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Abstract

By a classical heuristics, lacunary function systems exhibit many asymptotic properties
which are typical for systems of independent random variables. For example, for a large
class of functions f the system (f(ngz))g>1, where (nx)r>1 is a lacunary sequence of
integers, satisfies a law of the iterated logarithm (LIL) of the form

c1 < limsup a.e.

Nooo V2Nloglog N — 2

where c1, co are appropriate positive constants. In a previous paper we gave a criterion,
formulated in terms of the number of solutions of certain linear Diophantine equations,
which guarantees that the value of the limsup in (1) equals the L2-norm of f for a.e. z,
which is exactly what one would also expect in the case of i.i.d. random variables. This
result can be used to prove a precise LIL for the discrepancy of (ngyz)g>1, which corre-
sponds to the Chung-Smirnov LIL for the Kolmogorov-Smirnov-statistic of i.i.d. random
variables.
In the present paper we give a full solution of the problem in the case of “stationary”
Diophantine behavior, by this means providing an unifying explanation of the aforemen-
tioned “regular” LIL behavior and the “irregular” LIL behavior which has been observed
by Kac, Erdds, Fortet and others.

1 Introduction and statement of results

By a classical heuristics lacunary function systems fulfill many limit theorems for systems
of independent, identically distributed (i.i.d.) random variables, such as the central limit
theorem (CLT), the law of the iterated logarithm (LIL), convergence results, almost sure
invariance principles etc. We have investigated the problem concerning the LIL in an earlier
paper [4]; for a general introduction to the topic we refer the reader to our survey article [6].

Let (ng)r>1 be a sequence of positive integers satisfying

Nk41
ng

>q>1, k>1 (2)

*Graz University of Technology, Institute of Mathematics A, Steyrergasse 30, 8010 Graz, Austria. e-mail:
aistleitner@math.tugraz.at. Research supported by the Austrian Research Foundation (FWF), Project
S9603-N23.

MSC 2010: 11K38, 60F15, 11D04, 11J83, 42A55
keywords: discrepancy, law of the iterated logarithm, Diophantine equations, lacunary series



Then by a result of Erdés and Gal [10]

‘Z]kvzl Cos 27Tnk:c‘ 1
lim sup = — a.e. (3)

Nooo V2Nloglog N V2

Observe that
1/2

1
1
|[cos2m - || := (/ (cos 2mz)? dm) =—,
0 V2

and hence the LIL in (3) is in perfect accordance with the LIL for i.i.d. random variables
(where the standard deviation appears on the right-hand side). However, this analogy is not
perfect if cos 2wz is replaced by a general 1-periodic function f(z). In fact, the precise LIL of
the form (3) may even fail for trigonometric polynomials: by an example of Erdés and Fortet
(see [17]) we have for p(x) = cos2mx + cos4rx and ny =28 +1, k> 1

N
lim sup 2=y P(T). = /2| cos mz|
N—ooo V2N loglog N

and by an observation of Fortet [11] (see also Kac [16] and Maruyama [19]) for a large class
of 1-periodic functions f and for n, = 2%, k > 1,

lim sup M =0 a.e., (5)

Nooo 2NloglogN

a.e., (4)

where

0o .1
7 =142y [ fas @) do
j=1"0

(observe that in this case the number ¢ will in general be different from ||f]|). There is a
significant difference between (4) and (5): while the limsup in (5) still equals a constant
a.e., this is not true in (4). This difference can be explained by considering the Diophantine
structure of the sequences (2k)k21 and (2’1‘C + 1)g>1: for the sequence nj = 2k k> 1, only
Diophantine equations of the (homogeneous) form

2”nk1 — Ny = 0

have many solutions (ki, k2) (for arbitrary, fixed v > 1), while the Diophantine equations for
which many solutions exist in the case ny = 2F 41, k > 1, are of the (inhomogeneous) form

2”7”%1 — Ny = 2 — 1.

