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Abstract

In 2001 Heinrich, Novak, Wasilkowski and Woźniakowski proved the upper bound
N∗(s, ε) ≤ cabssε

−2 for the inverse of the star discrepancy N∗(s, ε). This is equivalent to
the fact that for any N ≥ 1 and s ≥ 1 there exists a set of N points in the s-dimensional
unit cube whose star-discrepancy is bounded by cabs

√
s/
√
N . Dick showed that there

exists a double infinite matrix (xn,i)n≥1,i≥1 of elements of [0, 1] such that for any N and
s the star discrepancy of the s-dimensional N -element sequence ((xn,i)1≤i≤s)1≤n≤N is
bounded by

cabs
√
s logN√
N

.

In the present paper we show that this upper bound can be reduced to cabs
√
s/
√
N , which

is (up to the value of the constant) the same upper bound as the one obtained by Heinrich
et al. in the case of fixed N and s.

1 Introduction and statement of results

The star discrepancyD∗
N (x1, . . . , xN ) of a sequence of points (x1, . . . , xN ) from the s-dimensional

unit cube is defined as

D∗
N (x1, . . . , xN ) = sup

I⊂[0,1]s

∣

∣

∣

∣

∣

λ(I)− 1

N

N
∑

n=1

1I(xn)

∣

∣

∣

∣

∣

.

Here the supremum is taken over all axis-parallel boxes I which are contained in [0, 1]s and
have a vertex in the origin, and λ denotes the Lebesgue measure. The so-called Quasi-Monte
Carlo method is based on the fact that point sequences having small discrepancy can be used
for numerical integration. There exist many constructions of point sequences having small
discrepancy, such as for example Halton sequences, Sobol sequences, etc. The discrepancy
of the first N elements of such sequences (in dimension s) is bounded by O

(

(logN)sN−1
)

,
which is close to the optimal asymptotic order. However, discrepancy bounds of this type are
only useful if the number of points N is very large in comparison with the dimension s. For
this reason the notion of the inverse of the discrepancy was introduced: N∗(s, ε) denotes the
smallest possible number of points in the s-dimensional unit cube which have star discrepancy
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not exceeding ε. By a profound result of Heinrich, Novak, Wasilkowski and Woźniakowski
[13] we have

N∗(s, ε) ≤ cabssε
−2,

which is equivalent to the fact that for any N and s there exists a sequence of N points
in [0, 1]s whose discrepancy is bounded by cabs

√
s/
√
N (cabs denotes absolute constants, not

always the same). Hinrichs [14] proved

N∗(s, ε) ≥ cabssε
−1,

and thus the inverse of the star-discrepancy depends linearly on the dimension s. The depen-
dence on ε is still an open problem.

The proof of Heinrich et al. uses a combinatorial result of Haussler, together with a result
of Talagrand on empirical processes. In fact, what Heinrich et al. actually proved is the
following: let X1, . . . ,XN be a sequence of independent, identically distributed (i.i.d.) [0, 1]s-
uniformly-distributed random variables. Then with positive probability the discrepancy of
(X1, . . . ,XN ) is bounded by

cabs
√
s/
√
N. (1)

Extending this method, Dick [6] proved the existence of a (double infinite) matrix (xn,i)n≥1,i≥1

of numbers xn,i ∈ [0, 1] such that for anyN ≥ 1 and s ≥ 1 the discrepancy of the s-dimensional
N -element sequence ((x1,1, . . . , x1,s), . . . , (xN,1, . . . , xN,s)) is bounded by

cabs
√

s logN/
√
N. (2)

This means that there exist point sequences having small discrepancy, which can be extended
both in the dimension s and the number of points N . This can be a significant advantage in
applications. More precisely, Dick proved that a randomly generated double infinite matrix
satisfies the aforementioned discrepancy bound with positive probability. This asymptotic
upper bound contains an additional logarithmic factor in comparison with the estimate (1)
for fixed N and s. However, it is clear that a entirely randomly generated matrix cannot
achieve the bound (1) uniformly in N and s with positive probability, since by the Chung-
Smirnov law of the iterated logarithm (see [20, p. 504]) already for the one-dimensional
projections (x1,1, . . . , xN,1) of such a matrix we have

lim sup
N→∞

ND∗
N (x1,1, . . . , xN,1)√
2N log logN

=
1

2
a.s.

