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Abstract

Let (nk)k≥1 be a lacunary sequence of integers, satisfying certain number-theoretic
conditions. We determine the limit distribution of

√
NDN (nkx) as N → ∞, where

DN (nkx) denotes the discrepancy of the sequence (nkx)k≥1 mod 1.

1 Introduction and statement of results

An infinite sequence (xk)k≥1 of real numbers is called uniformly distributed mod 1 if

lim
N→∞

1

N

N∑

k=1

1[a,b)(xk) = b− a (1)

for any 0 ≤ a ≤ b ≤ 1; here 1[a,b) denotes the indicator function of the interval [a, b),
extended with period 1. It is known that (1) is equivalent to the relations DN(xk) → 0 or
D∗

N(xk) → 0, where

DN (xk) := sup
0≤a≤b≤1

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[a,b)(xk)− (b− a)

∣
∣
∣
∣
∣

and

D∗
N(xk) := sup

0≤a≤1

∣
∣
∣
∣
∣

1

N

N∑

k=1

1[0,a)(xk)− a

∣
∣
∣
∣
∣

denote the discrepancy, resp. star discrepancy of the first N terms of (xk)k≥1. By a classical
result of Weyl [15], for any increasing sequence (nk)k≥1 of positive integers the sequence
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(nkx)k≥1 is uniformly distributed mod 1 for almost all x in the sense of Lebesgue measure.
Computing the order of magnitude of the discrepancy of (nkx)1≤k≤N is a difficult problem
and precise results exist only in a few cases. Philipp [12] proved that if (nk)k≥1 satisfies
the Hadamard gap condition

nk+1/nk ≥ q > 1, (k = 1, 2, . . .) (2)

then the law of the iterated logarithm (LIL)

1

4
√
2
≤ lim sup

N→∞

(
N

2 log logN

)1/2

DN (nkx) ≤ C a.e. (3)

holds with some constant C = C(q). Note that if (Xk)k≥1 is a sequence of independent
random variables in (0, 1) with P(Xk ≤ x) = x (0 ≤ x ≤ 1), then by the Chung-Smirnov
LIL we have

lim sup
N→∞

(
N

2 log logN

)1/2

DN(Xk) =
1

2
(4)

with probability 1, see e.g. Shorack and Wellner [14, p. 504]. A comparison of (3) and (4)
shows that the sequence (nkx)k≥1 mod 1 behaves like a sequence of i.i.d. random variables.
The analogy, however, is not complete. Fukuyama [10] determined the limsup Σa in (3) in
the case nk = ak for a > 1; in particular he proved that

Σa =
√
42/9 a.e. if a = 2,

Σa =

√
(a+1)a(a−2)

2
√

(a−1)3
a.e. if a ≥ 4 is an even integer,

Σa =
√
a+1

2
√
a−1

a.e. if a ≥ 3 is an odd integer.

(5)

Thus the limsup in (3) is generally different from the value 1/2 obtained in the i.i.d. case.
For further pathologies of the LIL behavior of DN(nkx), see [2, 3, 7].

Given a sequence (nk)k≥1 of positive integers, define

L(N, d, ν) = #{1 ≤ a, b ≤ d, 1 ≤ k, ℓ ≤ N : ank − bnℓ = ν},

where we exclude the trivial solutions k = ℓ in the case a = b, ν = 0. Aistleitner [4] proved
that if (nk)k≥1 satisfies (2) and

L(N, d, ν) = O
(
N/(logN)1+ε

)
as N → ∞ (6)

for all d ≥ 2, ν ∈ Z and some ε > 0, then we have

lim sup
N→∞

(
N

2 log logN

)1/2

DN(nkx) =
1

2
a.e. (7)
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Thus, under the Diophantine condition (6), the discrepancy behavior of (nkx)k≥1 follows
exactly the i.i.d. case. Condition (6) holds e.g. if nk+1/nk → ∞ or if nk+1/nk → α for some
α > 1 such that αr is irrational for r = 1, 2, . . ..

In this paper we will prove the following results.

Theorem 1. Let (nk)k≥1 be a sequence of positive integers satisfying (2) and

L(N, d, ν) = o(N) as N → ∞ (8)

for any d ≥ 2 and ν ∈ Z. Then

√
NDN (nky)

D→ K1,
√
ND∗

N(nky)
D→ K2

where K1, K2 are the distributions on (0,∞) with densities

(8/π)1/2
∞∑

k=1

(−1)k−1k2e−k2y2/2, 8y

∞∑

k=1

(−1)k−1ke−2k2y2 ,

respectively.