Generally it can be said that the probabilistic behavior of systems (f(ngx))r>1 is particularly
similar to the behavior of i.i.d. random systems if the number of solutions (ki, k2) of linear
Diophantine equations of the form

ang, £ bng, =c¢ (6)

is “small” (see [5, 7, 15]), while “irregular” probabilistic behavior as in (4) may occur if the
number of solutions of such Diophantine equations is “large” (see [3, 8, 14]). This also carries
over to the LIL for the discrepancy of (nix)i>1: in [4] we showed that if the number of



solutions (k1,ks), ki,ks < N, of equations of the form (6) is bounded by O (N(log N)~179)
for some ¢ > 0, then
) NDy(ngz)
lim sup —————
N—ooo V2N loglog N
(note that the constant 1/2 on the right-hand side of (7) is the same as in the Chung-Smirnov
LIL for i.i.d. random variables, see [21, p.504]). On the other hand Fukuyama [12] proved
that

1
=3 a.e. (7)

. NDy(2Fz) V42
lim sup =
N—ooo V2N loglog N 9
and there even exist lacunary sequences (ny),>1 for which a non-constant function ¥(x) ap-
pears on the right-hand side of (7) instead of the number 1/2 (see [1, 2, 14]).

a.e., (8)

The purpose of this paper is to give a unifying explanation of these phenomena. More
precisely, we will provide exact formulas for the LIL for f(ngz) and Dy(ngx) in the case
when the relative number of solutions of Diophantine equations of the form (6) converges to
appropriate coefficients at a certain speed, i.e. if there exist numbers v;, j, , such that

#{(k1,k2), (J1,k1) # (G2, k2), 1 < ki, ko < N @ jing, — jong, = v}
N ! s _>7j1,j2,1/ (9)

as N — oo, sufficiently fast. Our result covers all the aforementioned examples, and gives a
complete solution of the problem in the case of “stationary” Diophantine behavior (i.e. in
the case when the quotients on the left-hand side of (9) converge sufficiently fast; if these
quotients do not converge at all the situation can be extraordinarily complicated, and as far
as we know there exist no results at all for this case).

For j1,j2,N > 1 and v € Z set

S(j17j2aya N) = #{(klakQ)a (jl,kl) ?é (j2yk2), 1 S klakQ S N: jlnkl _j2nk2 — V}' (10)

We say that (ny)i>1 satisfies condition Dy if there exist real numbers «;, j, , such that for

1<71,52<d
1
:O<(logN)1+5> 1D

for some ¢ > 0, uniformly for v € Z. We say that (ny)i>1 satisfies condition D if it satisfies
D, for every d > 1.

S(jl’j%yaN)_ o
N 7]17]2,1/

Let (ng)r>1 be a sequence of positive integers satisfying (2) and condition Dg. Let p(x) be a
trigonometric polynomial of the form

d
p(z) = Z aj cos 2mjx + b; sin 2mjx. (12)
j=1
Set
0 d N
op@) = lplP+ Do D ML ( (a0, + by byy) cos2mva (13)

V=—00 j1,j2=1



+ (bj a5, — aj,bj,) sin 271'1/x>,

Let f(z) be a function satisfying

1
fla+1) = f(z), /0 f(z) dz =0, Vargy f < oo, (14)

and write
o
flx) ~ Z a; cos 2mjx + b sin 2mjx
j=1

for the Fourier series of f. For (n),>; satisfying (2) and condition D set

o o
7‘7‘7”
of@) = P+ D0 D L ((aza5 + byyby,) cos 2 (15)

v=—00 j1,j2=1

+ (bj1aj2 —aj, ij) sin 27T1/3:) .

We will prove at the beginning of Section 2 that the limits in (13) and (15) are well-defined,
provided the sequence (ny)i>1 satisfies (2) and condition Dy and D, respectively. We em-
phasize that the functions o, (z) and o¢(z) depend on the numbers v;, ;, , and hence on the
sequence (ng)g>1-

Theorem 1 Let (ng)r>1 be a sequence of positive integers satisfying (2) and condition Dyg.
Then

N
) > k=1 (k)
lim sup

N—ooo V2N loglog N = op(@)

As a consequence of Theorem 1 we obtain the following result for general functions f:

a.e. (16)

Theorem 2 Let (ng)r>1 be a sequence of positive integers satisfying (2) and condition D,
and let f(x) be a function satisfying (14). Then

N
>kt f ()
lim sup e = 0y ()
N—ooo V2N loglog N
The next theorem gives a similar result for the discrepancies D}, and Dy. For 0 <a <b <1
set

a.ce.