(the same asymptotic result holds for all s-dimensional projections for fixed s, see [19, Corol-
lary 4.1.2]). Dick’s result has been slightly improved by Doerr, Gnewuch, Kritzer and Pil-
lichshammer [8], who obtained cabs

√

s log(1 +N/s)/
√
N instead of (2). In [3] we have further

improved this upper bound to
√
cabss+ cabs log logN/

√
N , which is essentially the optimal

upper bound which holds for a completely randomly generated matrix with positive proba-
bility.

The purpose of the present paper is to prove the existence of a double infinite matrix
(xn,i)n≥1,i≥1 such that the discrepancy of all its N × s-dimensional projections is bounded by

cabs
√
s/
√
N, for all s ≥ 1 and N ≥ 1.
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This is the same upper bound as the one obtain by Heinrich et al. in the case of fixed N
and s. Since such an upper bound can not be achieved by a entirely randomly generated
matrix, we will use a hybrid construction, which consists of both random and deterministic
components. More precisely, elements xn,i will be chosen randomly if i is relatively large
in comparison with n, while they will be chosen as coordinates of points of an appropriate
deterministic low-discrepancy sequence if n is very large in comparison with i.

For a comprehensive treatment of problems and results concerning the inverse of the dis-
crepancy and feasibility of high-dimensional numerical integration by Quasi-Monte Carlo
methods we refer the reader to Gnewuch’s survey article [12] and to the books of Novak
and Woźniakowski [17, 18]. For a general background on discrepancy theory we refer to the
monographs of Chazelle [5], Drmota and Tichy [9] and Matoušek [15].

The main result of the present paper is the following Theorem 1.

Theorem 1 There exists a (double infinite) matrix (xn,i)n≥1,i≥1 of elements xn,i ∈ [0, 1], n ≥
1, i ≥ 1, such that for all N ≥ 1 and s ≥ 1 the star-discrepancy D∗

N of the s-dimensional
N -element sequence

((x1,1, . . . , x1,s), . . . , (xN,1, . . . , xN,s))

is bounded by

D∗
N ≤ 234

√
s√

N
.

2 Preliminaries

Lemma 1 is a simple consequence of [7, Theorem 3.36].

Lemma 1 For the star-discrepancy of the first N elements of a van der Corput sequence in
base p1 = 2 we have the upper bound

D∗
N ≤ 1√

N
, for N ≥ 1.

Lemma 2 ([16, Theorem 3.6]) Let P denote the first N elements of a Halton sequence in
d dimensions, constructed with coprime integers b1, . . . , bd. Then for all N ≥ 1,

D∗
N (P ) ≤ d

N
+

1

N

d
∏

i=1

(

bi − 1

2 log bi
logN +

bi + 1

2

)

.

In the statement of Lemma 2, and throughout the rest of this paper, “log” denotes the natural
logarithm.

In our proof will we choose the first d primes p1, . . . , pd for the construction of a d-dimensional
Halton sequence. In this case we get the following corollary of Lemma 2. We use the fact
that for the size of the i-th prime pi we have i log i ≤ pi ≤ 1 + 3/2i log i for i ≥ 2 (see, for
example, [4, Theorem 8.8.4]).
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Corollary 1 Let P denote the first N elements of a Halton sequence in d dimensions, with
bases p1, . . . , pd. Then for any d ≥ 2

D∗
N (P ) ≤

√
d√
N

provided N ≥ 2(2
d+2).

