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Abstract

By a classical heuristics, lacunary function systems exhibit many asymptotic properties
which are typical for systems of independent random variables. For example, for a large
class of functions f the system (f(nkx))k≥1, where (nk)k≥1 is a lacunary sequence of
integers, satisfies a law of the iterated logarithm (LIL) of the form

c1 ≤ lim sup
N→∞

∑
N

k=1
f(nkx)√

2N log logN
≤ c2 a.e., (1)

where c1, c2 are appropriate positive constants. In a previous paper we gave a criterion,
formulated in terms of the number of solutions of certain linear Diophantine equations,
which guarantees that the value of the lim sup in (1) equals the L2-norm of f for a.e. x,
which is exactly what one would also expect in the case of i.i.d. random variables. This
result can be used to prove a precise LIL for the discrepancy of (nkx)k≥1, which corre-
sponds to the Chung-Smirnov LIL for the Kolmogorov-Smirnov-statistic of i.i.d. random
variables.
In the present paper we give a full solution of the problem in the case of “stationary”
Diophantine behavior, by this means providing an unifying explanation of the aforemen-
tioned “regular” LIL behavior and the “irregular” LIL behavior which has been observed
by Kac, Erdős, Fortet and others.

1 Introduction and statement of results

By a classical heuristics lacunary function systems fulfill many limit theorems for systems
of independent, identically distributed (i.i.d.) random variables, such as the central limit
theorem (CLT), the law of the iterated logarithm (LIL), convergence results, almost sure
invariance principles etc. We have investigated the problem concerning the LIL in an earlier
paper [4]; for a general introduction to the topic we refer the reader to our survey article [6].

Let (nk)k≥1 be a sequence of positive integers satisfying

nk+1

nk
≥ q > 1, k ≥ 1. (2)
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Then by a result of Erdős and Gál [10]

lim sup
N→∞

∣
∣
∣
∑N

k=1 cos 2πnkx
∣
∣
∣

√
2N log logN

=
1√
2

a.e. (3)

Observe that

‖ cos 2π · ‖ :=

(∫ 1

0
(cos 2πx)2 dx

)1/2

=
1√
2
,

and hence the LIL in (3) is in perfect accordance with the LIL for i.i.d. random variables
(where the standard deviation appears on the right-hand side). However, this analogy is not
perfect if cos 2πx is replaced by a general 1-periodic function f(x). In fact, the precise LIL of
the form (3) may even fail for trigonometric polynomials: by an example of Erdős and Fortet
(see [17]) we have for p(x) = cos 2πx+ cos 4πx and nk = 2k + 1, k ≥ 1

lim sup
N→∞

∑N
k=1 p(nkx)√

2N log logN
=

√
2| cos πx| a.e., (4)

and by an observation of Fortet [11] (see also Kac [16] and Maruyama [19]) for a large class
of 1-periodic functions f and for nk = 2k, k ≥ 1,

lim sup
N→∞

∣
∣
∣
∑N

k=1 f(nkx)
∣
∣
∣

√
2N log logN

= σ a.e., (5)

where

σ2 = ‖f‖2 + 2

∞∑

j=1

∫ 1

0
f(x)f

(
2jx
)
dx

(observe that in this case the number σ will in general be different from ‖f‖). There is a
significant difference between (4) and (5): while the lim sup in (5) still equals a constant
a.e., this is not true in (4). This difference can be explained by considering the Diophantine
structure of the sequences (2k)k≥1 and (2k + 1)k≥1: for the sequence nk = 2k, k ≥ 1, only
Diophantine equations of the (homogeneous) form

2νnk1 − nk2 = 0

have many solutions (k1, k2) (for arbitrary, fixed ν ≥ 1), while the Diophantine equations for
which many solutions exist in the case nk = 2k + 1, k ≥ 1, are of the (inhomogeneous) form

2νnk1 − nk2 = 2ν − 1.

Generally it can be said that the probabilistic behavior of systems (f(nkx))k≥1 is particularly
similar to the behavior of i.i.d. random systems if the number of solutions (k1, k2) of linear
Diophantine equations of the form

ank1 ± bnk2 = c (6)

is “small” (see [5, 7, 15]), while “irregular” probabilistic behavior as in (4) may occur if the
number of solutions of such Diophantine equations is “large” (see [3, 8, 14]). This also carries
over to the LIL for the discrepancy of (nkx)k≥1: in [4] we showed that if the number of
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solutions (k1, k2), k1, k2 ≤ N , of equations of the form (6) is bounded by O
(
N(logN)−1−δ

)

for some δ > 0, then

lim sup
N→∞

NDN (nkx)√
2N log logN

=
1

2
a.e. (7)

(note that the constant 1/2 on the right-hand side of (7) is the same as in the Chung-Smirnov
LIL for i.i.d. random variables, see [21, p.504]). On the other hand Fukuyama [12] proved
that

lim sup
N→∞

NDN (2kx)√
2N log logN

=

√
42

9
a.e., (8)

and there even exist lacunary sequences (nk)k≥1 for which a non-constant function ψ(x) ap-
pears on the right-hand side of (7) instead of the number 1/2 (see [1, 2, 14]).