Iop)(2) = Ly ((2) — (b—a),

where (-) denotes the fractional part. For a finite sequence (z1,...,2y) of real numbers the
star-discrepancy D}y and the (extremal) discrepancy Dy of (z1,...,zn) are defined as
N
. o > k=1 Tjo,0) (Tk)
Dy (x1,...,xN) := sup |—————————
0<a<1 N
and N
. > k=1 1[ap) (T1)
Dy(zq,...,xN):= sup |—//——=|.
0<a<b<1 N




If (x5)k>1 is an infinite sequence, we write Dy(zy) for Dy(z1,...,2n). For some fixed
sequence (ny)g>1 satisfying (2) and condition D we will write ot , (z) for the function o (z)
with f = Ij,4), corresponding to (15). For general basic information on discrepancy theory
(and the theory of uniform distribution modulo one) we refer the reader to [9] and [18].

Theorem 3 Let (ng)r>1 be a sequence of positive integers satisfying (2) and condition D.
Then

. N D% (ngx)
lim sup ——2~ 2/ — .e. 17
RNV o oA R (O ()  ae (17)
and
. NDp(ngx)
lim sup

AN T N su 01 Z a.e. 18
N—ooo V2N loglog N OSagIb)gl [a,b)( ) (18)

As an application we show that our results are in accordance with the example of Erdés and
Fortet (4):

Let ny = 2 — 1 and p(x) = cos 2mx + cos 4mzx. Calculating the values of v;, j, ., 1 < j1,72 <
2, v € Z, for this sequence we get

(1 i=ljp=2v=1 or j=2j=1v=-1
Tinizv =) 0 otherwise

Thus we have o,(z)? = 1 + cos 27, and hence (16) yields

N
= e
limsup—= = +V1+4cos2nx a.e.
Nooo V2N loglog N

= V2|cosmz| a.e.,
which is the same as (4).
Remark 1: As in [4] we have to assume a bound of the form O ((log N )*1*5) in our Diophan-
tine condition. It is unclear how far this is from optimality. It is possible that the optimal

condition is o(1) (as in the case of the CLT, see [5]), but we have doubts that this actually is
the case.

Remark 2: Obviously the coefficients ;, j,, in (11) are symmetric in the sense that

Virgow = Viajr,—v  forany  ji,j2,v € Z.

Thus (13) and (15) can be rewritten in the form

d
op(@) = PP+ D Yo
Ji,j2=1

00 d
+ Z Z Vi1 gaw ((@j, @45 + bjy bjy) cos 2mva + (bj,aj, — aj, bj,) sin 2mva)
v=1ji,j2=1
and

oo
of@) = IfIP+ Y Yo

Ji,j2=1



oo oo
+ Z Z Virgaw ((@j,@jy + bj bjy) cos 2mva + (bj,aj, — aj,bj,) sin 2nvz)
v=1j1,j2=1

respectively.

Remark 3: As mentioned before, we do not know of any results for a lacunary sequence
(ng)k>1 for which the quotients

#{(k1,k2), k1 # ko, 1 <ki,ka <N : jing, — jong, = v}
N

are not convergent. By the properties of lacunary sequences these quotients are bounded (as
N — 00), but they can converge to different numbers v, j, , along different subsequences of N.

In this situation it can happen that there exist several limiting functions chm) (), 1<m<M
along different subsequences, and that

N
_ f(ngx
lim sup k=t f )
Nooo V2N loglog N  1<m<M
but the situation can be even more complicated. It is hardly imaginable that a complete
solution of the problem is possible in this general case.