Proof: By Lemma 2 and the subsequent remark we have

D∗
N (P ) ≤ d

N
+

logN

N

d
∏

i=2

(

3i logN

4
+ 2i log i

)

≤ d

N
+

logN

N

d
∏

i=2

(i logN)

=
d

N
+

d!(logN)d

N
.

for N ≥ 2(2
d+2). To prove the corollary, it is sufficient to show that

√
d√
N

+
d!(logN)d√

dN
≤ 1 (3)

for N ≥ 2(2
d+2). Assume that d is fixed. The derivative of the function ((logN)d)/

√
N is

zero for N = e2d, and negative for N ≥ 2(2
d+2) ≥ e2d. Thus it is sufficient to show (3) for

N = 2(2
d+2). One can easily check that (3) is true for N = 2(2

d+2) and d ∈ {2, 3, 4, 5}. For
d ≥ 6 we have

√
d√
N

+
d!(logN)d√

dN
≤ (logN)2d)√

N

≤ 22d
2+4d−2d+1

< 1

for N = 2(2
d+2), which proves the corollary.

Lemma 3 (Maximal Bernstein inequality; see e.g. [10, Lemma 2.2]) For a sequence
Z1, . . . , ZN of i.i.d. random variables having mean zero and variance σ2, and satisfying
|Zi| ≤ 1, we have for t ≥ 0

P

(

max
1≤M≤N

∣

∣

∣

∣

∣

M
∑

n=1

Zn

∣

∣

∣

∣

∣

> t

)

≤ 2e−t2/(2Nσ2+2t/3)

Lemma 4 (Triangle inequality for discrepancies; see e.g. [7, Proposition 3.16]) Let
y1, . . . , yN be points in [0, 1]s. Then for any 1 ≤ M < N

D∗
N (y1, . . . , yN ) ≤ MD∗

M (y1, . . . , yM )

N
+

(N −M)D∗
N−M (yM+1, . . . , yN )

N

and

D∗
N−M (yM+1, . . . , yN ) ≤ ND∗

N (y1, . . . , yN )

N −M
+

MD∗
M (y1, . . . , yM )

N −M
.
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Throughout this paper, for points v,w ∈ [0, 1]s we will write v ≤ w if this inequality holds
coordinatewise. Furthermore, we will write 0 for the s-dimensional vector (0, . . . , 0), and
[0, w] for the set {v ∈ [0, 1]s : 0 ≤ v ≤ w}.
For some number δ > 0 a set Γ of points in [0, 1]s is called a δ-cover if for every x ∈ [0, 1]s

there exist points v,w ∈ Γ ∪ {0} such that v ≤ x ≤ w and λ([0, w]) − λ([0, v]) ≤ δ. Similarly,
a set ∆ of elements of [0, 1]s × [0, 1]s is called a δ-bracketing cover if for every pair (v,w) ∈ ∆
the estimate λ([0, w]) − λ([0, v]) ≤ δ holds, and if for every x ∈ [0, 1]s there exists (v,w) ∈ ∆
such that v ≤ x ≤ w. These two notions are closely related, and they both are very useful for
reducing the calculation of the star discrepancy from evaluating a supremum over all possible
intervals to evaluating a maximum over a finite set of intervals. For details on the definitions
and properties of δ-covers and δ-bracketing covers, see [11, 12].

Lemma 5 ([11, Theorem 1.15]) For any s ≥ 1 and δ > 0, there exist a δ-cover Γ and a
δ-bracketing cover ∆ of cardinality at most (2e)s

(

δ−1 + 1
)s
, respectively.

3 Proof of Theorem 1

For a number b ≥ 2, and any n ≥ 1, let

ν0 + ν1b+ ν2b
2 . . .

be the (finite) b-adic expansion of n, and set

ϕb(n) =
ν0
b

+
ν1
b2

+
ν2
b3

+ . . .

The function ϕb : N → [0, 1) is called the (b-adic) radical inverse function. For n ≥ 1, i ≥ 1,
set

qn,i = ϕpi(n),

where pi is the i-th prime. Then the points (qn,1, . . . , qn,d)1≤n≤N are the first N elements
of the d-dimensional Halton sequence with bases p1, . . . , pd. For such point sets we have the
discrepancy estimates in Lemma 1 and Corollary 1 below.

Let (Xn,i)n≥1,i≥1 be an array of i.i.d. random variables, all of which have uniform distribution
on [0, 1]. For n ≥ 1, i ≥ 1, set

xn,i =

{

qn,i if i = 1 or 2(2
i+2) < n

Xn,i if i ≥ 2 and 2(2
i+2) ≥ n.