The purpose of this paper is to give a unifying explanation of these phenomena. More
precisely, we will provide exact formulas for the LIL for f(nkx) and DN (nkx) in the case
when the relative number of solutions of Diophantine equations of the form (6) converges to
appropriate coefficients at a certain speed, i.e. if there exist numbers γj1,j2,ν such that

# {(k1, k2), (j1, k1) 6= (j2, k2), 1 ≤ k1, k2 ≤ N : j1nk1 − j2nk2 = ν}
N

→ γj1,j2,ν (9)

as N → ∞, sufficiently fast. Our result covers all the aforementioned examples, and gives a
complete solution of the problem in the case of “stationary” Diophantine behavior (i.e. in
the case when the quotients on the left-hand side of (9) converge sufficiently fast; if these
quotients do not converge at all the situation can be extraordinarily complicated, and as far
as we know there exist no results at all for this case).

For j1, j2, N ≥ 1 and ν ∈ Z set

S(j1, j2, ν,N) := # {(k1, k2), (j1, k1) 6= (j2, k2), 1 ≤ k1, k2 ≤ N : j1nk1 − j2nk2 = ν} . (10)

We say that (nk)k≥1 satisfies condition Dd if there exist real numbers γj1,j2,ν such that for
1 ≤ j1, j2 ≤ d ∣

∣
∣
∣

S(j1, j2, ν,N)

N
− γj1,j2,ν

∣
∣
∣
∣
= O

(
1

(logN)1+δ

)

(11)

for some δ > 0, uniformly for ν ∈ Z. We say that (nk)k≥1 satisfies condition D if it satisfies
Dd for every d ≥ 1.

Let (nk)k≥1 be a sequence of positive integers satisfying (2) and condition Dd. Let p(x) be a
trigonometric polynomial of the form

p(x) =

d∑

j=1

aj cos 2πjx+ bj sin 2πjx. (12)

Set

σ2p(x) = ‖p‖2 +
∞∑

ν=−∞

d∑

j1,j2=1

γj1,j2,ν
2

(

(aj1aj2 + bj1bj2) cos 2πνx (13)

3



+(bj1aj2 − aj1bj2) sin 2πνx
)

.

Let f(x) be a function satisfying

f(x+ 1) = f(x),

∫ 1

0
f(x) dx = 0, Var[0,1] f <∞, (14)

and write

f(x) ∼
∞∑

j=1

aj cos 2πjx+ bj sin 2πjx

for the Fourier series of f . For (nk)k≥1 satisfying (2) and condition D set

σ2f (x) = ‖f‖2 +
∞∑

ν=−∞

∞∑

j1,j2=1

γj1,j2,ν
2

(

(aj1aj2 + bj1bj2) cos 2πνx (15)

+ (bj1aj2 − aj1bj2) sin 2πνx
)

.

We will prove at the beginning of Section 2 that the limits in (13) and (15) are well-defined,
provided the sequence (nk)k≥1 satisfies (2) and condition Dd and D, respectively. We em-
phasize that the functions σp(x) and σf (x) depend on the numbers γj1,j2,ν and hence on the
sequence (nk)k≥1.

Theorem 1 Let (nk)k≥1 be a sequence of positive integers satisfying (2) and condition Dd.
Then

lim sup
N→∞

∣
∣
∣
∑N

k=1 p(nkx)
∣
∣
∣

√
2N log logN

= σp(x) a.e. (16)

As a consequence of Theorem 1 we obtain the following result for general functions f :

Theorem 2 Let (nk)k≥1 be a sequence of positive integers satisfying (2) and condition D,
and let f(x) be a function satisfying (14). Then

lim sup
N→∞

∣
∣
∣
∑N

k=1 f(nkx)
∣
∣
∣

√
2N log logN

= σf (x) a.e.