U;m) () a.e.,

Remark 4: Theorem 3 is a general LIL for the discrepancy of lacunary sequences, which
includes several known results. However it can be extremely difficult to calculate the explicit
value of the functions on the right-hand side of (17) and (18). For example, it is by no means

easy to deduce Fukuyama’s result (8) from (18), i.e. to show that for ny = 2¥, k > 1 we get
_ V42

SUPy<q<1OTjq 4 (x) = SUPg<a<b<1 0T, ) (r) = 5= a.e.

2 Preliminaries

In this section we will show that the functions o, () and o¢(z) in (13) and (15) are well-defined
and bounded. This follows directly from the following

Lemma 1 Assume that (ny),>1 satisfies (2) and condition D, and f(z) satisfies (14). Then

) 0
Z Z Vi1 j2.v (|aj1aj2| + |bj1bj2| + |bj1aj2| + |aj1bj2|) < 0.

J1,j2=1v=—00

Proof: By assumption we have Var 1) f < K for some number K, which by [22, Vol. 1, p. 48]
implies
1 1 .
laj| < Kj—, |l <Kj—,  j=1 (19)
We will show that for fixed j; > 1 and r >0
Z Z'le,]é,v <1 (20)
J1q"<j2<jrg" 1 vel

Together with (19) this would imply

o0
S Videw Uajag| + b bjs| + by as] + laj b))

1<j1<j2<o0 v=—00



4K [e.e] oo oo ’)/jl’jQ,y
2.0 > DL uE

S . .
=170 jigr<jangrttv=—oe 17
o o 1
< wy S L
7j=1r=0
8Kq
qg—1

which together with Remark 2 proves the lemma. Thus it remains to show (20).

Now assume that there exist some j; > 1 and r > 0 such that

Do D e > L (21)

J1q7<j2<j1q" Tt veEZ
We will show that this leads to a contradiction. If (21) holds, then there has to exist a finite
set of triplets <j§l),jéz),y(i)) ’ jy)qr < jél) < jiz)qr“, v € 7, such that

Z’Yj§i>7j§)7y(i) >1
(2
Let
A= Jv9.
i
Then A is finite. Since by (2) for k; # ko we have

" g 1/q,q),

ko

for sufficiently large kq is is not possible that there exist numbers j1, jo, j3, satisfying jy) q" <

J2,73 < jii)qr‘H and two different indices ko, k3 such that for 14,15 € A

JiNk, — Jank, = V1, J1Mgy — J3Nky = V2.
But this clearly implies
@ ) gy <1
Z’Vﬁ )Jé )y = b
K]

which is in contradiction with (21). This proves the lemma. O

3 Proof of Theorem 1

The proof of Theorem 1 is somewhat similar to the proof of the main lemma (Lemma 2.4) of
[4]. However, the situation is more difficult in the present case, and several adjustments and
refinements are necessary.

Let € > 0 be given. For simplicity of writing we consider only the case when p(z) is an even
function, i.e. when p is of the form

d
p(z) = Z a;j cos 2mjx. (22)
j=1

7



The general case can be treated in exactly the same way; in fact, the only major difference
is that in the general case p(x) = Z?Zl aj cos 2jx + b sin 2mjx the terms with small fre-
quencies in equation (29) are of the form (aj,aj, + bj,bj,) cos 2w(jing, — joank,)x + (bj aj, —
aj, bj, ) sin 27 (j1ng, — jank,)x, which is in perfect accordance with the definition of o in (13).

For (22) by (13) we have

00 d
Op = HPH2 + Z Z Yi1,52,v (ajl%)cos 2nvx.

v=—00 j1,j2=1

We will assume that ||p|| > 0, since otherwise the theorem is trivial. We will also assume
w.lo.g. that ||p]lc <1 and |a;| <1, 1 < j < d. Throughout the rest of the paper C' will
denote positive constants, not always the same, depending (at most) on p,d and ¢, but not
on i, k, N, etc.