(4)

This means that the matrix (xn,i)n≥1,i≥1 has both random and deterministic components, de-
pending on the relation of the indices n and i. We will write Ds

N (xn,i) for the star-discrepancy
of the N -element set of s-dimensional points

{

(x1,1, . . . , x1,s), . . . , (xN,1, . . . , xN,s)
}

,

and, for 0 ≤ M < N , we will write Ds
M,N (xn,i) for the star-discrepancy of the set of N −M

points
{

(xM+1,1, . . . , xM+1,s), . . . , (xN,1, . . . , xN,s)
}

.
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For m ≥ 1 and s ≥ 1, set

Am,s =

{

max
2m<M≤2m+1

MDs
M (xn,i) ≥ cm,s

√
s
√
2m+1

}

,

where

cm,s =

{

163 if 2s+2 > m
165 if 2s+2 ≤ m.

We will show that

P

(

∞
⋃

s=1

∞
⋃

m=1

Am,s

)

< 1. (5)

Since on the complement of (
⋃∞

s=1

⋃∞
m=1 Am,s) we have

NDs
N (xn,i) ≤ 165

√
s
√
2N for all N, s,

this clearly proves the existence of a matrix (zn,i)n≥1,i≥1 for which

Ds
N (zn,i) ≤

√
2 · 165

√
s√
N

≤ 234

√
s√
N

for all N ≥ 1, s ≥ 1.

Thus for the proof of Theorem 1 it remains to show (5).

For s = 1 and m ≥ 1 we have
P(Am,s) = 0 (6)

by Lemma 1. Thus we will henceforth always assume that s > 1.

Let s ≥ 2 and m ≥ 1 be given. Assume that m ≥ 2s+2. Set µ = 2s+2. Then, by the first part
of Lemma 4, for any integer M ∈ (2m, 2m+1]

MDs
M (xn,i) ≤ 2µDs

2µ(xn,i) + (M − 2µ)D2µ,M(xn,i). (7)

The M − 2µ points
{

(x2µ+1,1, . . . , x2µ+1,s), . . . , (xM,1, . . . , xM,s)
}

are purely deterministic, namely the points with index 2µ + 1, . . . ,M of the s-dimensional
Halton sequence with bases p1, . . . , ps. Thus by Corollary 1 and the second part of Lemma 4

Ds
2µ,M(xn,i) = Ds

2µ,M(qn,i) ≤ 2µDs
2µ(qn,i) +MDs

M (qn,i)

M − 2µ

≤ 2µ
√
s/
√
2µ +M

√
s/
√
M

M − 2µ

≤
√
s
√
2m +

√
s
√
2m+1

M − 2µ

<
2
√
s
√
2m+1

M − 2µ
. (8)

By definition we have
{

2µDs
2µ(xn,i) ≥ 163

√
s
√
2µ
}

⊂ Aµ−1,s.
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Thus by (7) and (8)

Am,s\Aµ−1,s ⊂
{

max
2m<M≤2m+1

MDs
M (xn,i) ≥ 165

√
s
√
2m+1

}

\
{

2µDs
2µ(xn,i) ≥ 163

√
s
√
2µ
}

⊂
{

max
2m<M≤2m+1

(M − 2µ)Ds
2µ,M (xn,i) > 2

√
s
√
2m+1

}

= ∅,

and consequently we have for all m ≥ µ

P(Am,s\Aµ−1,s) = 0.

Together with (6) this implies

P

(

∞
⋃

s=1

∞
⋃

m=1

Am,s

)

= P





∞
⋃

s=2

⋃

1≤m<2s+2

Am,s



 , (9)

and to prove (5) it remains to estimate the probabilities of the sets Am,s for s ≥ 2 and
1 ≤ m < 2s+2.

Assume that s ≥ 2 and m < 2s+2. Additionally we can assume that
√
s√

2m+1
≤ 1

64
, (10)

since otherwise trivially Am,s = ∅. Set k̂(m) = max{k ≥ 1 : 2k+2 ≤ m}. If m ≥ 16, we set

L = 22
k̂(m)+2

. If m < 16, we set L = 0. Note that the value of L depends on m, and that
L ≤ 2m. We define sets

G(m, s) =

{ {

LDs
L(xn,i) ≥ 82

√
s
√
L
}

if L > 0

∅ if L = 0

H(m, s) =

{

max
L<M≤2m+1

(M − L)Ds
L,M (xn,i) ≥ 81

√
s
√
2m+1

}

.