The next theorem gives a similar result for the discrepancies D∗
N and DN . For 0 ≤ a ≤ b ≤ 1

set
I[a,b)(x) = 1[a,b)(〈x〉) − (b− a),

where 〈·〉 denotes the fractional part. For a finite sequence (x1, . . . , xN ) of real numbers the
star-discrepancy D∗

N and the (extremal) discrepancy DN of (x1, . . . , xN ) are defined as

D∗
N (x1, . . . , xN ) := sup

0≤a≤1

∣
∣
∣
∣
∣

∑N
k=1 I[0,a)(xk)

N

∣
∣
∣
∣
∣

and

DN (x1, . . . , xN ) := sup
0≤a≤b≤1

∣
∣
∣
∣
∣

∑N
k=1 I[a,b)(xk)

N

∣
∣
∣
∣
∣
.
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If (xk)k≥1 is an infinite sequence, we write DN (xk) for DN (x1, . . . , xN ). For some fixed
sequence (nk)k≥1 satisfying (2) and condition D we will write σI[a,b)(x) for the function σf (x)
with f = I[a,b), corresponding to (15). For general basic information on discrepancy theory
(and the theory of uniform distribution modulo one) we refer the reader to [9] and [18].

Theorem 3 Let (nk)k≥1 be a sequence of positive integers satisfying (2) and condition D.
Then

lim sup
N→∞

ND∗
N (nkx)√

2N log logN
= sup

0≤a≤1
σI[0,a)(x) a.e. (17)

and

lim sup
N→∞

NDN (nkx)√
2N log logN

= sup
0≤a≤b≤1

σI[a,b)(x) a.e. (18)

As an application we show that our results are in accordance with the example of Erdős and
Fortet (4):
Let nk = 2k − 1 and p(x) = cos 2πx+ cos 4πx. Calculating the values of γj1,j2,ν , 1 ≤ j1, j2 ≤
2, ν ∈ Z, for this sequence we get

γj1,j2,ν =

{
1 if j1 = 1, j2 = 2, ν = 1 or j1 = 2, j2 = 1, ν = −1
0 otherwise

Thus we have σp(x)
2 = 1 + cos 2πx, and hence (16) yields

lim sup
N→∞

∣
∣
∣
∑N

k=1 p(nkx)
∣
∣
∣

√
2N log logN

=
√
1 + cos 2πx a.e.

=
√
2| cos πx| a.e.,

which is the same as (4).

Remark 1: As in [4] we have to assume a bound of the form O
(
(logN)−1−δ

)
in our Diophan-

tine condition. It is unclear how far this is from optimality. It is possible that the optimal
condition is o(1) (as in the case of the CLT, see [5]), but we have doubts that this actually is
the case.

Remark 2: Obviously the coefficients γj1,j2,ν in (11) are symmetric in the sense that

γj1,j2,ν = γj2,j1,−ν for any j1, j2, ν ∈ Z.

Thus (13) and (15) can be rewritten in the form

σ2p(x) = ‖p‖2 +
d∑

j1,j2=1

γj1,j2,0

+
∞∑

ν=1

d∑

j1,j2=1

γj1,j2,ν ((aj1aj2 + bj1bj2) cos 2πνx+ (bj1aj2 − aj1bj2) sin 2πνx)

and

σ2f (x) = ‖f‖2 +
∞∑

j1,j2=1

γj1,j2,0

5



+

∞∑

ν=1

∞∑

j1,j2=1

γj1,j2,ν ((aj1aj2 + bj1bj2) cos 2πνx+ (bj1aj2 − aj1bj2) sin 2πνx) ,

respectively.

Remark 3: As mentioned before, we do not know of any results for a lacunary sequence
(nk)k≥1 for which the quotients

# {(k1, k2), k1 6= k2, 1 ≤ k1, k2 ≤ N : j1nk1 − j2nk2 = ν}
N

are not convergent. By the properties of lacunary sequences these quotients are bounded (as
N → ∞), but they can converge to different numbers γj1,j2,ν along different subsequences of N.

In this situation it can happen that there exist several limiting functions σ
(m)
f (x), 1 ≤ m ≤M

along different subsequences, and that

lim sup
N→∞

∑N
k=1 f(nkx)√
2N log logN

= max
1≤m≤M

σ
(m)
f (x) a.e.,

but the situation can be even more complicated. It is hardly imaginable that a complete
solution of the problem is possible in this general case.

Remark 4: Theorem 3 is a general LIL for the discrepancy of lacunary sequences, which
includes several known results. However it can be extremely difficult to calculate the explicit
value of the functions on the right-hand side of (17) and (18). For example, it is by no means
easy to deduce Fukuyama’s result (8) from (18), i.e. to show that for nk = 2k, k ≥ 1 we get

sup0≤a≤1 σI[0,a)(x) = sup0≤a≤b≤1 σI[a,b)(x) =
√
42
9 a.e.