The distribution K2 in Theorem 1 is called Kolmogorov distribution.

Note that Theorem 1 does not cover the case nk = ak, a ∈ N, a ≥ 2. In this case (8)
holds for all ν 6= 0, but not for ν = 0: we have namely nk+1 − ank = 0 for all k ≥ 1. Our
next theorem determines the limit distribution of

√
NDN(nkx) and

√
ND∗

N(nkx) in this
case. For 0 ≤ t ≤ 1 and x ∈ R, put

It(x) = 1[0,t](x)− t.

Theorem 2. Let a ≥ 2 be an integer. Then the series

Γ(s, t) =

∫ 1

0

Is(x)It(x) dx+
∞∑

k=1

∫ 1

0

(
Is(x)It(a

kx) + Is(a
kx)It(x)

)
dx (9)

converges absolutely on [0, 1]2 and

√
NDN(a

kx)
D→ K

(1)
Γ

√
ND∗

N(a
kx)

D→ K
(2)
Γ

whereK
(1)
Γ , K

(2)
Γ denote the distribution of sup0≤x,y≤1 |GΓ(x)−GΓ(y)| and sup0≤x≤1 |GΓ(x)|,

respectively, and where GΓ is a Gaussian process over [0, 1] with mean 0 and covariance
function Γ.
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In contrast to Theorem 1, we cannot give an explicit formula for the distribution or
density function of the limit distributions.

As mentioned before, Fukuyama recently calculated the value of the limsup in Philipp’s
discrepancy LIL (3) for sequences of the form nk = ak, k ≥ 1, see (5). With the notations
of Theorem 2 the value Σa of the limsup equals

sup
0≤s≤1

√

Γ(s, s) (10)

for a.e. x, and thus Theorem 2 is the distributional analogue of Fukuyama’s LIL. A graph
of Γ(s, s) resp. Γ(s, t) is given below.
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Figure 1: Γ(s, s) for nk = 2k, k ≥ 1. The maximum of the function is Γ(1/3, 1/3) = 42/81,
which leads to the value

√
42/9 in Fukuyama’s result (5). The functions I[0,1/2)(2

kx) are
independent for k ≥ 1 (similar to the Rademacher functions), and thus Γ(1/2, 1/2) =
‖I[0,1/2)‖2 = 1/4.
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Figure 2: Covariance function Γ(s, t) for nk = 2k, k ≥ 1.

Let

D∗
N,2(xk) :=





∫ 1

0

(

1

N

N∑

k=1

1[0,t)(xk)− t

)2

dt





1/2

denote the L2 star discrepancy of the sequence (xk)k≥1. The following theorem is the
analogue of Theorems 1 and 2 for D∗

N,2(nkx).

Theorem 3. Under the conditions of Theorem 1 we have

N(D∗
N,2)

2(nkx)
D→ L

where L is the distribution with characteristic function

∞∏

k=1

(1− 2itλk)
−1/2 (11)

and λk = (π2k2)−1 are the eigenvalues of the covariance kernel s ∧ t− st of the Brownian
bridge. The result remains valid for nk = ak, a ≥ 2, just in this case we have to replace
the numbers λk in (11) by the eigenvalues of the kernel Γ(s, t) in (9).
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In the case of the kernel s∧ t− st, L is the limit distribution appearing in the classical
Cramér-von Mises test, see e.g. Anderson and Darling [6]. Its distribution function L(y)
can be calculated explicitly (see [6, p. 202]):

L(y) =
1

π
√
y

∞∑

k=1

(−1)k
(−1

2

k

)

(4k + 1)1/2e−(4k+1)1/2/(16y)K1/4((4k + 1)1/2/(16y)),

where K1/4 is a Bessel function. We do not know a similar formula for L in the case of

the kernel Γ in (9). However, the variance σ2
L of L equals

∫ 1

0
Γ(s, t)2 ds dt and can be

computed explicitly for nk = ak, k ≥ 1. We obtained

σ2
L =

a(10 + a(7 + a(13 + a(7 + 4a))))

180(a− 1)2(a + 1)(a2 + 1)
. (12)

The proof uses Fourier analysis and is very laborious. It will be omitted. For a → ∞ the
variance σ2

L converges to E(
∫ 1

0
B2(t)dt)2 − (E

∫ 1

0
B2(t)dt)2 = 1/45, which is clear from the

sum representation for Γ(s, t).