Then we claim
Am,s ⊂ G(m, s) ∪H(m, s).

This is clear for L = 0. For L > 0 (which implies m ≥ 16 and k̂(m) ≥ 3) we have by the first
part of Lemma 4,

max
2m<M≤2m+1

MDs
M (xn,i) ≤ max

2m<M≤2m+1

(

LDs
L(xn,i) + (M − L)Ds

L,M (xn,i)
)

and thus on (G(m, s) ∪H(m, s))C

max
2m<M≤2m+1

MDs
M (xn,i) ≤ 82

√
s
√
L+ 81

√
s
√
2m+1

≤ 163
√
s
√
2m+1.

Note that by definition for any k ≥ 3 all the sets G(m, s) for m = 2k+2, . . . , 2k+3 − 1 are
equal. Thus it is sufficient to consider the sets G(m, s) for m of the form

m = 2k+2, for k ≥ 3. (11)
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In the case m = 25 = 16 we have L = 216, and

G(m, s) ⊂
{

216Ds
216(xn,i) ≥ 81

√
s
√
L
}

⊂ H(15, s).

If (11) holds for some k ≥ 4, then we have k̂(m) = k and L = 2(2
k+2). Note that in this case

k̂(m− 1) = k − 1 and 2(2
k̂(m−1)) = 2(2

k+1) =
√
L. We have

LDs
L(xn,i) ≤ 2(2

k+1) +
(

2(2
k+2) − 2(2

k+1)
)

Ds
2(2

k+1),2(2
k+2)

(xn,i),

due to the first part of Lemma 4, which implies

G(m, s) ⊂
{(

2(2
k+2) − 2(2

k+1)
)

Ds
2(2k+1),2(2k+2)

(xn,i) ≥ 82
√
s
√
L−

√
L
}

⊂
{(

2(2
k+2) − 2(2

k+1)
)

Ds
2(2k+1),2(2k+2)

(xn,i) ≥ 81
√
s
√
L
}

⊂ H(m− 1, s).

Thus for any s

⋃

1≤m<2s+2

Am,s ⊂
⋃

1≤m<2s+2

(G(m, s) ∪H(m, s)) ⊂
⋃

1≤m<2s+2

H(m, s), (12)

and to estimate the probability of
⋃

1≤m<2s+2 Am,s it is sufficient to estimate the probabilities

of H(m, s), 1 ≤ m < 2s+2.

Next we will estimate the probability of the sets H(m, s), for fixed s ≥ 2 and 1 ≤ m < 2s+2.
We will use a method which is somewhat similar to that in [2], but in the present case the
situation is slightly more complicated. Set

K = ⌈(m+ 1)/2 − (log2 s)/2− 2⌉. (13)

Then K ≥ 4 due to (10), and consequently

√
s
√
2m+1 ≤ 2m−k for any k, 1 ≤ k ≤ K. (14)

For 1 ≤ k ≤ K − 1, let Γk denote a 2−k-cover of [0, 1]s, for which

#Γk ≤ (2e)s(2k + 1)s ≤
{

(6e)ks for k = 1

(2e)s(
√
5)ks for k > 1

(15)

and let ∆K denote a 2−K -bracketing cover of [0, 1]s for which

#∆K ≤ (2e)s(2K + 1)s ≤ (2e)s(
√
5)Ks. (16)

Such covers exist by Lemma 5. For notational convenience we set

ΓK = {v ∈ [0, 1]s : (v,w) ∈ ∆K for some w} ,
ΓK+1 = {w ∈ [0, 1]s : (v,w) ∈ ∆K for some v} ,
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and for points x, y ∈ [0, 1]s

[x, y] :=







[0, y]\[0, x] if x 6= 0
[0, y] if x = 0
∅ if x = y = 0.