2 Preliminaries

In this section we will show that the functions σp(x) and σf (x) in (13) and (15) are well-defined
and bounded. This follows directly from the following

Lemma 1 Assume that (nk)k≥1 satisfies (2) and condition D, and f(x) satisfies (14). Then

∞∑

j1,j2=1

∞∑

ν=−∞
γj1,j2,ν (|aj1aj2 |+ |bj1bj2 |+ |bj1aj2 |+ |aj1bj2 |) <∞.

Proof: By assumption we have Var[0,1] f < K for some number K, which by [22, Vol. I, p. 48]
implies

|aj | ≤ Kj−1, |bj | ≤ Kj−1, j ≥ 1. (19)

We will show that for fixed j1 ≥ 1 and r ≥ 0
∑

j1qr≤j2<j1qr+1

∑

ν∈Z
γj1,j2,ν ≤ 1. (20)

Together with (19) this would imply

∑

1≤j1≤j2≤∞

∞∑

ν=−∞
γj1,j2,ν (|aj1aj2 |+ |bj1bj2 |+ |bj1aj2 |+ |aj1bj2 |)
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≤ 4K

∞∑

j1=1

∞∑

r=0

∑

j1qr≤j2<j1qr+1

∞∑

ν=−∞

γj1,j2,ν
j1j2

≤ 4K
∞∑

j=1

∞∑

r=0

1

j2qr

≤ 8Kq

q − 1
,

which together with Remark 2 proves the lemma. Thus it remains to show (20).

Now assume that there exist some j1 ≥ 1 and r ≥ 0 such that
∑

j1qr≤j2<j1qr+1

∑

ν∈Z
γj1,j2,ν > 1. (21)

We will show that this leads to a contradiction. If (21) holds, then there has to exist a finite

set of triplets
(

j
(i)
1 , j

(i)
2 , ν(i)

)

, j
(i)
1 qr ≤ j

(i)
2 < j

(i)
1 qr+1, ν(i) ∈ Z, such that

∑

i

γ
j
(i)
1 ,j

(i)
2 ,ν(i)

> 1

Let
A =

⋃

i

ν(i).

Then A is finite. Since by (2) for k1 6= k2 we have

nk1
nk2

6∈ [1/q, q],

for sufficiently large k1 is is not possible that there exist numbers j1, j2, j3, satisfying j
(i)
1 qr ≤

j2, j3 < j
(i)
1 qr+1 and two different indices k2, k3 such that for ν1, ν2 ∈ A

j1nk1 − j2nk2 = ν1, j1nk1 − j3nk3 = ν2.

But this clearly implies
∑

i

γ
j
(i)
1 ,j

(i)
2 ,ν(i)

≤ 1,

which is in contradiction with (21). This proves the lemma. �

3 Proof of Theorem 1

The proof of Theorem 1 is somewhat similar to the proof of the main lemma (Lemma 2.4) of
[4]. However, the situation is more difficult in the present case, and several adjustments and
refinements are necessary.

Let ε > 0 be given. For simplicity of writing we consider only the case when p(x) is an even
function, i.e. when p is of the form

p(x) =

d∑

j=1

aj cos 2πjx. (22)
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The general case can be treated in exactly the same way; in fact, the only major difference
is that in the general case p(x) =

∑d
j=1 aj cos 2πjx + bj sin 2πjx the terms with small fre-

quencies in equation (29) are of the form (aj1aj2 + bj1bj2) cos 2π(j1nk1 − j2nk2)x + (bj1aj2 −
aj1bj2) sin 2π(j1nk1 − j2nk2)x, which is in perfect accordance with the definition of σ in (13).

For (22) by (13) we have

σp = ‖p‖2 +
∞∑

ν=−∞

d∑

j1,j2=1

γj1,j2,ν (aj1aj2) cos 2πνx.

We will assume that ‖p‖ > 0, since otherwise the theorem is trivial. We will also assume
w.l.o.g. that ‖p‖∞ ≤ 1 and |aj | ≤ 1, 1 ≤ j ≤ d. Throughout the rest of the paper C will
denote positive constants, not always the same, depending (at most) on p, d and q, but not
on i, k,N , etc.