We divide the set of positive integers into consecutive blocks
LALAL Aoy ALA L

of lengths [4 log, i] and i, respectively. More precisely, for any i > 1 set

Al = {k: 1+Z ([4log, 11 +1) <k < [4log,i] +Z ([41og, 1] +l)}

I<i 1<i

and

A; = {k: 1+ [4log, ] +Z ([4log, 11 +1) <k <i+ [4log,i] +Z ([41og, 1] +l)}.

1<i I<i

Furthermore, set

A:UAi, A’:UA;.

i>1 i>1

Then obviously A U A’ = N. Letting i~ and i" denote the smallest resp. largest integer in
A;, we have
i1+

n;—

S q7410gqi — 7/74’ Z Z 2
For every k € A, there exists a uniquely defined index ¢ such that k € A;. For every k € A,
let i = i(k) denote this index. Put m(k) = [logy ng + 2logs i], and approximate p(niz) by a
discrete function ¢ (z) such that the following properties are satisfied:

(P1)  ¢k(x) is G;-measurable
(P2)  lpk(z) — p(niz)loe < Ci™2
(P3) E(px(2)[Gi 1) =0
Here G; denotes the o-field generated by the intervals [v2~™(") (v 4 1)27™@)) 0 < v <

2m(i")  The existence of such functions vk(z) is explained in detail in the proof of [4, Lemma
2.4].



For i > 1, k € A; we define
M = gi~1/2 sgn <cos 47T2m(i+)$> , Yr(x) = i (z) + nr(x), (23)

and let F; denote the o-field generated by the intervals [v2~"(")=1 (y 4 1)2-m(7)=1) 0 <
v < 2T+ For notational convenience we also set n; = 0 for k € A’. Then (P1),(P2) and
(P3) imply

(P1*)  4p(x) is F;-measurable
(P2%)  ||[¢p(z) — p(nia)]jeo < e+ Ci?
(P3*%)  E(¢r(x)|Fim1) = 0.

We set

M
Y= 3 we) Ti= Y plue) T =3 plma) Vi = Y E(PIFi).
=1

keA; keA; kel

Then (Y;, F;,7 > 1) is a martingale difference sequence. The reason for using the functions
Yy, instead of ¢y, (which was not necessary in [4]) is to guarantee that Vs is “not too small”.
In fact, it is easily seen that (23) implies

M 172 2 2
£l e M(M —1)
Ve 2 1;—1 ( 5 ) > 1 2 M >1. (24)

By [7, Lemma 2.2], Minkowski’s inequality and (P2%*),
BV < ClAu] < OM?,

where |A /| denotes the number of elements of Ayy. Thus by (24) and the trivial estimate

M M
Vir <Y VP <Cy AP <oM?

i=1 i=1
wo obtain - -
log Vi 10 loc M 10
S U gy < S 0BT -
M=1 M M=1
Hence by [1, Lemma 11]
DI
lim sup =1 a.e.,

M—oo V2Varloglog Vi

which can be rewritten as

) ‘Zl§k§M+,keA (or + Uk)‘
lim sup =1 a.e.

M—o00 V2V log log Vi




We add the sum of the “short blocks” T/, for which by [20, Theorem 1] and Koksma’s

inequality (see [18, p. 143]),

M
YT
=1

change from ¢y to p(ngx), which is possible by (P2), and get

=0 (\/M(log M) loglog(M log M)) a.e.,

D ) + )|
lim sup =1 a.e.

M—oo V2V loglog Vs

Since

> Ip(nkz) +mp)| < C (1Al + A7) < Ci
keA;UA,

it follows by (24) that

‘maX(M71)+<N§M+ Sy (plngz) + Uk)‘
lim sup

M—so00 V2V loglog Viy

=1 a.e.