Then for an arbitrary point x ∈ [0, 1]s there exist sets Ik(x), 0 ≤ k ≤ K such that

K−1
⋃

k=0

Ik(x) ⊂ [0, x] ⊂
K
⋃

k=0

Ik(x), (17)

and each Ik is of the form [pk(x), pk+1(x)], 0 ≤ k ≤ K, where p0 = 0 and pi(x) ∈ Γi, 1 ≤
i ≤ K + 1 (see [1] for details). Furthermore, each set Ik has volume at most 2−k, and as x
runs through the whole unit cube [0, 1]s we obtain at most #Γk+1 different sets Ik(x), for
0 ≤ k ≤ K. We write Sk for the class of all sets of the form Ik(x) for some x ∈ [0, 1]s, for
0 ≤ k ≤ K.

For m ≥ 16, set d = k̂(m). For m < 16 set d = 1. Then for any n ∈ (L, 2m+1] we have from
(4) that xn,i = qn,i if i ≤ d, and xn,i = Xn,i if i > d. In other words, for all the s-dimensional
points in the sequence

(

(xL+1,1, . . . , xL+1,s), . . . , (x2m+1,1, . . . , x2m+1,s)
)

the first d coordinates are deterministic and the remaining s−d coordinates are random (note
that s ≥ 2 and m < 2s+2 implies s > d). This is obvious in the case m < 16, when L = 0 and

only the first coordinate of the points is deterministic. Ifm ≥ 16, then 2k̂(m)+2 ≤ m < 2k̂(m)+3.
Thus for the numbers n ∈ {L+ 1, 2m+1} we have

2(2
k̂(m)+2) < n ≤ 2(2

k̂(m)+3),

which by (4) means that exactly the first k̂(m) coordinates of xn,i are deterministic and the
remaining coordinates are random.

For any k ∈ {1, . . . ,K + 1} the numbers pk can be written in the form (uk, vk), where
uk ∈ [0, 1]d and vk ∈ [0, 1]s−d. We define Uk = [0, uk], Vk = [0, vk]. Then Uk × Vk = [0, pk].
For sets Ik ∈ Sk and Ik−1 ∈ Sk−1 we write Ik−1 ≺ Ik if there exists an x ∈ [0, 1]s such that
Ik−1 = Ik−1(x) and Ik = Ik(x). For every Ik ∈ Sk there exists exactly one set Ik−1 ∈ Sk−1

such that Ik−1 ≺ Ik, for 1 ≤ k ≤ K. Every fixed set Ik uniquely determines sets I0 ≺ · · · ≺
Ik−1 as well as corresponding values for pl, ul, vl, Ul, Vl for 0 ≤ l ≤ k. Moreover, every set
Ik ∈ Sk, 1 ≤ k ≤ K is of the form

(Uk+1 × Vk+1)\(Uk × Vk) = ((Uk+1\Uk)× Vk+1) ∪ (Uk × (Vk+1\Vk)) ,

and every set I0 ∈ S0 is of the form U1 × V1. Hence

λ(Uk+1\Uk) · λ(Vk+1) ≤ λ(Ik) ≤ 2−k. (18)

A similar decomposition is described in more detail in [2].
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x

U1

V2

pK+1

pK

p1

p2
IK

I0

I1

Figure 1: An illustration of the decomposition in the case d = 1, s = 2. A point x ∈ [0, 1]2

is given and determines points p0, p1, . . . , pK+1 and sets I0 ≺ I1 ≺ · · · ≺ IK . Every set
Ik, 1 ≤ k ≤ K, is of the form (Uk+1×Vk+1)\(Uk×Vk) = ((Uk+1\Uk)×Vk+1)∪(Uk×(Vk+1\Vk)),
the set I0 is of the form U1 × V1.

For abbreviation we write

xn = (xn,1, . . . , xn,s) , qn = (qn,1, . . . , qn,d) , Xn = (Xn,d+1, . . . ,Xn,s) .