We divide the set of positive integers into consecutive blocks

∆′
1,∆1,∆

′
2,∆2, . . . ,∆

′
i,∆i, . . .

of lengths ⌈4 logq i⌉ and i, respectively. More precisely, for any i ≥ 1 set

∆′
i =

{

k : 1 +
∑

l<i

(
⌈4 logq l⌉+ l

)
≤ k ≤ ⌈4 logq i⌉+

∑

l<i

(
⌈4 logq l⌉+ l

)

}

and

∆i =

{

k : 1 + ⌈4 logq i⌉+
∑

l<i

(
⌈4 logq l⌉+ l

)
≤ k ≤ i+ ⌈4 logq i⌉+

∑

l<i

(
⌈4 logq l⌉+ l

)

}

.

Furthermore, set

∆ =
⋃

i≥1

∆i, ∆′ =
⋃

i≥1

∆′
i.

Then obviously ∆ ∪∆′ = N. Letting i− and i+ denote the smallest resp. largest integer in
∆i, we have

n(i−1)+

ni−
≤ q−4 logq i = i−4, i ≥ 2.

For every k ∈ ∆, there exists a uniquely defined index i such that k ∈ ∆i. For every k ∈ ∆,
let i = i(k) denote this index. Put m(k) = ⌈log2 nk + 2 log2 i⌉, and approximate p(nkx) by a
discrete function ϕk(x) such that the following properties are satisfied:

(P1) ϕk(x) is Gi-measurable
(P2) ‖ϕk(x)− p(nkx)‖∞ ≤ Ci−2

(P3) E(ϕk(x)|Gi−1) = 0

Here Gi denotes the σ-field generated by the intervals [v2−m(i+), (v + 1)2−m(i+)), 0 ≤ v <
2m(i+). The existence of such functions ϕk(x) is explained in detail in the proof of [4, Lemma
2.4].
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For i ≥ 1, k ∈ ∆i we define

ηk = εi−1/2 sgn
(

cos 4π2m(i+)x
)

, ψk(x) = ϕk(x) + ηk(x), (23)

and let Fi denote the σ-field generated by the intervals [v2−m(i+)−1, (v + 1)2−m(i+)−1), 0 ≤
v < 2m(i+)+1. For notational convenience we also set ηk ≡ 0 for k ∈ ∆′. Then (P1),(P2) and
(P3) imply

(P1*) ψk(x) is Fi-measurable
(P2*) ‖ψk(x)− p(nkx)‖∞ ≤ ε+ Ci−2

(P3*) E(ψk(x)|Fi−1) = 0.

We set

Yi =
∑

k∈∆i

ψk(x), Ti =
∑

k∈∆i

p(nkx), T ′
i =

∑

k∈∆′

i

p(nkx), VM =

M∑

i=1

E(Y 2
i |Fi−1).

Then (Yi,Fi, i ≥ 1) is a martingale difference sequence. The reason for using the functions
ψk instead of ϕk (which was not necessary in [4]) is to guarantee that VM is “not too small”.
In fact, it is easily seen that (23) implies

VM ≥
M∑

k=1

(

εi1/2

2

)2

≥ ε2

4

M(M − 1)

2
, M ≥ 1. (24)

By [7, Lemma 2.2], Minkowski’s inequality and (P2*),

EY 4
M ≤ C|∆M |2 ≤ CM2,

where |∆M | denotes the number of elements of ∆M . Thus by (24) and the trivial estimate

VM ≤
M∑

i=1

|Yi|2 ≤ C
M∑

i=1

|∆i|2 ≤ CM3

wo obtain ∞∑

M=1

(log VM )10

V 2
M

EY 4
M ≤

∞∑

M=1

C
(logM)10

M2
< +∞.

Hence by [1, Lemma 11]

lim sup
M→∞

∣
∣
∣
∑M

i=1 Yi

∣
∣
∣

√
2VM log log VM

= 1 a.e.,

which can be rewritten as

lim sup
M→∞

∣
∣
∣
∑

1≤k≤M+,k∈∆ (ϕk + ηk)
∣
∣
∣

√
2VM log log VM

= 1 a.e.
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We add the sum of the “short blocks” T ′
i , for which by [20, Theorem 1] and Koksma’s

inequality (see [18, p. 143]),

∣
∣
∣
∣
∣

M∑

i=1

T ′
i

∣
∣
∣
∣
∣
= O

(√

M(logM) log log(M logM)
)

a.e.,

change from ϕk to p(nkx), which is possible by (P2), and get

lim sup
M→∞

∣
∣
∣
∑M+

k=1 (p(nkx) + ηk)
∣
∣
∣

√
2VM log log VM

= 1 a.e.

Since ∑

k∈∆i∪∆′

i

|(p(nkx) + ηk)| ≤ C
(
|∆i|+ |∆′

i|
)
≤ Ci

it follows by (24) that

lim sup
M→∞

∣
∣
∣max(M−1)+<N≤M+

∑N
k=1 (p(nkx) + ηk)

∣
∣
∣

√
2VM log log VM

= 1 a.e.