For N > 1 we define M(N) as the index m, for which N is contained in A,, UA/,. Then

|2 ) )
lim sup

=1 a.e.
N—oo /2Var(v)loglog Vi

(25)

Finally, we want to replace Vi (ny by Noy(z). We choose a positive number A such that

d
Z Z Vitjaw =€

J1,j2=1v|>A

which is always possible by Lemma 1. Set

d
o al@) = |Ipl* + Z Z % aj, aj, COS 2TV
J1,J2=1|v|<A
Then by (26)
d . .
|op,4(2)* — op(2)?| = Z Z % aj, aj, COS 2TVT < €.
J1.j2=1|v|>A
We have
Ty(z)* - |Ipli31Ail
2
= | X pua) dz | — [pl3IAl

keA;

10

(26)

(27)



2

d d
= Z Zaj cos2mjnix | — <§ZG?> |A]

keA; j=1 =1

—_

1 . .
= > 3 1@ COS 2 (J110k, — J2ltky )T
1<51,52<d, k1,k2€Aq, (1,k1)#(d2,k2),
0L j1mg, —jank, |<A

1 . )
+ E 3 @ @ja COS 27 (jing, — Jonk, )T
1<j1,52<d, k1,k2€A,
A< giney —ganey | <n_q)+

1 . .
+ > 5 @ja @z OS2 (Jing, — Jorik, )
1<j1.j2<d, b ka€As,
N1yt <|Jineg —jampg|<n,—

1 . ‘
+ E E 5 @51 @jz COS 27 (jing, £ Jong,)T (28)
T 1<51,5254d, kika€A,,
n;— <|j1nk, j2nk, |

=: Az(.%') + UZ(.%') + WZ(.%') + Rl(x), (29)

where the sum ), in (28) should be understood as a sum over both possible choices of the
signs “+” and “—” in the second sum in (28) (note that for the sign “+” we always have
n;—- < jing, + jonk,, and thus R; contains all frequencies of the form jing, + jong,).

Like in the proof of [4, Lemma 2.4] we can show

M
D E(Ri|Fi1)| <CM (30)
=1
and
M
> E(Wi|Fia)|| < CMP2, (31)
=1

By the Diophantine condition Dy we have, for 1 < j1, 72 < d,
|S(j1,j2,l/, N) _7j17j2,VN| < C(logN)_l_éNa (32)
where S is defined in (10). We note that U; is a sum of trigonometric functions with frequencies

at most ng;_1)+, L.e.
M-t

U, = E ¢, cos 2T,
v=0

where ) |c,| < C|A;|. Hence the fluctuation of U; on any atom of F;_; is at most

n(i,1)+ N N
Y Je2m2 @00 < o T o gt
= Py

and consequently

|E(Ui|Fi1) — Us| < O Y,

11



which gives

M M
> Ui(z) = Y E(Ui|Fi1)| < Clog M. (33)
i=1 i=1
By (32) we can decompose
M Nvm—1)+ Npr—1)+
Z Ui(z) = Z d, cos 2nvx + Z e, Cos 2T,
i=1 v=A+1 B v=A+1
~ufy —u)
where
|d1/| < Z Z 7j1,j2,VM2
1<j1,52<d [v| > A
and
les| < Clog M)™'0M2, Y e, | < CM. (34)
Then by (26)
‘U](\})‘ <eM?,
and by (34)
1/2
||| < (Z |ey|2> < C(log M)~/270/2 2, (35)

In the same way as (33) we can also show

M
- > E(AilFi-
=1

It is easy to see that for 1 < j1,jo < d and for all v, |v| < A,

1)| < Clog M. (36)

#{klakQ S Ai, (.]lakl) ?é (]25k2) CINg — J2Nky = V}
Z M+ — Vir.ga.v

-0 ().

i.e. that the contribution of the indices in A’ is negligible. Using this observation we obtain

H pA—ZA

We choose an o > 0 such that

i=1

< C(log M)~1/279/2, (37)

and define numbers

12



and sets
S= U {ze€©1): Vu—-M'ol>20 M}, 1>0,
M<M<M; 44

where C* (which denotes a positive constant) will be chosen later. We also define
Sf={xe€(0,1): |Var, = Mol > C*eM?}, 1>0.