Then for arbitrary x ∈ [0, 1]s and M ∈ {L+ 1, . . . , 2m+1}, by (17),

M
∑

n=L+1

1[0,x](xn)

≥
M
∑

n=L+1

1[0,pK ](xn)

=

M
∑

n=L+1

1UK
(qn) · 1VK

(Xn)

=

M
∑

n=L+1

1U1(qn) · 1V1(Xn)

+

K−1
∑

k=1

M
∑

n=L+1

(

1Uk+1\Uk
(qn) · 1Vk+1

(Xn) + 1Uk
(qn) · 1Vk+1\Vk

(Xn)
)

, (19)

10



and similarly

M
∑

n=L+1

1[0,x](xn)

≤
M
∑

n=L+1

1U1(qn) · 1V1(Xn)

+

K
∑

k=1

M
∑

n=L+1

(

1Uk+1\Uk
(qn) · 1Vk+1

(Xn) + 1Uk
(qn) · 1Vk+1\Vk

(Xn)
)

. (20)

Note that for arbitrary M ∈ {2m + 1, . . . , 2m+1} by Corollary 1 we have

(M − L)D∗
L,M (qn) ≤ LD∗

L(qn) +MD∗
M (qn) ≤

√
d
√
L+

√
d
√
M ≤ 2

√
d
√
M. (21)

Additionally Corollary 1 implies for any k ∈ {1, . . . ,K} that

2m+1
∑

n=L+1

1Uk+1\Uk
(qn) ≤

2m+1
∑

n=1

1Uk+1\Uk
(qn) ≤ 2m+1λ (Uk+1\Uk) + 2

√
d
√
2m+1, (22)

and similarly
2m+1
∑

n=L+1

1Uk
(qn) ≤ 2m+1λ (Uk) + 2

√
d
√
2m+1. (23)

Thus by Lemma 3 as well as (14), (18) and (22) for every t > 0 and any k ∈ {1, . . . ,K},

P

(

max
L+1≤M≤2m+1

∣

∣

∣

∣

∣

M
∑

n=L+1

(

1Uk+1\Uk
(qn) · 1Vk+1

(Xn)− 1Uk+1\Uk
(qn) · λ(Vk+1)

)

∣

∣

∣

∣

∣

> t

)

= P









max
L+1≤M≤2m+1

∣

∣

∣

∣

∣

∣

∣

∣

∑

L+1≤n≤M,
qn∈Uk+1\Uk

(

1Vk+1
(Xn)− λ(Vk+1)

)

∣

∣

∣

∣

∣

∣

∣

∣

> t









≤ 2 exp













− t2

2

(

∑

L+1≤n≤2m+1,
qn∈Uk+1\Uk

1

)

(λ(Vk+1) (1− λ(Vk+1))) + 2t/3













≤ 2 exp

(

− t2

2 (2m+1λ (Uk+1\Uk)) + 2
√
d
√
2m+1)λ(Vk+1) + 2t/3

)

≤ 2 exp

(

− t2

2m−k+3 + 2t/3

)

(24)

(here and in the sequel we write exp(x) for ex). Similarly, we obtain using (23) instead of (22)

P

(

max
L+1≤M≤2m+1

∣

∣

∣

∣

∣

M
∑

n=L+1

(

1Uk
(qn) · 1Vk+1\Vk

(Xn)− 1Uk
(qn) · λ(Vk+1\Vk)

)

∣

∣

∣

∣

∣

> t

)

≤ 2 exp

(

− t2

2m−k+3 + 2t/3

)

,

11



and

P

(

max
L+1≤M≤2m+1

∣

∣

∣

∣

∣

M
∑

n=L+1

(1U1(qn) · 1V1(Xn)− λ(V1)1U1(qn))

∣

∣

∣

∣

∣

> t

)

≤ 2 exp

(

− t2

2m+3 + 2t/3

)

. (25)

We observe that for t = 8
√
s
√
k2−k/2

√
2m+1 we have by (14) that

2t/3 ≤ 16

3
2m−k

√
k2−k/2 ≤ 2m−k+3 (26)

and

2 exp

(

− t2

2m−k+3 + 2t/3

)

≤ 2 exp

(

− t2

2m−k+4

)

(27)

Consequently, due to (24) and (27), we have for 1 ≤ k ≤ K

P

(

max
L+1≤M≤2m+1

∣

∣

∣

∣

∣

M
∑

n=L+1

(

1Uk+1\Uk
(qn) · 1Vk+1

(Xn) −

1Uk+1\Uk
(qn) · λ(Vk+1)