For N ≥ 1 we define M(N) as the index m, for which N is contained in ∆m ∪∆′
m. Then

lim sup
N→∞

∣
∣
∣
∑N

k=1 (p(nkx) + ηk)
∣
∣
∣

√
2VM(N) log log VM(N)

= 1 a.e. (25)

Finally, we want to replace VM(N) by Nσp(x). We choose a positive number A such that

d∑

j1,j2=1

∑

|ν|≥A

γj1,j2,ν ≤ ε, (26)

which is always possible by Lemma 1. Set

σ2p,A(x) = ‖p‖2 +
d∑

j1,j2=1

∑

|ν|≤A

γj1,j2,ν
2

aj1aj2 cos 2πνx.

Then by (26)

|σp,A(x)2 − σp(x)
2| =

d∑

j1,j2=1

∑

|ν|>A

γj1,j2,ν
2

aj1aj2 cos 2πνx ≤ ε. (27)

We have

Ti(x)
2 − ‖p‖22|∆i|

=




∑

k∈∆i

p(nkx) dx





2

− ‖p‖22|∆i|
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=




∑

k∈∆i

d∑

j=1

aj cos 2πjnkx





2

−
(

1

2

d∑

i=1

a2j

)

|∆i|

=
∑

1≤j1,j2≤d, k1,k2∈∆i, (j1,k1)6=(j2,k2),
0≤|j1nk1

−j2nk2
|≤A

1

2
aj1aj2 cos 2π(j1nk1 − j2nk2)x

+
∑

1≤j1,j2≤d, k1,k2∈∆i,
A<|j1nk1

−j2nk2
|≤n(i−1)+

1

2
aj1aj2 cos 2π(j1nk1 − j2nk2)x

+
∑

1≤j1,j2≤d, k1,k2∈∆i,
n(i−1)+<|j1nk1

−j2nk2
|<ni−

1

2
aj1aj2 cos 2π(j1nk1 − j2nk2)x

+
∑

±

∑

1≤j1,j2≤d, k1,k2∈∆i,
ni−≤|j1nk1

±j2nk2
|

1

2
aj1aj2 cos 2π(j1nk1 ± j2nk2)x (28)

=: Ai(x) + Ui(x) +Wi(x) +Ri(x), (29)

where the sum
∑

± in (28) should be understood as a sum over both possible choices of the
signs “+” and “−” in the second sum in (28) (note that for the sign “+” we always have
ni− ≤ j1nk1 + j2nk2 , and thus Ri contains all frequencies of the form j1nk1 + j2nk2).

Like in the proof of [4, Lemma 2.4] we can show

∣
∣
∣
∣
∣

M∑

i=1

E(Ri|Fi−1)

∣
∣
∣
∣
∣
≤ CM (30)

and ∥
∥
∥
∥
∥

M∑

i=1

E(Wi|Fi−1)

∥
∥
∥
∥
∥
≤ CM3/2. (31)

By the Diophantine condition Dd we have, for 1 ≤ j1, j2 ≤ d,

|S(j1, j2, ν,N)− γj1,j2,νN | ≤ C(logN)−1−δN, (32)

where S is defined in (10). We note that Ui is a sum of trigonometric functions with frequencies
at most n(i−1)+ , i.e.

Ui =

n(i−1)+
∑

ν=0

cν cos 2πνx,

where
∑

ν |cν | ≤ C|∆i|. Hence the fluctuation of Ui on any atom of Fi−1 is at most

n(i−1)+
∑

ν=0

|cν |2πν2−m((i−1)+)−1 ≤ Ci
n(i−1)+

i2n(i−1)+
≤ Ci−1,

and consequently
|E(Ui|Fi−1)− Ui| ≤ Ci−1,

11



which gives
∣
∣
∣
∣
∣

M∑

i=1

Ui(x)−
M∑

i=1

E(Ui|Fi−1)

∣
∣
∣
∣
∣
≤ C logM. (33)

By (32) we can decompose

M∑

i=1

Ui(x) =

n(M−1)+
∑

ν=A+1

dν cos 2πνx

︸ ︷︷ ︸

=:U
(1)
M

+

n(M−1)+
∑

ν=A+1

eν cos 2πνx

︸ ︷︷ ︸

=:U
(2)
M

,

where
|dν | ≤

∑

1≤j1,j2≤d

∑

|ν|≥A

γj1,j2,νM
2

and
|eν | ≤ C(logM)−1−δM2,

∑

ν

|eν | ≤ CM2. (34)