Let f : R → R be a measurable function satisfying

f(x+ 1) = f(x),

∫ 1

0

f(x) dx = 0, Var[0,1] f < ∞. (13)

In Aistleitner and Berkes [5] it is proved that under the Diophantine conditions of Theo-
rem 1 the central limit theorem for (f(nkx))k≥1 holds. More precisely, we have the following

Theorem A. Let f be a function satisfying (13), and let (nk)k≥1 be a sequence of positive
integers satisfying (2) and (8) for any d ≥ 2 and ν ∈ Z. Then for all t ∈ R

lim
N→∞

P

{

x ∈ (0, 1) :
N∑

k=1

f(nkx) ≤ t‖f‖
√
N

}

= Φ(t),

where Φ is the standard normal distribution function.

Moreover, it is shown in [5] that condition (8) is optimal for the CLT: replacing (8) by

L(N, d, ν) ≤ δN N ≥ 1

the CLT becomes generally false. Thus condition (8) is the precise condition for the CLT
for f(nkx). One can show that (8) is also optimal in Theorem 1. However, the proof is
complicated and will not be given here.

A functional LIL for the empirical process of (nkx)k≥1 was proved by Philipp [13]; this
enables one to get laws of the iterated logarithm for various functionals of the empirical
process. Theorems 1–3 will be deduced from a functional CLT for the empirical process,
which has a number of further applications. However, in the present paper we will deal
only with the asymptotics of the discrepancy of (nkx)k≥1.
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2 Proofs

Set

FN(t) = FN(x; t) =
1√
N

N∑

k=1

It(nkx), 0 ≤ t ≤ 1.

We show that under the conditions of Theorem 1 and Theorem 2 we have FN ⇒ B and
FN ⇒ GΓ, respectively, where B is the Brownian bridge and ⇒ denotes weak convergence
in the Skorokhod space D[0, 1] (for basic facts on weak convergence on metric spaces see
[8].) Since the functionals f → sup0≤t≤1 |f(t)| and f → sup0≤s,t≤1 |f(s)− f(t)| are contin-
uous in D[0, 1] and the limit distributions in Theorem 1 are the same as the distributions
of sup0≤s,t≤1 |B(s)−B(t)| and sup0≤t≤1 |B(t)|, this will prove Theorems 1 and 2. Theorem

3 follows similarly, using the continuity of the functional f →
∫ 1

0
f(t)2dt on D[0, 1] and the

fact that the limit distributions in Theorem 3 are the same as the distribution of
∫ 1

0
B(t)2dt

and
∫ 1

0
GΓ(t)

2dt, see [6, p. 198 and p. 202.].

Assume first the conditions of Theorem 2. We show that for any r ≥ 1, (c1, . . . , cr) ∈ R
r

and 0 ≤ t1 < · · · < tr ≤ 1 we have

c1FN (t1) + · · ·+ crFN(tr)
D→ c1KΓ(t1) + · · ·+ crKΓ(tr) as N → ∞. (14)

By the Cramér-Wold theorem (see [8, Theorem 7.7]) this will imply the convergence of the
finite dimensional distributions of FN to those of GΓ. Setting

f(x) =
r∑

m=1

cmItm(x), (15)

we have by a classical central limit theorem of Kac [11]

1√
N

N∑

k=1

f(akx)
D→ N (0, σ2

f),

where

σ2
f = ‖f‖2 + 2

∞∑

k=1

∫ 1

0

f(x)f(akx) dx

=

∫ 1

0

(
r∑

m=1

cmItm(x)

)2

dx

+2

∞∑

k=1

∫ 1

0

(
r∑

m=1

cmItm(x)

)(
r∑

n=1

cnItn(a
kx)

)

dx

=

r∑

m=1

∫ 1

0

c2mItm(x)
2dx+ 2

∑

1≤m<n≤r

∫ 1

0

cmcnItm(x)Itn(x) dx
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+2
r∑

m=1

∞∑

k=1

∫ 1

0

c2mItm(x)Itm(a
kx)

+2
∑

1≤m<n≤r

∞∑

k=1

∫ 1

0

cmcn
(
Itm(x)Itn(a

kx) + Itm(a
kx)Itn(x)

)
dx

=
r∑

m=1

c2mΓ(tm, tm) + 2
∑

1≤m<n≤r

cmcnΓ(tm, tn).