)

∣

∣

∣

∣

∣

> 8
√
s
√
k2−k/2

√
2m+1

)

≤ 2 exp






−

(

8
√
s
√
k2−k/2

√
2m+1

)2

2m−k+4







≤ 2e−8ks. (28)

Analogously, because of (25) and (27), we conclude

P

(

max
L+1≤M≤2m+1

∣

∣

∣

∣

∣

M
∑

n=L+1

(

1Uk
(qn) · 1Vk+1\Vk

(Xn) −

1Uk
(qn) · λ(Vk+1\Vk))

∣

∣

∣

∣

∣

> 8
√
s
√
k2−k/2

√
2m+1

)

≤ 2e−8ks, (29)

and

P

(

max
L+1≤M≤2m+1

∣

∣

∣

∣

∣

M
∑

n=L+1

(1U1(qn) · 1V1(Xn)− λ(V1)1U1(qn))

∣

∣

∣

∣

∣

> 8
√
s
√
2m+1

)

≤ 2e−8s, (30)

where we used (26) with t = 8
√
s
√
2m+1 and the fact that −t2/(2m+3 + 2t/3) ≤ −8s due to

(10).

By (15) and (16) the number of exceptional sets in (28) and (29) is bounded by (2e)s(
√
5)(k+1)s,

respectively, (as x runs through all possible values in [0, 1]s), and the number of exceptional

12



sets in (30) is bounded by (6e)s. Thus by (13), (20), (21), (28), (29) and (30) we have for any
M ∈ {2m + 1, . . . , 2m+1}

M
∑

n=L+1

1[0,x](xn)

≤
M
∑

n=L+1

1U1(qn) · 1V1(Xn)

+

K
∑

k=1

M
∑

n=L+1

(

1Uk+1\Uk
(qn) · 1Vk+1

(Xn) + 1Uk
(qn) · 1Vk+1\Vk

(Xn)
)

≤
(

M
∑

n=L+1

1UK+1
(qn)λ(VK+1)

)

+ 8
√
s
√
2m+1 + 2

K
∑

k=1

8
√
s
√
k2−k/2

√
2m+1

≤ (M − L)λ(IK+1) + 2
√
s
√
2m+1 + 75

√
s
√
2m+1

≤ (M − L)
(

λ([0, x]) + 2−K
)

+ 77
√
s
√
2m+1

≤ (M − L)λ([0, x]) + 81
√
s
√
2m+1

and, similarly, using (19) instead of (20),

M
∑

n=L+1

1[0,x](xn)

≥
M
∑

n=L+1

1U1(qn) · 1V1(Xn)

+

K−1
∑

k=1

M
∑

n=L+1

(

1Uk+1\Uk
(qn) · 1Vk+1

(Xn) + 1Uk
(qn) · 1Vk+1\Vk

(Xn)
)

≥ (M − L)λ([0, x]) − 81
√
s
√
2m+1.

on a set of probability at least

1− (6e)s
(

2e−8s
)

− 4(2e)s
K
∑

k=1

(
√
5)(k+1)se−8ks ≥ 1− 2(6e)se−8s − 5(10e)se−8s

≥ 1− 7(10e)se−8s ≥ 1− 2−2s−2

for all x ∈ [0, 1]s and M ∈ {2m + 1, . . . , 2m+1} (remember that we have assumed s ≥ 2). In
other words, we have shown that

P (H(m, s)) ≤ 2−2s−2.

13



Thus by (12)

P





⋃

s≥2

⋃

1≤m<2s+2

Am,s



 ≤
∞
∑

s=2

2s+2−1
∑

m=1

P(H(m, s))

≤
∞
∑

s=2

2−s

≤ 1

2
.

Together with (5) and (9) this proves Theorem 1.
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[18] E. Novak and H. Woźniakowski. Tractability of multivariate problems. Volume II: Stan-
dard information for functionals, volume 12 of EMS Tracts in Mathematics. European
Mathematical Society (EMS), Zürich, 2010.
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