Then by (26)
∣
∣
∣U

(1)
M

∣
∣
∣ ≤ εM2,

and by (34)
∥
∥
∥U

(2)
M

∥
∥
∥ ≤

(
∑

ν

|eν |2
)1/2

≤ C(logM)−1/2−δ/2M2. (35)

In the same way as (33) we can also show

∣
∣
∣
∣
∣

M∑

i=1

Ai(x)−
M∑

i=1

E(Ai|Fi−1)

∣
∣
∣
∣
∣
≤ C logM. (36)

It is easy to see that for 1 ≤ j1, j2 ≤ d and for all ν, |ν| ≤ A,

∣
∣
∣
∣
∣

M∑

i=1

# {k1, k2 ∈ ∆i, (j1, k1) 6= (j2, k2) : j1nk1 − j2nk2 = ν}
M+

− γj1,j2,ν

∣
∣
∣
∣
∣
= O

(
1

(logM)1+δ

)

,

i.e. that the contribution of the indices in ∆′ is negligible. Using this observation we obtain

∥
∥
∥
∥
∥
M+σ2p,A −

M∑

i=1

Ai(x)

∥
∥
∥
∥
∥
≤ C(logM)−1/2−δ/2. (37)

We choose an α > 0 such that

(

1 +
δ

2

)−1

< α <

(

1 +
δ

4

)−1

(38)

and define numbers
Ml = ⌊2(lα)⌋, l ≥ 0,
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and sets
Sl =

⋃

Ml≤M≤Ml+1

{
x ∈ (0, 1) : |VM −M+σ2p| > 2C∗εM2

}
, l ≥ 0,

where C∗ (which denotes a positive constant) will be chosen later. We also define

S∗
l =

{
x ∈ (0, 1) : |VMl

−M+
l σ

2
p| > C∗εM2

l

}
, l ≥ 0.

Since α < 1 and since VM and M+σ2p grow at most polynomially in M , for all sufficiently
large l

Sl ⊂ S∗
l . (39)

By Hölder’s inequality and (P2),

∣
∣
∣
∣
∣
VM − E

(
M∑

k=1

T 2
i |Fi−1

)∣
∣
∣
∣
∣

≤ 2E





M∑

i=1

Ti




∑

k∈∆i

ϕk − p(nkx) + ηk



 |Fi−1





+E





M∑

i=1




∑

k∈∆i

ϕk − p(nkx) + ηk





2

|Fi−1





︸ ︷︷ ︸

≤Cε2M2

≤ 2

(

E

(
M∑

i=1

T 2
i |Fi−1

))1/2

︸ ︷︷ ︸

≤CM



E





M∑

i=1




∑

k∈∆i

ϕk − p(nkx) + ηk





2

|Fi−1









1/2

︸ ︷︷ ︸

≤CεM

+Cε2M2

≤ CεM2.

Using the decomposition

M∑

i=1

T 2
i = ‖p‖22

M∑

i=1

|∆i|+
M∑

i=1

Ai + U
(1)
M
︸︷︷︸

≤εM2

+U
(2)
M +

M∑

i=1

Wi +

M∑

i=1

Ri

we have, using (27), (30), (31), (33), (36),

∣
∣VM −M+σ2p

∣
∣

≤
(

‖p‖22

(

M+ −
M∑

i=1

|∆i|
))

︸ ︷︷ ︸

≤CεM logM

+
(
M+|σ2p,A − σ2p|

)

︸ ︷︷ ︸

≤CεM2

+

∣
∣
∣
∣
∣
M+σ2p,A −

M∑

i=1

Ai

∣
∣
∣
∣
∣

(40)

+

∣
∣
∣
∣
∣

M∑

i=1

Ai −
M∑

i=1

E (Ai|Fi−1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤C logM

+

∣
∣
∣
∣
∣

M∑

i=1

Ui −
M∑

i=1

E (Ui|Fi−1)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤C logM

+εM2
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+
∣
∣
∣U

(2)
M

∣
∣
∣+

∣
∣
∣
∣
∣
E

(
M∑

i=1

Wi|Fi−1

)∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤CM3/2

+

∣
∣
∣
∣
∣
E

(
M∑

i=1

Ri|Fi−1

)∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤CM

≤
∣
∣
∣
∣
∣
M+σ2p,A −

M∑

i=1

Ai

∣
∣
∣
∣
∣
+
∣
∣
∣U

(2)
M

∣
∣
∣+ CεM2. (41)

