/(log x)51. We can verify V̂M ≥ 1
m2 lM →∞, and∑

E
(
Ŷ 2
i 1{bY 2

i ≥ψ(bVi)}/ψ(V̂i)
)
≤

∑ EŶ 4
i

ψ2( 1
m2 li)

�
∑

i2(log li)
102/l2i <∞.

Hence we have
∑M

i=1 Ŷi =
∑

i≤bVM
Zi + o

(
V̂

1/2
M (log V̂M)−51/50

)
, a.s. By (2.15)

and sup0≤|s|≤t(log t)−ε/4 |Wt+s − Wt| = O
(
t1/2(log t)−ε/8(log log t)1/2

)
, where

{Wt} is the Wiener process, we have

M∑
i=1

Ŷi =
∑
i≤bβM

Zi +O
(
β̂

1/2
M (log β̂M)−ε/9

)
, a.s.
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Hence by denoting φ(x) =
√

2x log log x and by applying the 0-1 law, we
see that there exists a constant C[a,b);d;m such that

(2.16) lim
M→∞

1

φ(lM)

∣∣∣∣ M∑
i=1

Ŷ[a,b);d;m;i

∣∣∣∣ = lim
M→∞

1

φ(lM)

∣∣∣∣ ∑
i≤bβ[a,b);d;m;M

Zi

∣∣∣∣ = C[a,b);d;m,

almost surely. Now we apply the following lemma by putting v̄i = v[a,b);d;i +
i
m2 , v̄

′
i = v[0,b−a);d;i +

i
m2 , β̄M = β̂[a,b);d;M and β̄′M = β̂[0,b−a);d;M .

Lemma 6. Let {Zk} and {Z ′
k} be standard normal i.i.d. Suppose that {v̄k}

and {v̄′k} are sequence of positive numbers satisfying c1i ≤ v̄i ≤ c2i, d1i ≤
v̄′i ≤ d2i, and v̄i ≤ v̄′i+γi for some 0 < c1 < c2 <∞, 0 < d1 < d2 <∞, and
0 < γ <∞. Then by putting β̄M = v̄1 + · · ·+ v̄M , and β̄′M = v̄′1 + · · ·+ v̄′M ,
we have

√
c1 ≤ lim

M→∞

1

φ(lM)

∣∣∣∣ ∑
k≤β̄M

Zk

∣∣∣∣ ≤ lim
M→∞

1

φ(lM)

∣∣∣∣ ∑
k≤β̄′M

Z ′
k

∣∣∣∣+√γ ≤ √
d2+

√
γ, a.s.

By using conditions (2.1) and (2.2), we can verify the conditions of lemma
for c1 = d1 = 1

m2 , c2 = d2 = τ 2
q,d + 1

m2 , and γ = ρ2
q,d, and have

C[a,b);d;m ≤ C[0,b−a);d;m + ρq,d ≤
(
τ 2
q,d + 1/m2

)1/2
+ ρq,d.

Putting v̄i = v̄′i = v[0,1/2);d;i +
i
m2 and c1 = c2 = ζ2

q,d, and d1, d2 as before, we
have

C[0,1/2);d;m ≥ ζq.d.

By
∣∣∣ 1
φ(lM )

∣∣∑M
i=1 Y[a,b);d;i

∣∣− 1
φ(lM )

∣∣∑M
i=1 Ŷ[a,b);d;m;i

∣∣∣∣∣ ≤ 1
mφ(lM )

∣∣∑M
i=1 Ξi

∣∣, we have∣∣∣∣ lim
M→∞

1

φ(lM)

∣∣∣∣ M∑
i=1

Y[a,b);d;i

∣∣∣∣− C[a,b);d;m

∣∣∣∣ ≤ 1

m
, a.s.

Hence C[a,b);d = limm→∞C[a,b);d;m is a constant satisfying

lim
M→∞

1

φ(lM)

∣∣∣∣ M∑
i=1

Y[a,b);d;i

∣∣∣∣ = C[a,b);d, a.s.,(2.17)

C[a,b);d ≤ C[0,b−a);d + ρq,d ≤ τq,d + ρq,d, and C[0,1/2);d ≥ ζq,d.