Since o < 1 and since Vyy and M +012, grow at most polynomially in M, for all sufficiently
large [
S; C Sl* . (39)

By Hélder’s inequality and (P2),

M
VM —E (Z T;‘E—l) ‘

k=1

< 2E T | D o —plmw) + i | [Fica
=1 kEAi
2
+E D | Y ek —plua) +me | |Fia
i=1 \keA,
<Ce2nz
" 1/2 " 2 1/2
< 2 <E (Z Tf]]-"i_1>> E(> D or—plmx) +m | 1 Fica +Ce2M?
i=1 i=1 \k€A;
<CM <CeM
< CeM?.
Using the decomposition
M M M M M
1 2
S o= B A+ A+ Uy +UR > Wi+ Y R
i=1 i=1 i=1 —~ i=1 i=1
<eM?
we have, using (27), (30), (31), (33), (36),
|Var — Mt o2
M M
< (1 (- S00a) )+ et bl et - Soa)
— y <CeM? =
<CeM log M
M M M M
+) A=Y R(ANF) |+ D Ui = Y E(UilFia) | +eM?
i=1 i=1 i=1 i=1
<C'log M <C'log M

13



+|u?] + +

M M
=1 i=1
<CM3/2 <CM
M
T !
i=1

We choose a constant C* for which C* > C + 2, where C is the constant in (41). Then, since
by Chebyshev’s inequality and (35), (37),

M
(ot 2a

i=1

/

< + ‘U}j)‘ + CeM™. (41)

> 5M2> < Ce (log M)~170

and
P ((Uﬁ" > eM?) < C=2(log M)~
we obtain
P (|Var — Mol > C*eM?)
M
<P < MYo? =3 Al > 5M2> +P ([P > em?)
i=1
< Ce2(log M)~179.
Thus
]P)(Sl*) < Cl—a(1+5)
and by (38)

o

Z P(Sl) < 4-o00.

=1
Thus the Borel-Cantelli Lemma implies that the set of those = € (0,1), which are contained
in infinitely many sets S/,! > 1, has Lebesgue measure 0, and by (39) the set of those x which
are contained in infinitely many sets S;, | > 1, also has measure zero. This implies

Vs — M+012,] < 2C*eM?
for sufficiently large M for a.e. x. Together with (25) this implies

[ (k) + )|
op — V2C*e < limsup
N—roo v2N loglog N
Since the functions 7, and 7y, are independent for k; € A, , ko € A;,, i1 # 2 (similar to the
Rademacher function system), by Kolmogorov’s law of the iterated logarithm

N
) ‘Zk:l nk(
limsup ————-==¢ a.e.,

Nosoo V2NloglogN

<op,+V2C* ae.

which implies

)]
op — V2C*e — e < limsup

N—ooo V2N loglog N

Since € was arbitrary, this proves Theorem 1.

<op+V2C* +¢  ae.

14



4 Proof of Theorems 2 and 3

Again we assume for simplicity of writing that f is an even function. Let f(x) = p(z) + r(x),

where

00 d 00
f(z) ~ Z ajcos2mjx, p(z)= Zaj cos2mjx, r(x)= Z a;j cos 2mjx
j=1 j=1 j=d+1

for some d. We clearly have

N N N
S F ) il plna)| + | rnee)|
limsup —————= < limsup
Nooo V2N loglog N N—oo 2N loglog N
S plnge) [0 ()|
< limsup + lim sup

N—ooo V2N loglog N Nooo V2NTloglog N’

Similarly, we also have

S flua)| (S0 )| (SR r(ne)|
lim sup ———— > limsup -———— — limsup ————.
Nooo V2N loglog N Neooo V2N loglog N Nooo V2N loglog N
By (19) and [4, Lemma 3.1],

‘25:1 T(nkx)‘
limsup ——=———=— <
Nooo V2N loglog N
for some constant C', and by Theorem 1
S plna)|

limsup ————= =0 a.e.

Nooo VV2NloglogN P

cd—/4 a.e.,

Thus, by (42) and (43),

S F )
op — cd—* < lim sup <o,+Cd V4 a.e.

Nooo V2Nloglog N — b

By Lemma 1 we have
op — Of as d — 00,

(42)

which proves Theorem 2. Theorem 3 follows directly from Theorem 2 and [13, Theorem 1].
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