We choose a constant C∗ for which C∗ > C +2, where C is the constant in (41). Then, since
by Chebyshev’s inequality and (35), (37),

P

(∣
∣
∣
∣
∣
M+σ2p,A −

M∑

i=1

Ai

∣
∣
∣
∣
∣
> εM2

)

≤ Cε−2(logM)−1−δ

and
P

(∣
∣
∣U

(2)
M

∣
∣
∣ > εM2

)

≤ Cε−2(logM)−1−δ,

we obtain

P
(∣
∣VM −M+σ2p

∣
∣ > C∗εM2

)

≤ P

(∣
∣
∣
∣
∣
M+σ2p,A −

M∑

i=1

Ai

∣
∣
∣
∣
∣
> εM2

)

+ P

(∣
∣
∣U

(2)
M

∣
∣
∣ > εM2

)

≤ Cε−2(logM)−1−δ .

Thus
P(S∗

l ) ≤ Cl−α(1+δ)

and by (38)
∞∑

l=1

P(Sl) < +∞.

Thus the Borel-Cantelli Lemma implies that the set of those x ∈ (0, 1), which are contained
in infinitely many sets S∗

l , l ≥ 1, has Lebesgue measure 0, and by (39) the set of those x which
are contained in infinitely many sets Sl, l ≥ 1, also has measure zero. This implies

|VM −M+σ2p| ≤ 2C∗εM2

for sufficiently large M for a.e. x. Together with (25) this implies

σp −
√
2C∗ε ≤ lim sup

N→∞

∣
∣
∣
∑N

k=1 (p(nkx) + ηk)
∣
∣
∣

√
2N log logN

≤ σp +
√
2C∗ε a.e.

Since the functions ηk1 and ηk2 are independent for k1 ∈ ∆i1 , k2 ∈ ∆i2 , i1 6= i2 (similar to the
Rademacher function system), by Kolmogorov’s law of the iterated logarithm

lim sup
N→∞

∣
∣
∣
∑N

k=1 ηk

∣
∣
∣

√
2N log logN

= ε a.e.,

which implies

σp −
√
2C∗ε− ε ≤ lim sup

N→∞

∣
∣
∣
∑N

k=1 (p(nkx))
∣
∣
∣

√
2N log logN

≤ σp +
√
2C∗ε+ ε a.e.

Since ε was arbitrary, this proves Theorem 1.
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4 Proof of Theorems 2 and 3

Again we assume for simplicity of writing that f is an even function. Let f(x) = p(x)+ r(x),
where

f(x) ∼
∞∑

j=1

aj cos 2πjx, p(x) =

d∑

j=1

aj cos 2πjx, r(x) =

∞∑

j=d+1

aj cos 2πjx

for some d. We clearly have

lim sup
N→∞

∣
∣
∣
∑N

k=1 f(nkx)
∣
∣
∣

√
2N log logN

≤ lim sup
N→∞

∣
∣
∣
∑N

k=1 p(nkx)
∣
∣
∣+
∣
∣
∣
∑N

k=1 r(nkx)
∣
∣
∣

√
2N log logN

≤ lim sup
N→∞

∣
∣
∣
∑N

k=1 p(nkx)
∣
∣
∣

√
2N log logN

+ lim sup
N→∞

∣
∣
∣
∑N

k=1 r(nkx)
∣
∣
∣

√
2N log logN

. (42)

Similarly, we also have

lim sup
N→∞

∣
∣
∣
∑N

k=1 f(nkx)
∣
∣
∣

√
2N log logN

≥ lim sup
N→∞

∣
∣
∣
∑N

k=1 p(nkx)
∣
∣
∣

√
2N log logN

− lim sup
N→∞

∣
∣
∣
∑N

k=1 r(nkx)
∣
∣
∣

√
2N log logN

. (43)

By (19) and [4, Lemma 3.1],

lim sup
N→∞

∣
∣
∣
∑N

k=1 r(nkx)
∣
∣
∣

√
2N log logN

≤ Cd−1/4 a.e.,

for some constant C, and by Theorem 1

lim sup
N→∞

∣
∣
∣
∑N

k=1 p(nkx)
∣
∣
∣

√
2N log logN

= σp a.e.

Thus, by (42) and (43),

σp −Cd−1/4 ≤ lim sup
N→∞

∣
∣
∣
∑N

k=1 f(nkx)
∣
∣
∣

√
2N log logN

≤ σp + Cd−1/4 a.e.

By Lemma 1 we have
σp → σf as d→ ∞,

which proves Theorem 2. Theorem 3 follows directly from Theorem 2 and [13, Theorem 1].
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