Since Yi is a function with respect to x, by applying Fubini’s theorem, we
see that equality in (2.17) holds on [ 0, 1) and we can replace a.s. in (2.17)

by a.e. By (2.10), we have
∣∣∑M

i=1 Y[a,b);d;i

∣∣ =
∣∣∑M

i=1 T[a,b);d;i

∣∣ +O(1) and

lim
M→∞

1

φ(lM)

∣∣∣∣ M∑
i=1

T[a,b);d;i

∣∣∣∣ = C[a,b);d, a.e.

Because of #∆′
1 + · · · + #∆′

M � M logM and lM ∼ M+, by applying the
law of the iterated logarithm for lacunary trigonometric series, we have
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i=1 T

′
[a,b);d;i

∣∣ � √
M logM log log(M logM) = o(φ(M+)). Therefore, we

have

lim
M→∞

1

φ(M+)

∣∣∣∣ M∑
i=1

(T[a,b);d;i + T ′[a,b);d;i)

∣∣∣∣ = C[a,b);d, a.e.

By noting (M − 1)+ ∼ M+ and maxM
+

j=(M−1)++1

∣∣∑j
k=(M−1)++1 1̃[a,b);d

∣∣ �
M = o(φ(M+)), we have

lim
N→∞

1

φ(N)

∣∣∣∣ N∑
k=1

1̃[a,b);d(nkx)

∣∣∣∣ = C[a,b);d, a.e.

Now we apply the next proposition. It is essentially proved in [13]. The
proof of the first part can be found in [16], and the full proof in [21].

Proposition 7. Let {nk} be a sequence of positive numbers satisfying the
Hadamard gap condition. Then for any dense countable set S ⊂ [ 0, 1), we
have

(2.18)

lim
N→∞

NDN{nkx}√
2N log logN

= sup
S3a<b∈S

lim
N→∞

1

φ(N)

∣∣∣∣ N∑
k=1

1̃[a,b)(nkx)

∣∣∣∣,
lim
N→∞

ND∗
N{nkx}√

2N log logN
= sup

a∈S
lim
N→∞

1

φ(N)

∣∣∣∣ N∑
k=1

1̃[0,a)(nkx)

∣∣∣∣,
and

(2.19) lim
N→∞

1

φ(N)

∣∣∣∣ N∑
k=1

1̃[a,b)(nkx)

∣∣∣∣ = lim
d→∞

lim
N→∞

1

φ(N)

∣∣∣∣ N∑
k=1

1̃[a,b);d(nkx)

∣∣∣∣,
for almost every x ∈ R.

Put S = [ 0, 1) ∩Q. By applying (2.19), we have

lim
N→∞

1

φ(N)

∣∣∣∣ N∑
k=1

1̃[a,b)(nkx)

∣∣∣∣ = C[a,b) := lim
d→∞

C[a,b);d, a.e.,

C[a,b) ≤ C[0,b−a) ≤ 1
2

√
q+1
q−1

, and 1
2
≤ C[0,1/2). By (2.18), we have (1.3).

Suppose that the condition (1.4) is assumed. By (2.3) we have β[a,b);d;M =∑M
i=1ET

2
[a,b);d;i = ‖1̃[a,b);d‖2

2lM + O(LM+,d,0) = ‖1̃[a,b);d‖2
2lM + o(lM), and

thereby β̂[a,b);d;m;M ∼ (‖1̃[a,b);d‖2
2 + 1

m2 )lM . Hence, by (2.16) we directly have

C[a,b);d;m = lim
M→∞

φ(β̂[a,b);d;m;M)

φ(lM)

1

φ(β̂[a,b);d;m;M)

∣∣∣∣[
bβ[a,b);d;m;M ]∑

i=1

Zi

∣∣∣∣
=

√
‖1̃[a,b);d‖2

2 + 1
m2 .

Therefore C[a,b);d = ‖1̃[a,b);d‖2 and C[a,b) = ‖1̃[a,b)‖2 ≤ ‖1̃[0,1/2)‖2 = 1
2

=
C[0,1/2).
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