On the other hand,

E (c1KΓ(t1) + · · ·+ crKΓ(tr))
2

=

r∑

m=1

E(c2mKΓ(tm)
2) + 2

∑

1≤m<n≤r

E(cmcnKΓ(tm)KΓ(tn))

=

r∑

m=1

c2mΓ(tm, tm) + 2
∑

1≤m<n≤r

cmcnΓ(tm, tn),

proving (14). Hence by a well known criterion (see [8, p. 128]), for the weak convergence
of FN to GΓ it suffices to prove the following

Lemma 1. For any (nk)k≥1 satisfying (2) there exists a constant c (depending only the
growth factor q in (2)) such that for N ≥ 1 and t1, t2, t3 ∈ [0, 1], t1 ≤ t2 ≤ t3,

E
(
|FN(t1)− FN(t2)|3 |FN(t2)− FN(t3)|3

)
≤ c(t3 − t1)

2.

Proof. Let Q ≥ 1 be a number for which

qQ > 4 (16)

(here q is the growth factor from (2)). To shorten formulas we assume that It1 − It2 is
an even function, i.e. that it can be expanded into a pure cosine-series (the proof in the
general case is exactly the same). Write

It1(x)− It2(x) ∼
∞∑

j=1

aj cos 2πjx

for the Fourier series of It1 − It2 . Then

∞∑

j=1

a2j
2

= ‖It1 − It2‖2 ≤ |t1 − t2|,

and, since the total variation of the function It1 − It2 on the unit interval is at most 2, by
a classical estimate from Fourier analysis (see [16, Vol. I, p.48])

|aj| ≤
Var[0,1](It1 − It2)

j
≤ 2

j
, j ≥ 1. (17)
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Let k1, . . . , k6 be mutually different from each other, and assume that k1 ≡ k2 ≡ k3 ≡ k4 ≡
k5 ≡ k6 mod Q. Let j1, j2, j3, j4, j5, j6 ∈ [2n, 2n+1) for some n ≥ 0. Then by (16)

j1nk1 ± j2nk2 ± j3nk3 ± j4nk4 ± j5nk5 ± j6nk6 6= 0, (18)

no matter how the signs ± are chosen. Thus by Markov’s inequality and the orthogonality
of the trigonometric system

(
E (FN (t1)− FN(t2))

6)1/6

=





∫ 1

0

(

1√
N

N∑

k=1

It1(nkx)− It2(nkx)

)6

dx





1/6

≤ 1√
N

Q−1
∑

m=0







∫ 1

0







∑

1≤k≤N,
k≡m mod Q

It1(nkx)− It2(nkx)







6

dx







1/6

≤ 1√
N

Q−1
∑

m=0

∞∑

n=0







∫ 1

0







∑

1≤k≤N,
k≡m mod Q

2n+1−1∑

j=2n

aj cos 2πjnkx







6

dx







1/6

=
1√
N

Q−1
∑

m=0

∞∑

n=0







∑

1≤k1,k2,k3,k4,k5,k6≤N
k1,k2,k3,k4,k5,k6≡m mod Q

∑

2n≤j1,j2,j3,j4,j5,j6<2n+1

aj1aj2aj3aj4aj5aj6
32

∑

±
1(j1nk1 ± j2nk2 ± j3nk3 ± j4nk4 ± j5nk5 ± j6nk6 = 0)

)1/6

, (19)

where the sum
∑

± is meant as a sum over all possible choices of signs “+” and “−” in
the indicator 1(j1nk1 ± j2nk2 ± j3nk3 ± j4nk4 ± j5nk5 ± j6nk6 = 0). Now by (18) the only
solutions of j1nk1±j2nk2±j3nk3±j4nk4±j5nk5±j6nk6 = 0, subject to the given restrictions
of the coefficients, are of the form

j1nk1 − j1nk1
︸ ︷︷ ︸

=0

± j2nk2 − j2nk2
︸ ︷︷ ︸

=0

± j3nk3 − j3nk3
︸ ︷︷ ︸

=0

(where we have
(
6
2

)
possible combinations of the pairs). Thus by (17), the expression in

(19) is bounded by

1√
N

Q−1
∑

m=0

∞∑

n=0






4

(
6

2

)

︸ ︷︷ ︸

=60

∑

1≤k1,k2,k3≤N
k1,k2,k3≡m mod Q

1

32




∑

2n≤j<2n+1

a2j





3






1/6

9



≤ Q
∞∑

n=0










2




∑

2n≤j<2n+1

a2j





2

︸ ︷︷ ︸

≤8(t2−t1)2




∑

2n≤j<2n+1

4

j2





︸ ︷︷ ︸

≤2−n+2










1/6

≤ 17Q(t2 − t1)
1/3.

Hence
E (FN (t1)− FN (t2))

6 ≤ 176Q6(t2 − t1)
2. (20)

In the same way we obtain

E (FN (t2)− FN (t3))
6 ≤ 176Q6(t3 − t2)

2. (21)

By (20), (21) and Hölders inequality

E
(
|FN(t1)− FN (t2)|3 |FN(t2)− FN (t3)|3

)

≤
(
E (FN(t1)− FN(t2))

6)1/2 (
E (FN(t2)− FN(t3))

6)1/2

≤ 176Q6(t2 − t1)(t3 − t2)

≤ 176Q6(t3 − t1)
2,

which proves the lemma and the relation FN ⇒ GΓ. Thus the proof of Theorem 2 is
complete.

Assume now the conditions of Theorem 1. For a function f of the form (15) we have

‖f‖2 =

∫ 1

0

(
r∑

m=1

cmItm(x)

)2

dx

=
r∑

m=1

∫ 1

0

c2mItm(x) dx+ 2
∑

1≤m<n≤r

∫ 1

0

cmcnItm(x)Itn(x) dx

=
r∑

m=1

c2mtm(1− tm) + 2
∑

1≤m<n≤r

cmcntm(1− tn)

= : V (t1, . . . , tr)

and thus Theorem A implies

1√
N

N∑

k=1

f(nkx)
D→ N (0, V ). (22)

On the other hand,

E (c1B(t1) + · · ·+ crB(tr))
2 =

r∑

m=1

E (cjB(tj)) + 2
∑

1≤m<n≤r

E (cmB(tm)cnB(tn))

10



=
r∑

m=1

c2j tj(1− tj) + 2
∑

1≤m<n≤r

cmcntm(1− tn) = V (t1, . . . , tr),

and hence c1B(t1) + · · ·+ crB(tr) has N (0, V ) distribution. Thus (22) implies (14) which,
together with the already proved tightness (Lemma 1), implies FN ⇒ B. This proves
Theorem 1.

Theorem 3 also follows from FN ⇒ B and FN ⇒ GΓ, respectively. By the Karhunen-
Loève theorem the Brownian bridge can be represented in the form

B(t) =
∞∑

k=1

Zk

√
2 sin(kπt)

kπ
,

where the Zk’s are independent random variables having N (0, 1) distribution, and a general
Gaussian process GΓ can be represented in the form

GΓ(t) =
∞∑

k=1

Zk

√

λkek(t),

where again the Zk’s are i.i.d. N (0, 1)-random variables, (ek(t))k≥1 is an orthonormal sys-
tem of eigenfunctions of the covariance kernel Γ(s, t), and λk, k ≥ 1 are the corresponding
eigenvalues (see e.g. [1, Chapter 3.2]). Thus

N
(
D∗

N,2

)2 D→
∫ 1

0

(B(t))2 dt =
∞∑

k=1

Z2
k

k2π2

and

N
(
D∗

N,2

)2 D→
∫ 1

0

(GΓ(t))
2 dt =

∞∑

k=1

λkZ
2
k ,

respectively, and Theorem 3 follows from the well-known formula for the characteristic
function of the chi-square distribution. By Mercer’s theorem (see again [1, Chapter 3.2])
we also have the representation

Γ(s, t) =

∞∑

k=1

λkek(s)ek(t),

and thus the variance of
∞∑

k=1

λkZ
2
k

is

2

∞∑

k=1

λ2
k = 2

∫ 1

0

Γ(s, t)2 ds dt,

which leads to formula (12).
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[15] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916),
313-352.

[16] A. Zygmund. Trigonometric series. Vol. I, II. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, 1988. Reprint of the 1979 edition.

12


